Detection of Dinotefuran Residues in Fruits and Vegetables Using GC-MS/MS and Its Environmental Behavior and Dietary Risks
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.2.1. Sample Pretreatment Method
2.2.2. Instrument Conditions
2.3. Method Validation
2.4. Risk Assessment
2.5. Literature Review Methodology
3. Results and Analysis
3.1. Validation Results
3.2. Detection of Actual Samples
3.3. Analysis of Environmental Degradation Characteristics
3.4. Analysis of Environmental Migration Characteristics
3.5. Analysis of Ecotoxicological Characteristics
3.6. Dietary Exposure Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical Review: Vegetables and Fruit in the Prevention of Chronic Diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Du, H.; Li, L.; Bennett, D.; Guo, Y.; Key, T.J.; Bian, Z.; Sherliker, P.; Gao, H.; Chen, Y.; Yang, L.; et al. Fresh Fruit Consumption and Major Cardiovascular Disease in China. N. Engl. J. Med. 2016, 374, 1332–1343. [Google Scholar] [CrossRef]
- Lučić, M.; Onjia, A. Probabilistic Dietary Exposure and Risk Ranking of Pesticides in Peppers (Capsicum annuum): Regional and Consumer Group Variability. Food Chem. 2025, 492, 145355. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides Impacts on Human Health and the Environment with Their Mechanisms of Action and Possible Countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, Distribution Pathways and Effects on Human Health—A Review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Hierlmeier, V.R.; Gurten, S.; Freier, K.P.; Schlick-Steiner, B.C.; Steiner, F.M. Persistent, Bioaccumulative, and Toxic Chemicals in Insects: Current State of Research and Where to from Here? Sci. Total Environ. 2022, 825, 153830. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). EFSA Support. Publ. 2024, 21, 8751E. [CrossRef]
- European Food Safety Authority (EFSA); Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Marchese, E.; Medina Pastor, P. The 2023 European Union Report on Pesticide Residues in Food. EFSA J. 2025, 23, e9398. [Google Scholar] [CrossRef]
- Report 2023—Pesticide Residues in Food; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2024; ISBN 978-92-5-138596-8.
- Lu, W.; Liu, Z.; Fan, X.; Zhang, X.; Qiao, X.; Huang, J. Nicotinic Acetylcholine Receptor Modulator Insecticides Act on Diverse Receptor Subtypes with Distinct Subunit Compositions. PLoS Genet. 2022, 18, e1009920. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Wang, Y.; Zhao, Y.; Lin, J.; Liu, F.; Mu, W. Nitenpyram, Dinotefuran, and Thiamethoxam Used as Seed Treatments Act as Efficient Controls against Aphis gossypii via High Residues in Cotton Leaves. J. Agric. Food Chem. 2016, 64, 9276–9285. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, X.; Liu, T.; Zhao, Y.; Gan, Y.; Zheng, L. The Stereoselective Toxicity of Dinotefuran to Daphnia Magna: A Systematic Assessment from Reproduction, Behavior, Oxidative Stress and Digestive Function. Chemosphere 2023, 327, 138489. [Google Scholar] [CrossRef]
- He, Z.-C.; Zhang, T.; Peng, W.; Mei, Q.; Wang, Q.-Z.; Ding, F. Exploring the Neurotoxicity of Chiral Dinotefuran towards Nicotinic Acetylcholine Receptors: Enantioselective Insights into Species Selectivity. J. Hazard. Mater. 2024, 469, 134020. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, X.; Dong, F.; Duan, H.; Shao, X.; Chen, X.; Yang, T.; Wang, G.; Zheng, Y. Ecological Toxicity Reduction of Dinotefuran to Honeybee: New Perspective from an Enantiomeric Level. Environ. Int. 2019, 130, 104854. [Google Scholar] [CrossRef]
- Okeke, E.S.; Olisah, C.; Malloum, A.; Adegoke, K.A.; Ighalo, J.O.; Conradie, J.; Ohoro, C.R.; Amaku, J.F.; Oyedotun, K.O.; Maxakato, N.W.; et al. Ecotoxicological Impact of Dinotefuran Insecticide and Its Metabolites on Non-Targets in Agroecosystem: Harnessing Nanotechnology- and Bio-Based Management Strategies to Reduce Its Impact on Non-Target Ecosystems. Environ. Res. 2024, 243, 117870. [Google Scholar] [CrossRef]
- Park, M.; Kim, S.-H.; Bae, S.; Im, M.-H. Monitoring of Pesticide Residues in Chili Peppers Using International Pesticide Monitoring Data for Safety Management. Toxics 2024, 12, 508. [Google Scholar] [CrossRef]
- Ham, H.J.; Choi, J.Y.; Jo, Y.J.; Sardar, S.W.; Ishag, A.E.S.A.; Abdelbagi, A.O.; Hur, J.H. Residues and Uptake of Soil-Applied Dinotefuran by Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.). Agriculture 2022, 12, 1443. [Google Scholar] [CrossRef]
- Bharti, A.; Jain, U.; Chauhan, N. Progressive Analytical Techniques Utilized for the Detection of Contaminants Attributed to Food Safety and Security. Talanta Open 2024, 10, 100368. [Google Scholar] [CrossRef]
- Thorat, T.; Patle, B.K.; Wakchaure, M.; Parihar, L. Advancements in Techniques Used for Identification of Pesticide Residue on Crops. J. Nat. Pestic. Res. 2023, 4, 100031. [Google Scholar] [CrossRef]
- Chen, Z.; Daka, Z.; Yao, L.; Dong, J.; Zhang, Y.; Li, P.; Zhang, K.; Ji, S. Recent Progress in the Application of Chromatography-Coupled Mass-Spectrometry in the Analysis of Contaminants in Food Products. Food Chem. X 2025, 27, 102397. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Herrera, C.; Artavia, G.; Leiva, A.; Granados-Chinchilla, F. Liquid Chromatography Analysis of Common Nutritional Components, in Feed and Food. Foods 2018, 8, 1. [Google Scholar] [CrossRef]
- Masiá, A.; Suarez-Varela, M.M.; Llopis-Gonzalez, A.; Picó, Y. Determination of Pesticides and Veterinary Drug Residues in Food by Liquid Chromatography-Mass Spectrometry: A Review. Anal. Chim. Acta 2016, 936, 40–61. [Google Scholar] [CrossRef]
- Matisová, E.; Hrouzková, S. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection. Int. J. Environ. Res. Public Health 2012, 9, 3166–3196. [Google Scholar] [CrossRef]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Chen, W.-J.; Wu, S.; Lei, Q.; Zhou, Z.; Zhang, W.; Mishra, S.; Bhatt, P.; Chen, S. Environmental Occurrence, Toxicity Concerns, and Biodegradation of Neonicotinoid Insecticides. Environ. Res. 2023, 218, 114953. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhao, K.; Han, C.; Li, C.; Fang, L.; Jia, H.; Wang, Y.; Tang, H.; Zhai, Q.; et al. An Occupational Health Assessment of Dinotefuran Exposure in Greenhouse Vegetable Workers: Metabolomic Profiling and Toxicokinetic Analysis. J. Hazard. Mater. 2025, 491, 137989. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, S.; Wang, P.G. Matrix Effects and Application of Matrix Effect Factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef]
- Marchi, I.; Viette, V.; Badoud, F.; Fathi, M.; Saugy, M.; Rudaz, S.; Veuthey, J.-L. Characterization and Classification of Matrix Effects in Biological Samples Analyses. J. Chromatogr. A 2010, 1217, 4071–4078. [Google Scholar] [CrossRef]
- Bienvenu, J.-F.; Provencher, G.; Bélanger, P.; Bérubé, R.; Dumas, P.; Gagné, S.; Gaudreau, É.; Fleury, N. Standardized Procedure for the Simultaneous Determination of the Matrix Effect, Recovery, Process Efficiency, and Internal Standard Association. Anal. Chem. 2017, 89, 7560–7568. [Google Scholar] [CrossRef]
- Carlson, E.A.; Melathopoulos, A.; Sagili, R. The Value of Hazard Quotients in Honey Bee (Apis mellifera) Ecotoxicology: A Review. Front. Ecol. Evol. 2022, 10, 824992. [Google Scholar] [CrossRef]
- Goumenou, M.; Tsatsakis, A. Proposing New Approaches for the Risk Characterisation of Single Chemicals and Chemical Mixtures: The Source Related Hazard Quotient (HQS) and Hazard Index (HIS) and the Adversity Specific Hazard Index (HIA). Toxicol. Rep. 2019, 6, 632–636. [Google Scholar] [CrossRef]
- Amvrazi, E.G.; Albanis, T.A. Pesticide Residue Assessment in Different Types of Olive Oil and Preliminary Exposure Assessment of Greek Consumers to the Pesticide Residues Detected. Food Chem. 2009, 113, 253–261. [Google Scholar] [CrossRef]
- Beneta, A.; Mutavdžić Pavlović, D.; Periša, I.; Petrović, M. Multiresidue GC-MS/MS Pesticide Analysis for Evaluation of Tea and Herbal Infusion Safety. Int. J. Environ. Anal. Chem. 2018, 98, 987–1004. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO/WHO Joint Meeting on Pesticide Residues (JMPR). Available online: https://www.fao.org/pest-and-pesticide-management/guidelines-standards/faowho-joint-meeting-on-pesticide-residues-jmpr/en/ (accessed on 22 May 2025).
- D’Amore, T.; Smaoui, S.; Varzakas, T. Chemical Food Safety in Europe Under the Spotlight: Principles, Regulatory Framework and Roadmap for Future Directions. Foods 2025, 14, 1628. [Google Scholar] [CrossRef] [PubMed]
- Arena, K.; Martín-Pozo, L.; Laganà Vinci, R.; Cacciola, F.; Dugo, P.; Mondello, L. Determination of Pesticide Residues in Five Different Corn-Based Products Using a Single and Simple Solid–Liquid Extraction without Clean-up Steps Followed by Comprehensive Two-Dimensional Liquid Chromatography Coupled to Tandem Mass Spectrometry. Microchem. J. 2024, 205, 111298. [Google Scholar] [CrossRef]
- Carreiró, F.; Barros, S.C.; Brites, C.; Mateus, A.R.; Ramos, F.; Torres, D.; Silva, A.S. Validation of an HPLC-MS/MS Method for the Quantification of Pesticide Residues in Rice and Assessment of the Washing Effect. Food Chem. X 2024, 24, 101938. [Google Scholar] [CrossRef]
- Hem, L.; Abd El-Aty, A.M.; Park, J.-H.; Shim, J.-H. Determination of Dinotefuran in Pepper Using Liquid Chromatography: Contribution to Safety Evaluation. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 765–768. [Google Scholar] [CrossRef]
- Rabie, M.; Ibrahim, E.-D.; Elhafny, D.; Bayoumi, M. Determination of Dinotefuran and Thiamethoxam Residues in PepperFruits under Greenhouse Conditions Using the QuEChERS Method and HPLC/DAD. Egypt. J. Chem. 2018, 61, 220–230. [Google Scholar] [CrossRef]
- Szarka, A.; Hrouzková, S. Fast DLLME-GC-MS Method for Determination of Pesticides in Carmelite Drops and Evaluation of Matrix Effects in Related Medicinal Products. Foods 2024, 13, 1745. [Google Scholar] [CrossRef]
- Li, F.; Wu, J.; Yue, X.; Li, X.; Guo, K.; Yang, Y.; Wang, M.; Liang, X.; Zhang, S.; Zhang, Y. Determination of Residues of Ten Pesticides in Five Vegetables and Their Behavior in Tomatoes Based on QuEChERS GC–MS/MS. Microchem. J. 2025, 212, 113429. [Google Scholar] [CrossRef]
- Asuncion, R.C.T.; Purnamasari, L.; Olarve, J.P.; Cruz, J.F.D. Efficacy of Scattering Application and Paint-on Application of Insecticide in Controlling Housefly on a Broiler Farm. Indones. J. Environ. Manag. Sustain. 2022, 6, 82–87. [Google Scholar] [CrossRef]
- Pang, S.; Lin, Z.; Zhang, W.; Mishra, S.; Bhatt, P.; Chen, S. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Front. Microbiol. 2020, 11, 868. [Google Scholar] [CrossRef]
- Bonmatin, J.-M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, E.A.D.; et al. Environmental Fate and Exposure; Neonicotinoids and Fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, Y.; Yu, M.; Ren, L.; Guo, Y.; Li, Q.; Yin, M.; Li, X.; Chen, F. Controlled Release of Dinotefuran with Temperature/pH-Responsive Chitosan-Gelatin Microspheres to Reduce Leaching Risk during Application. Carbohydr. Polym. 2022, 277, 118880. [Google Scholar] [CrossRef]
- Winter, C.K.; Katz, J.M. Dietary Exposure to Pesticide Residues from Commodities Alleged to Contain the Highest Contamination Levels. J. Toxicol. 2011, 2011, 589674. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.H.; Petersen, A.; Nielsen, E.; Christensen, T.; Poulsen, M.E.; Andersen, J.H. Cumulative Dietary Exposure of the Population of Denmark to Pesticides. Food Chem. Toxicol. 2015, 83, 300–307. [Google Scholar] [CrossRef]
- European Food Safety Authority. Guidance on the Assessment of Exposure of Operators, Workers, Residents and Bystanders in Risk Assessment for Plant Protection Products. EFSA J. 2014, 12, 3874. [Google Scholar] [CrossRef]
Matrices | Addition Concentration (mg/kg) | Recovery Rate (%) | RSD (%, n = 6) |
---|---|---|---|
Grape | 0.01 | 92.8 | 5.6 |
0.10 | 96.5 | 4.3 | |
1.00 | 98.3 | 3.8 | |
Nectarine | 0.01 | 90.5 | 5.8 |
0.10 | 94.7 | 4.5 | |
1.00 | 97.2 | 3.9 | |
Watermelon | 0.01 | 93.2 | 5.3 |
0.10 | 97.8 | 4.2 | |
1.00 | 99.1 | 3.6 | |
Cucumber | 0.01 | 88.2 | 5.5 |
0.10 | 91.3 | 4.7 | |
1.00 | 95.6 | 4.0 | |
Spinach | 0.01 | 95.3 | 5.7 |
0.10 | 99.6 | 4.4 | |
1.00 | 105 | 3.5 | |
Celery | 0.01 | 91.5 | 5.2 |
0.10 | 94.8 | 4.1 | |
1.00 | 97.4 | 3.7 |
Methods | Matrix Type | LOD (mg/kg) | LOQ (mg/kg) | Recovery Rate (%) | Reference |
---|---|---|---|---|---|
GC-MS | A variety of fruits and vegetables | 0.003 | 0.01 | 88.2–104.5 | This study |
LC-MS/MS | Vegetables | 0.002 | 0.007 | 85.3–95.7 | [41] |
HPLC-DAD | Fruits | 0.01 | 0.03 | 78.2–89.5 | [44] |
DLLME-GC-MS/MS | Tea | 0.008 | 0.025 | 80.5–92.1 | [42] |
Traditional GC-MS | Vegetables | 0.01 | 0.03 | 75.6–88.3 | [43] |
Name | Concentration (mg/kg) | RSD% | Spiked Concentration (mg/kg) | RSD% |
---|---|---|---|---|
Grape | 0.029 ± 0.003 | 9.01 | 0.084 ± 0.006 | 7.43 |
Nectarine | 0.122 ± 0.012 | 9.56 | 0.142 ± 0.003 | 2.38 |
Watermelon | 0.039 ± 0.003 | 8.63 | 0.101 ± 0.007 | 6.89 |
Cucumber | 0.016 ± 0.002 | 9.48 | 0.093 ± 0.005 | 5.52 |
Spinach | 0.077 ± 0.007 | 9.54 | 0.209 ± 0.007 | 3.52 |
Celery | 0.084 ± 0.008 | 8.96 | 0.107 ± 0.010 | 9.34 |
Commodity | This Study | China (2020–2023) * | Global (2020–2023) ** | MRL (mg/kg) China/EU/Codex |
---|---|---|---|---|
Grape | 0.02–0.03 | 0.01–0.15 | 0.01–0.22 | 0.5/0.1/0.5 |
Nectarine | 0.10–0.13 | 0.02–0.18 | 0.01–0.31 | 0.3/0.1/0.7 |
Watermelon | 0.03–0.04 | 0.01–0.08 | 0.01–0.12 | 0.2/0.1/0.2 |
Cucumber | 0.01–0.02 | 0.01–0.09 | 0.01–0.15 | 0.1/0.1/0.1 |
Spinach | 0.07–0.09 | 0.01–0.12 | 0.01–0.18 | 0.3/0.01/0.3 |
Celery | 0.07–0.09 | 0.01–0.14 | 0.01–0.19 | 0.3/0.01/0.3 |
Pesticide | Photolysis Rate | Hydrolytic Stability | Micro-Biological Degradation | Soil Degradation | Degradation in Plants |
---|---|---|---|---|---|
Dinotefuran | 4–14 | ~360 | 20–50 | 10–30 | 2–12 |
Imidacloprid | 100–200 | ~30 | 40–120 | 100–200 | 7–25 |
Thiamethoxam | 3–30 | ~200 | 20–75 | 30–100 | 4–20 |
Acetamiprid | 30–100 | ~150 | 10–50 | 20–40 | 2–15 |
Pesticide | Koc | Leaching Risk | Water Solubility (mg/L) | Vapor Pressure (mPa) | GUS Index |
---|---|---|---|---|---|
Dinotefuran | 30–50 | Higher | 39,830 | 0.0017 | 4.95 |
Imidacloprid | 200–300 | Medium | 610 | 0.0000004 | 3.76 |
Thiamethoxam | 60–100 | Very high | 4100 | 0.00000041 | 5.18 |
Acetamiprid | 150–200 | Medium | 590 | 0.0000043 | 3.83 |
Pesticide | Main Metabolites | Metabolite Toxicity | Bee | Aquatic Organisms | Earthworm |
---|---|---|---|---|---|
Dinotefuran | UF, DN | Low toxicity | 0.023 | 0.1–1.0 | 5.2 |
Imidacloprid | 6-Chloronicotinic acid, Nitroso derivatives | Chronically toxic | 0.0039 | 10–30 | 10.5 |
Thiamethoxam | Clothianidin | Highly toxic (more active than the parent) | 0.004 | 0.01–0.1 | 2.8 |
Acetamiprid | N-Demethylacetamiprid | Moderately toxic | 0.15 | 10–50 | 20.0 |
Name | Cmax (mg/kg) | ESTI (mg/kg) | aHQ (%) | Cm (mg/kg) | EDI (mg/kg) | cHQ (%) |
---|---|---|---|---|---|---|
Grape | 0.031 | 0.00018 | 0.09 | 0.029 | 0.00017 | 0.09 |
Nectarine | 0.133 | 0.00078 | 0.39 | 0.122 | 0.00071 | 0.36 |
Watermelon | 0.042 | 0.00024 | 0.12 | 0.039 | 0.00023 | 0.11 |
Cucumber | 0.018 | 0.00015 | 0.04 | 0.016 | 0.00014 | 0.07 |
Spinach | 0.082 | 0.00068 | 0.34 | 0.077 | 0.00064 | 0.32 |
Celery | 0.089 | 0.00074 | 0.37 | 0.084 | 0.00070 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Li, J.; Xue, P.; Zhang, H. Detection of Dinotefuran Residues in Fruits and Vegetables Using GC-MS/MS and Its Environmental Behavior and Dietary Risks. Toxics 2025, 13, 816. https://doi.org/10.3390/toxics13100816
Ma C, Li J, Xue P, Zhang H. Detection of Dinotefuran Residues in Fruits and Vegetables Using GC-MS/MS and Its Environmental Behavior and Dietary Risks. Toxics. 2025; 13(10):816. https://doi.org/10.3390/toxics13100816
Chicago/Turabian StyleMa, Chengling, Jiamin Li, Peng Xue, and Hao Zhang. 2025. "Detection of Dinotefuran Residues in Fruits and Vegetables Using GC-MS/MS and Its Environmental Behavior and Dietary Risks" Toxics 13, no. 10: 816. https://doi.org/10.3390/toxics13100816
APA StyleMa, C., Li, J., Xue, P., & Zhang, H. (2025). Detection of Dinotefuran Residues in Fruits and Vegetables Using GC-MS/MS and Its Environmental Behavior and Dietary Risks. Toxics, 13(10), 816. https://doi.org/10.3390/toxics13100816