Temporal Variability of Gallium in Natural Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Analysis of Plant and Soil Material
2.3. Data Analysis
3. Results and Discussion
3.1. The Experiment Performed at Site 1
3.2. The Experiment Carried out at Site 2
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jabłońska-Czapla, M.; Grygoyć, K. Speciation and Fractionation of Less-Studied Technology-Critical Elements (Nb, Ta, Ga, In, Ge, Tl, Te): A Review. Pol. J. Environ. Stud. 2021, 30, 1477–1486. [Google Scholar] [CrossRef]
- Połedniok, J.; Kita, A.; Zerzucha, P. Spectrophotometric and Inductively Coupled Plasma–Optical Emission Spectroscopy Determination of Gallium in Natural Soils and Soils Polluted by Industry: Relationships between Elements. Commun. Soil Sci. Plant Anal. 2012, 43, 1121–1135. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, X.; Yue, J.; Fang, Y.; Shi, J.; Meng, L.; Clayton, C.; Zhang, X.X.; Shi, F.; Deng, J.; et al. A soil-inspired dynamically responsive chemical system for microbial modulation. Nat. Chem. 2023, 15, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Stoltz, E.; Greger, M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. 2002, 47, 271–280. [Google Scholar] [CrossRef]
- Jensen, H.; Gaw, S.; Lehto, N.J.; Hassall, L.; Robinson, B.H. The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere 2018, 209, 675–684. [Google Scholar] [CrossRef]
- Chang, H.-F.; Wang, S.-L.; Yeh, K.-C. Effect of Gallium Exposure in Arabidopsis thaliana is Similar to Aluminum Stress. Environ. Sci. Technol. 2017, 51, 1241–1248. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Yang, P.-T.; Chang, H.-F.; Yeh, K.-C.; Wang, S.-L. Soil gallium speciation and resulting gallium uptake by rice plants. J. Hazard. Mater. 2021, 424, 127582. [Google Scholar] [CrossRef]
- Eticha, D.; Staß, A.; Horst, W.J. Localization of aluminium in the maize root apex: Can morin detect cell wall-bound aluminium? J. Exp. Bot. 2005, 56, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H. A Comparative Assessment of Lesser-Studied Trace Elements in the Soil-Plant System: Implications for Environmental Quality. PhD Thesis, University of Canterbury, Christchurch, New Zealand, 2022. [Google Scholar]
- Jackson, B.P. Low level determination of gallium isotopes by ICP-QQQ. J. Anal. At. Spectrom. 2018, 33, 897–900. [Google Scholar] [CrossRef]
- Shtangeeva, I.; Viksna, A.; Grebnevs, V. Geochemical (soil) and phylogenetic (plant taxa) factors affecting accumulation of macroand trace elements in three natural plant species. Environ. Geochem. Health 2020, 42, 209–219. [Google Scholar] [CrossRef]
- Kabata-Pendias, H.A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-32714-1. [Google Scholar] [CrossRef]
- Négrel, P.; Ladenberger, A.; Reimann, C.; Birke, M.; Sadeghi, M. Distribution of Rb, Ga and Cs in agricultural land soils at European continental scale (GEMAS): Implications for weathering conditions and provenance. Chem. Geol. 2018, 479, 188–203. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, J.; Teng, H.; Chetelat, B.; Cai, H.; Liu, J.; Wang, Z.; Bouchez, J.; Moynier, F.; Gaillardet, J.; et al. A Review on the Elemental and Isotopic Geochemistry of Gallium. Glob. Biogeochem. Cycles 2021, 35, e2021GB007033. [Google Scholar] [CrossRef]
- Yu, X.-Z.; Feng, X.-H.; Feng, Y.-X. Phytotoxicity and Transport of Gallium (Ga) in Rice Seedlings for 2-Day of Exposure. Bull. Environ. Contam. Toxicol. 2015, 95, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Połedniok, J.; Orzeł, J.; Gałeczka, J.; Czoik, R. A Highly Sensitive Spectrophotometric Method for Gallium Determination with Chrome Azurol S in the Presence of Mixed Cationic-Nonionic Surfactants and its Application in Plant Analysis. Commun. Soil Sci. Plant Anal. 2017, 48, 936–942. [Google Scholar] [CrossRef]
- Ha, N.T.H.; Sakakibara, M.; Sano, S.; Nhuan, M.T. Uptake of metals and metalloids by plants growing in a lead–zinc mine area, Northern Vietnam. J. Hazard. Mater. 2011, 186, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Poiré, R.; Wiese-Klinkenberg, A.; Parent, B.; Mielewczik, M.; Schurr, U.; Tardieu, F.; Walter, A. Diel time-courses of leaf growth in monocot and dicot species: Endogenous rhythms and temperature effects. J. Exp. Bot. 2010, 61, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Bai, W.; Li, Q.; Guo, Y.; Zhang, W. Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe. New Phytol. 2020, 229, 1481–1491. [Google Scholar] [CrossRef]
- Shtangeeva, I.; Niemelä, M.; Ryumin, A.; Chelibanov, V.; Golovin, A.; Vesavaara, I.; Perämäki, P. Short-term Variability of Macro- and Trace Elements in Elymus Repens L. and Urtica Dioica L. Front. Biosci. 2022, 14, 20. [Google Scholar] [CrossRef]
- Hinsinger, P.; Plassard, C.; Tang, C.; Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 2003, 248, 43–59. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Mei, B.; Puryear, J.D.; Newton, R.J. Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 2002, 247, 223–231. [Google Scholar] [CrossRef]
- Singh, R.; Agrawal, M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol. Environ. Saf. 2010, 73, 632–641. [Google Scholar] [CrossRef] [PubMed]
Couch Grass | Plantain | |
---|---|---|
Soil | 6.55 ± 0.33 | 7.32 ± 0.73 |
Roots | 1.52 ± 0.45 * | 0.46 ± 0.14 |
Leaves | 0.058 ± 0.010 * | 0.14 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shtangeeva, I. Temporal Variability of Gallium in Natural Plants. Toxics 2023, 11, 675. https://doi.org/10.3390/toxics11080675
Shtangeeva I. Temporal Variability of Gallium in Natural Plants. Toxics. 2023; 11(8):675. https://doi.org/10.3390/toxics11080675
Chicago/Turabian StyleShtangeeva, Irina. 2023. "Temporal Variability of Gallium in Natural Plants" Toxics 11, no. 8: 675. https://doi.org/10.3390/toxics11080675
APA StyleShtangeeva, I. (2023). Temporal Variability of Gallium in Natural Plants. Toxics, 11(8), 675. https://doi.org/10.3390/toxics11080675