Research Progress and New Ideas on the Theory and Methodology of Water Quality Criteria for the Protection of Aquatic Organisms
Abstract
:1. Introduction
2. Interpretation of WQC Guidelines for the Protection of Aquatic Organisms in Different Countries
3. Key Points of Theoretical Methodology of WQC for the Protection of Aquatic Organisms
4. Research Progress of Case Studies of WQC for Environmental Pollutants
4.1. Bibliometric Analysis of WQC Research
4.2. WQC Values of Toxic Substances Published at the National Level
5. Exploration of New Theories and Methods of WQC Research
5.1. Exploration of WQC Research Methods Based on Model Prediction
5.2. New Ideas on WQC Research for Emerging Pollutants
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, F.C.; Meng, W.; Zhao, X.L.; Li, H.X.; Zhang, R.Q.; Cao, Y.J.; Liao, H.Q. China Embarking on Development of its Own National Water Quality Criteria System. Environ. Sci. Technol. 2010, 44, 7992–7993. [Google Scholar] [CrossRef]
- Wu, F.C.; Mu, Y.S.; Chang, H.; Zhao, X.L.; Giesy, J.P.; Wu, K.B. Predicting Water Quality Criteria for Protecting Aquatic Life from Physicochemical Properties of Metals or Metalloids. Environ. Sci. Technol. 2013, 47, 446–453. [Google Scholar] [CrossRef]
- MEE Technical Guideline for Deriving Water Quality Criteria for Freshwater Organisms (HJ 831-2022); China Environmental Science Press: Beijing, China, 2022.
- Feng, C.L.; Wu, F.C.; Zhao, X.L.; Li, H.X.; Chang, H. Water quality criteria research and progress. Sci. China Earth. Sci. 2012, 55, 882–891. [Google Scholar] [CrossRef]
- Wu, F.C. Theory and Methodology of Water Quality Criteria and Case Studies (2012); Science Prezss: Beijing, China, 2012. [Google Scholar]
- Leung KM, Y.; Merrington, G.; Warne, M.S.J.; Wenning, R. Scientific derivation of environmental quality benchmarks for the protection of aquatic ecosystems: Challenges and opportunities. Environ. Sci. Pollut. R 2014, 21, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrington, G.; Van Sprang, P. Deriving environmental quality standards in European surface waters: When are there too few data? Environ. Sci. Pollut. R 2014, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Yanjiao, H.; Kang, S.; Fazhi, X.; Huixian, L.; Fuhong, S. Derivation of water quality criteria of zinc to protect aquatic life in Taihu Lake and the associated risk assessment. J. Environ. Manag. 2021, 296, 113175. [Google Scholar]
- USEPA Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses: PB85-227049 (440-9-76-023) (1985); United States Environmental Protection Agency: Washington, DC, USA, 1985.
- EC. Technical Guidance Document in Support of the Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and the Commission Regulation EC 1488/94 on Risk Assessment for Existing Substances (2003); European Commission Joint Research Centre: Helsinki, Finland, 2003. [Google Scholar]
- Feng, C.L.; Li, H.; Yan, Z.F.; Wang, Y.J.; Wang, C.; Fu, Z.Y.; Liao, W.; Giesy, J.P.; Bai, Y.C. Technical study on national mandatory guideline for deriving water quality criteria for the protection of freshwater aquatic organisms in China. J. Environ. Manag. 2019, 250, 109539. [Google Scholar] [CrossRef]
- USEPA. Quality Criteria for Water (1976); Office of Water Regulations and Standards: Washington, DC, USA, 1976.
- Feng, C.L.; Wu, F.C.; Zheng, B.H.; Meng, W.; Paquin, P.R.; Wu, K.B. Biotic Ligand Models for Metals-A Practical Application in the Revision of Water Quality Standards in China. Environ. Sci. Technol. 2012, 46, 10877–10878. [Google Scholar] [CrossRef]
- Yung, M.M.N.; Wong, S.W.Y.; Kwok, K.W.H.; Liu, F.Z.; Leung, Y.H.; Chan, W.T.; Li, X.Y.; Djurisic, A.B.; Leung, K.M.Y. Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquat. Toxicol. 2015, 165, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Michael, K.; Kreiss, C.M.; Hu, M.Y.; Koschnick, N.; Bickmeyer, U.; Dupont, S.; Portner, H.O.; Lucassen, M. Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming. Comp. Biocgem. Phys. B 2016, 193, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.S.; Wang, Z.; Wu, F.C.; Zhong, B.Q.; Yang, M.R.; Sun, F.H.; Feng, C.L.; Jin, X.W.; Leung, K.M.Y.; Giesy, J.P. Model for Predicting Toxicities of Metals and Metalloids in Coastal Marine Environments Worldwide. Environ. Sci. Technol. 2018, 52, 4199–4206. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Zhu, Z.W.; Feng, C.L.; Yan, Z.F.; Hong, Y.J.; Liu, D.Q.; Jin, X.W. Toxicity mechanisms and bioavailability of copper to fish based on an adverse outcome pathway analysis. J. Environ. Sci. 2023, 127, 495–507. [Google Scholar] [CrossRef]
- Stauber, J.; Golding, L.; Peters, A.; Merrington, G.; Adams, M.; Binet, M.; Batley, G.; Gissi, F.; McKnight, K.; Garman, E.; et al. Application of Bioavailability Models to Derive Chronic Guideline Values for Nickel in Freshwaters of Australia and New Zealand. Environ. Toxicol. Chem. 2021, 40, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Merrington, G.; Peters, A.; Wilson, I.; Cooper, C.; Van Assche, F.; Ryan, A. Deriving a bioavailability-based zinc environmental quality standard for France. Environ. Sci. Pollut. R 2021, 28, 1789–1800. [Google Scholar] [CrossRef]
- Iain, W.; Adam, P.; Graham, M.; Stijn, B. Following the evidence and using the appropriate regulatory tools: A European-wide risk assessment of copper in freshwaters. Integr. Environ. Assess. Manag. 2023, 20, 4768–4778. [Google Scholar]
- USEPA. National Recommended Water Quality Criteria (2018); Office of Water, Office of Science and Technology: Washington, DC, USA, 2018.
- USEPA. National Recommended Water Quality Criteria-Correction (2018); Office of Water Office of Science and Technology: Washington, DC, USA, 2018.
- CCME. Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life—MANGANESE (2019); Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2019. [Google Scholar]
- Niyogi, S.; Wood, C.M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ. Sci. Technol. 2004, 38, 6177–6192. [Google Scholar] [CrossRef]
- Chung, J.; Hwang, D.; Park, D.H.; Dong, H.Y.; Tae, J.P.; Jinhee, C.; Jong, H.L. Derivation of acute copper biotic ligand model-based predicted no-effect concentrations and acute-chronic ratio. Sci. Total Environ. 2021, 780, 146425. [Google Scholar] [CrossRef]
- USEPA. Aquatic Life Ambient Freshwater Quality Criteria-Copper (2007); Office of Water Regulations and Srandards Criteria Division: Washington, DC, USA, 2007.
- Peters, A.; Wilson, I.; Merrington, G.; Heijerick, D.; Baken, S. Assessing compliance of European fresh waters for copper: Accounting for bioavailability. Bull. Environ. Contam. Tox. 2019, 102, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Van, G.E.; Stauber, J.L.; Delos, C.; Eignor, D.; Gensemer, R.W.; McGeer, J.; Merrington, G.; Whitehouse, P. Best Practices for Derivation and Application of Thresholds for Metals Using Bioavailability-Based Approaches. Environ. Toxicol. Chem. 2020, 39, 118–130. [Google Scholar]
- EC. Common Implementation Strategy for the Water Framework Directive (2000/60/ec) Guidance Document No. 27 Technical Guidance for Deriving Environmental Quality Standards (2018); European Commission: Copenhagen, Denmark, 2018. [Google Scholar]
- OECD. Guidance Document for Aquatic Effects Assessment (1995); Organization for Economic Co-operation and Development: Paris, France, 1995. [Google Scholar]
- CCME. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life (1999); Canadian Council of Ministers of the Environment: Ottawa, ON, Canada, 1999. [Google Scholar]
- CCME. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life (2007); Canadian Council of Ministers of the Environment: Ottawa, ON, Canada, 2007. [Google Scholar]
- ANZECC and ARMCANZ. Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000); Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand: Canberra, ACT, Australia, 2000.
- ANZG. Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018); Australian and New Zealand Governments and Australian State and Territory Governments: Canberra, ACT, Australia, 2018. [Google Scholar]
- RIVM. Guidance Document on Deriving Environmental Risk Limits: 601501 012 (2001); National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2001. [Google Scholar]
- RIVM. Guidance for the Derivation of Environmental Risk Limits within the Framework of ‘International and National Environmental Quality Standards for Substances in the Netherlands’ (INS) Revision 2007: 601782001 (2007); National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2007. [Google Scholar]
- ME. Environmental Quality Standards for Water Pollution (1971); Ministry of the Environment: Helsinki, Finland, 1971.
- ME. Environmental Quality Standards for Water Pollution (2021); Ministry of the Environment: Helsinki, Finland, 2021.
- Wu, F.C. Introduction to Theory and Methodology of Water Quality Criteria (2021); Science Press: Beijing, China, 2021. [Google Scholar]
- MEE. Technical Guideline for Deriving Water Quality Criteria for the Protection of Freshwater Aquatic Organisms (HJ 831-2017); China Environmental Science Press: Beijing, China, 2017. [Google Scholar]
- Available online: http://www.mee.gov.cn/ywgz/fgbz/ (accessed on 12 January 2023).
- Jin, X.; Wang, Z.; Wang, Y.; Lv, Y.; Rao, K.; Jin, W.; Giesy, J.P.; Leung, K.M.Y. Do water quality criteria based on nonnative species provide appropriate protection for native species? Environ. Toxicol. Chem. 2015, 34, 1793–1798. [Google Scholar] [CrossRef]
- Jin, X.W.; Zha, J.M.; Xu, Y.P.; Wang, Z.J.; Kumaran, S.S. Derivation of aquatic predicted no-effect concentration (PNEC) for 2,4-dichlorophenol: Comparing native species data with non-native species data. Chemosphere 2011, 84, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Klimisch, H.J.; Andreae, M.; Tillmann, U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul. Toxicol. Pharmacol. 1997, 25, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.; Li, H.; Feng, C.; Liu, D.; Yan, Z.; Qiao, Y.; Bai, Y.; Wu, F. A Review on the Water Quality Criteria of Nonylphenol and the Methodological Construction for Reproduction Toxicity Endocrine Disrupting Chemicals. Rev. Environ. Contam. T. 2022, 260, 5. [Google Scholar] [CrossRef]
- Feng, C.L.; Wu, F.C.; Mu, Y.S.; Meng, W.; Dyer, S.D.; Fan, M.; Raimondo, S.; Barron, M.G. Interspecies Correlation Estimation-Applications in Water Quality Criteria and Ecological Risk Assessment. Environ. Sci. Technol. 2013, 47, 11382–11383. [Google Scholar] [CrossRef]
- Newman, M.C.; Ownby, D.R.; Mezin, L.C.A.; Powell, D.C.; Christensen, T.R.L.; Lerberg, S.B.; Anderson, B.A. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ. Toxicol. Chem. 2000, 19, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.D.; Wu, F.C.; Mu, Y.S.; Feng, C.L.; Fang, Y.X.; Chen, L.L.; Giesy, J.P. Setting Water Quality Criteria in China: Approaches for Developing Species Sensitivity Distributions for Metals and Metalloids. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer Science and Business Media LLC: New York, NY, USA, 2014; Volume 230, pp. 35–57. [Google Scholar]
- Wang, Y.; Feng, C.L.; Liu, Y.D.; Zhao, Y.J.; Li, H.X.; Zhao, T.H.; Guo, W.J. Comparative study of species sensitivity distributions based on non-parametric kernel density estimation for some transition metals. Environ. Pollut. 2014, 221, 343–350. [Google Scholar] [CrossRef] [PubMed]
- NCEEC. User Manual for “National Ecological Environment Criteria Calculation Software—Species Sensitivity Distribution Method (Version 1.0)”(2022); National Committee of Expert on Environmental Criteria: Deer Park, NY, USA, 2022. [Google Scholar]
- Species Sensitivity Distribution (SSD) Toolbox. Available online: https://www.epa.gov/chemical-research/species-sensitivity-distribution-ssd-toolbox (accessed on 12 February 2023).
- Wang, Y.Y.; Xiong, J.J.; Ohore, O.E.; Cai, Y.E.; Fan, H.L.; Sanganyado, E.; Li, P.; You, J.; Liu, W.H.; Wang, Z. Deriving freshwater guideline values for neonicotinoid insecticides: Implications for water quality guidelines and ecological risk assessment. Sci. Total. Environ. 2022, 828, 154569. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Zhao, X.; Wu, F.; Tang, Z.; Lv, H.; Wang, J.; Fang, M.; Giesy, J.P. Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis. Sci. Total. Environ. 2021, 783, 146838. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Tec. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.J.; Feng, C.L.; Jin, X.W.; Xie, H.Y.; Liu, N.; Bai, Y.C.; Wu, F.C.; Raimondo, S. A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity. Environ. Int. 2022, 167, 107367. [Google Scholar] [CrossRef]
- Borgeson, E.C.; Bacon, V.W.; Gilman, R.H.; McKee, J.E. Judicial Aspects of Water Quality Criteria. Sew. Ind. Wastes 1953, 25, 325–334. [Google Scholar]
- Chen, X. The Establishment Method of the Latest Water Quality Standard in the United States. Res. Environ. Sci. 1984, 6, 21–25. [Google Scholar]
- Australian & New Zealand Toxicant Default Guideline Values for Water Quality in Aquatic Ecosystems. Available online: https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/search (accessed on 12 March 2022).
- Canadian Council of Ministers of the Environment Water Quality Guideline Values. Available online: https://ccme.ca/en/summary-table (accessed on 12 April 2023).
- Japanese Environmental Quality Standards for Water Pollution. Available online: https://www.env.go.jp/en/water/wq/wp.pdf (accessed on 2 June 2023).
- MEE. Technical Report on Water Quality Criteria for Freshwater Aquatic Organisms—Cadmium (2020); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020.
- MEE. Technical Report on Water Quality Criteria for Freshwater Aquatic Organisms—Ammonia Nitrogen (2020); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020.
- MEE. Technical Report on Water Quality Criteria for Freshwater Aquatic Organisms—Phenol (2020); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020.
- Villavicencio, G.; Urrestarazu, P.; Arbildua, J.; Rodriguez, P.H. Application of an acute biotic ligand model to predict chronic copper toxicity to daphnia magna in natural waters of chile and reconstituted synthetic waters. Environ. Toxicol. Chem. 2011, 30, 2319–2325. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Feng, C.L.; Liu, N.; Liu, D.Q.; Yan, Z.F.; Bai, Y.C.; Xie, H.W.; Shi, H.; Wu, D.S. Influence of Hardness and Dissolved Organic Carbon on the Acute Toxicity of Copper to Zebrafish (Danio rerio) at Different Life Stages. Bull. Environ. Contam. Tox. 2019, 103, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Brix, K.V.; DeForest, D.K.; Tear, L.; Grosell, M.; Adams, W.J. Use of Multiple Linear Regression Models for Setting Water Quality Criteria for Copper: A Complementary Approach to the Biotic Ligand Model. Environ. Sci. Technol. 2017, 51, 5182–5192. [Google Scholar] [CrossRef]
- DeForest, D.K.; Brix, K.V.; Tear, L.M.; Cardwell, A.S.; Stubblefield, W.A.; Nordheim, E.; Adams, W.J. Updated Multiple Linear Regression Models for Predicting Chronic Aluminum Toxicity to Freshwater Aquatic Organisms and Developing Water Quality Guidelines. Environ. Toxicol. Chem. 2020, 39, 1724–1736. [Google Scholar] [CrossRef]
- Dyer, S.D.; Versteeg, D.J.; Belanger, S.E.; Chaney, J.G.; Mayer, F.L. Interspecies correlation estimates predict protective environmental concentrations. Environ. Sci. Technol. 2006, 40, 3102–3111. [Google Scholar] [CrossRef]
- Feng, C.L.; Wu, F.C.; Dyer, S.D.; Chang, H.; Zhao, X.L. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China. Chemosphere 2013, 90, 1177–1183. [Google Scholar] [CrossRef]
- Raimondo, S.; Jackson, C.R.; Barron, M.G. Web-Based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual Version 3.2; U.S Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Gulf Ecology Division: Gulf Breeze, FL, USA, 2013.
- Wu, F.C.; Feng, C.L.; Zhang, R.Q.; Li, Y.S.; Du, D.Y. Derivation of water quality criteria for representative water-body pollutants in China. Sci. China. Earth. Sci. 2012, 55, 900–906. [Google Scholar] [CrossRef]
- Liu, N.; Jin, X.W.; Yan, Z.; Luo, Y.; Feng, C.L.; Fu, Z.Y.; Tang, Z.; Wu, F.C.; Giesy, J.P. Occurrence and multiple-level ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in two shallow lakes of China. Environ. Sci. Eur. 2020, 32, 69. [Google Scholar] [CrossRef]
- Yan, Z.F.; Feng, C.L.; Jin, X.W.; Liu, D.Q.; Hong, Y.J.; Qiao, Y.; Bai, Y.C.; Moon, H.B.; Qadeer, A.; Wu, F.C. In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius). Environ Pollu. 2021, 274, 116586. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.F.; Jin, X.W.; Liu, D.Q.; Hong, Y.J.; Liao, W.; Feng, C.L.; Bai, Y.C. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. Chemosphere 2021, 266, 128989. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Feng, C.L.; Yan, Z.F.; Wang, Y.; Liu, D.Q.; Liao, W.; Bai, Y.C. Nonylphenol occurrence, distribution, toxicity and analytical methods in freshwater. Environ. Chem. Lett. 2020, 18, 2095–2106. [Google Scholar] [CrossRef]
- Yan, Z.; Feng, C.; Jin, X.; Wang, F.; Liu, C.; Li, N.; Qiao, Y.; Bai, Y.; Wu, F.; Giesy, J.P. Organophosphate esters cause thyroid dysfunction via multiple signaling pathways in zebrafish brain. Env. Sci. Ecotechnol. 2022, 12, 100198. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Q.; Hong, Y.J.; Feng, C.L.; Yan, Z.F.; Bai, Y.C.; Xu, Y.P. General Challenges and Recommendations for the Water Quality Criteria of Endocrine Disrupting Chemicals (EDCs). Bull. Environ. Contam. Toxicol. 2022, 108, 995–1000. [Google Scholar] [CrossRef]
- Bechmann, R.K. Use of life-tables and LC50 tests to evaluate chronic and acute toxicity effects of copper on the marine coperpod Tisbe furcata (Baird). Environ. Toxicol. Chem. 1994, 13, 1509–1517. [Google Scholar] [CrossRef]
- Hansen, F.T.; Forbes, V.E.; Forbes, T.L. Effects of 4-n-nonylphenol on life -history traits and population dynamis of a polychaete. Ecol. Appl. 1999, 9, 482–495. [Google Scholar] [CrossRef]
Country /Organization | Technical Guidelines | Release Time | Description |
---|---|---|---|
the United States | Guidelines for deriving numerical national WQC for the protection of aquatic organisms and their uses | 1985 (first release) | CMC, CCC |
European Union (EU) | Technical guidance document on risk assessment-partⅡ | 2003 (first release) | PNEC |
Common implementation strategy for the water framework directive (2000/60/EC) guidance document No. 27 technical guidance for deriving environmental quality standards | 2018 (latest edition) | ||
OECD | Guidance Document for Aquatic Effects Assessment | 1995 (first release) | HC5 |
Canada | A protocol for the derivation of water quality guidelines for the protection of aquatic life | 1999 (first release) | WQG |
A protocol for the derivation of water quality guidelines for the protection of aquatic life | 2007 (latest edition) | ||
Australia and New Zealand | Australian and New Zealand guidelines for fresh and marine water quality | 2000 (first release) | TV GV |
Revised method for deriving Australian and New Zealand water quality guideline values for toxicants | 2018 (latest edition) | ||
The Netherlands | Guidance document on deriving environmental risk limits | 2001 (first release) | ERL |
Guidance for the derivation of environmental risk limits within the framework of ‘International and national environmental quality standards for substances in the Netherlands’ (INS) Revision 2007 | 2007 (latest edition) | ||
Japan | Environmental Quality Standards for Water Pollution | 1971 (first release) | EQS |
Environmental Quality Standards for Water Pollution | 2021 (latest edition) | ||
China | Technical guideline for deriving WQC for the protection of freshwater aquatic organisms | 2017 (first release) | WQC |
Technical guideline for deriving WQC for freshwater organisms | 2022 (latest edition) |
Indicator Categories | The Specific Name | Number |
---|---|---|
Organic substances | 4,4′-DDT, Acrolein, Aldrin, alpha-Endosulfan, Atrazine, beta-Endosulfan, Carbaryl, Chlordane, Chlorpyrifos, Cyanide, Demeton, Diazinon, Dieldrin, Endrin, gamma-BHC (Lindane), Guthion, Heptachlor Epoxide, Heptachlor, Malathion, Methoxychlor, Methyl Tertiary-Butyl Ether (MTBE), Mirex, Nonylphenol, Oil and Grease, Parathion, Pentachlorophenol, Perfluorooctane Sulfonate (PFOS), Perfluorooctanoic Acid (PFOA), Polychlorinated Biphenyls (PCBs), Toxaphene, Tributyltin | 31 |
Inorganic substances | Alkalinity, Aluminum, Ammonia, Arsenic, Boron, Cadmium, Chloride, Chlorine, Chromium (III), Chromium (VI), Copper, Hardness, Iron, Lead, Mercury, Nickel, Phosphorus Elemental, Selenium, Silver, Sulfide-Hydrogen Sulfide, Zinc | 21 |
Other indicators | Aesthetic Qualities; Color;Gases, Total Dissolved; Nutrients; Oxygen, Dissolved Freshwater; pH; Solids Suspended and Turbidity; Tainting Substances; Temperature | 9 |
Total | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Huang, W.; Qiao, Y.; Liu, D.; Li, H. Research Progress and New Ideas on the Theory and Methodology of Water Quality Criteria for the Protection of Aquatic Organisms. Toxics 2023, 11, 557. https://doi.org/10.3390/toxics11070557
Feng C, Huang W, Qiao Y, Liu D, Li H. Research Progress and New Ideas on the Theory and Methodology of Water Quality Criteria for the Protection of Aquatic Organisms. Toxics. 2023; 11(7):557. https://doi.org/10.3390/toxics11070557
Chicago/Turabian StyleFeng, Chenglian, Wenjie Huang, Yu Qiao, Daqing Liu, and Huixian Li. 2023. "Research Progress and New Ideas on the Theory and Methodology of Water Quality Criteria for the Protection of Aquatic Organisms" Toxics 11, no. 7: 557. https://doi.org/10.3390/toxics11070557
APA StyleFeng, C., Huang, W., Qiao, Y., Liu, D., & Li, H. (2023). Research Progress and New Ideas on the Theory and Methodology of Water Quality Criteria for the Protection of Aquatic Organisms. Toxics, 11(7), 557. https://doi.org/10.3390/toxics11070557