Enhanced Gastric/Lung Arsenic Bioaccessibility from Lignite Fly Ashes: Comparing Bioaccessibility Rates with Multiple Environmental Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lignite Fly-Ash Samples
2.2. Analytical Methods
3. Results and Discussion
3.1. Mineralogy and Morphology of LFA Size Fractions
3.2. Arsenic Contents in LFA Size Fractions
3.3. Arsenic Gastric/Lung Bioaccessibility Data
3.4. Correlation between As Bioaccessibility and Elemental Contents
3.5. Comparison of Bioaccessible Rates with Multiple Environmental Media
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IARC (International Agency for Research on Cancer). Arsenic, Metals, Fibres, and Dusts. Monographs on the Evaluation of Carcinogenic Risks to Humans. A Review of Human Carcinogens; IARC (International Agency for Research on Cancer): Lyon, France, 2012; Volume 100 (C). [Google Scholar]
- Henke, K. Arsenic: Environmental Chemistry, Health Threats and Waste Treatment; John Wiley & Sons Ltd.: Chichester, UK, 2009; pp. 69–235. [Google Scholar]
- Mohammed Abdul, K.S.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef] [PubMed]
- Dauphinė, D.C.; Smith, A.H.; Yuan, Y.; Balmes, J.R.; Bates, M.N.; Steinmaus, C. Case–control study of arsenic in drinking water and lung cancer in California and Nevada. Int. J. Environ. Res. Public Health 2013, 10, 3310–3324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohel, N.; Vahter, M.; Ali, M.; Rahman, M.; Streatfield, P.K.; Kanaroglou, P.S.; Persson, L.A. Spatial patterns of fetal loss and infant death in an arsenic-affected area in Bangladesh. Int. J. Health Geogr. 2010, 9, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celik, I.; Gallicchio, L.; Boyd, K.; Lam, T.K.; Matanoski, G.; Tao, X.G.; Shiels, M.; Hammond, E.; Chen, L.W.; Robinson, K.A.; et al. Arsenic in drinking water and lung cancer: A systematic review. Environ. Res. 2008, 108, 48–55. [Google Scholar] [CrossRef]
- Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am. J. Epidemiol. 1998, 7, 660–669. [Google Scholar] [CrossRef]
- Shen, Y.-W.; Zhao, H.; Xie, J.-J.; He, K.-Q.; Pang, J.-F.; Guo, Q.; Duan, X.-L.; Yuan, C.-G.; Zhang, K.-G.; Zhu, H.-T.; et al. Insight of the size dependent bioavailability and health risk assessment of arsenic in resuspended fly ash from power plants. Fuel 2022, 327, 125049. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y.P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2011, 94, 3–21. [Google Scholar] [CrossRef]
- Georgakopoulos, A.; Filippidis, A.; Kassoli-Fournaraki, A.; Iordanidis, A.; Fernandez-Turiel, J.F.L.; Gimeno, D. Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energy Sources 2002, 24, 83–91. [Google Scholar] [CrossRef]
- Gong, B.; Yong, Q.; Xiong, Z.; Tian, C.; Yang, J.; Zhao, Y.; Zhang, J. Mineral matter and trace elements in ashes from a high-arsenic lignite fired power plant in Inner Mongolia, China. Int. J. Coal Geol. 2018, 196, 317–334. [Google Scholar] [CrossRef]
- Han, D.; Xu, L.; Wu, Q.; Wang, S.; Duan, L.; Wen, M.; Li, Z.; Tang, Y.; Li, G.; Liu, K. Potential environmental risk of trace elements in fly ash and gypsum from ultra–low emission coal–fired power plants in China. Sci. Total Environ. 2021, 798, 149116. [Google Scholar] [CrossRef]
- Kostova, I.; Vassileva, C.; Dai, S.; Hower, J.C. Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and Varna thermoelectric power plants, Bulgaria. Fuel 2016, 186, 674–684. [Google Scholar] [CrossRef]
- Koukouzas, N.K.; Zeng, R.; Perdikatsis, V.; Xu, W.; Kakaras, E. Mineralogy and geochemistry of Greek and Chinese coal fly ash. Fuel 2006, 85, 2301–2309. [Google Scholar] [CrossRef]
- Medina, A.; Gamero, P.; Querol, X.; Moreno, N.; DeLeón, B.; Almanza, M. Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization. J. Hazard. Mater. 2010, 181, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Meij, R.; Winkel, B.H. Trace elements in world steam coal and their behavior in Dutch coal-fired power stations: A review. Int. J. Coal Geol. 2009, 77, 289–293. [Google Scholar] [CrossRef]
- Moreno, N.; Querol, X.; Andrés, L.M.; Stanton, K.; Towler, M.; Nugteren, H.; Janssen-Jurkovicová, M.; Jones, R. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 2005, 84, 1351–1363. [Google Scholar] [CrossRef]
- Samara, C. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece. Atmos. Environ. 2005, 39, 6430–6443. [Google Scholar] [CrossRef]
- Tian, H.Z.; Lu, L.; Hao, J.M.; Gao, J.J.; Cheng, K.; Liu, K.Y.; Qiu, P.P.; Zhu, C.Y. A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy Fuels 2013, 27, 601–614. [Google Scholar] [CrossRef]
- Vassilev, S.; Vassileva, C. Mineralogy of combustion wastes from coal-fired power stations. Fuel Process. Technol. 1996, 47, 261–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, P.; Wang, J.; Norris, P.; Romero, C.E.; Pan, W.-P. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants. Fuel 2017, 208, 647–654. [Google Scholar] [CrossRef]
- Zhao, S.; Duan, Y.; Lu, J.; Gupta, R.; Pudasainee, D.; Liu, S.; Liu, M.; Lu, J. Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants. Fuel 2018, 232, 463–469. [Google Scholar] [CrossRef]
- Fu, B.; Hower, J.C.; Dai, S.; Mardon, S.M.; Liu, G. Determination of Chemical Speciation of Arsenic and Selenium in High-As Coal Combustion Ash by X-ray Photoelectron Spectroscopy: Examples from a Kentucky Stoker Ash. ACS Omega 2018, 3, 17637–17645. [Google Scholar] [CrossRef] [PubMed]
- Itaya, Y.; Kuninishi, K.; Hashimoto, Y. Arsenic, selenium, and chromium speciation in fly ash. J. Mater. Cycles Waste Manag. 2022, 24, 250–258. [Google Scholar] [CrossRef]
- Tian, C.; Hu, Y.; Tian, X.; Huang, Z. Deep insights on arsenic speciation and partition in coal-fired particles from micro to nano size. Fuel 2023, 332, 126159. [Google Scholar] [CrossRef]
- Ronkkmaki, H.; Poykio, R.; Nurmesniemi, H.; Popov, K.; Merisalu, E.; Tuomi, T.; Valimaki, L. Particle size distribution and dissolution properties of metals in cyclone fly ash. J. Environ. Sci. Technol. 2008, 5, 485–494. [Google Scholar]
- Zielinski, R.A.; Foster, A.L.; Meeker, G.P.; Brownfield, I.K. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama. Fuel 2007, 86, 560–572. [Google Scholar] [CrossRef]
- ATSDR. Public Health Statement for Arsenic; Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine: Atlanta, Georgia, 2007. [Google Scholar]
- Kastury, F.; Smith, E.; Juhasz, A.L. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci. Total Environ. 2017, 574, 1054–1074. [Google Scholar] [CrossRef]
- Guney, M.; Chapuis, R.P.; Zagury, G.J. Lung bioaccessibility of contaminants in particulate matter of geological origin. Environ. Sci. Pollut. Res. 2016, 23, 24422–24434. [Google Scholar] [CrossRef]
- Yager, J.W.; Greene, T.; Schoof, R.A. Arsenic relative bioavailability from diet and airborne exposures: Implications for risk assessment. Sci. Total Environ. 2015, 536, 368–381. [Google Scholar] [CrossRef]
- Drahota, P.; Raus, K.; Rychlíková, E.; Rohovec, J. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Environ. Geochem. Health 2018, 40, 1495–1512. [Google Scholar] [CrossRef]
- Huang, M.; Chen, X.; Zhao, Y.; Chan, C.Y.; Wang, W.; Wang, X.; Wong, M.H. Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes. Environ. Pollut. 2014, 188, 37–44. [Google Scholar] [CrossRef]
- Kim, E.J.; Yoo, J.-C.; Baek, K. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environ. Pollut. 2014, 186, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, J.; Yan, H.; Ren, Y.; Wang, B.; Lin, C.; Liu, X. Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China. Ecotoxicol. Environ. Saf. 2016, 126, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Dowling, K.; Nankervis, S.; Pearce, D.; Florentine, S.; McKnight, S. In vitro assessment of arsenic mobility in historical mine waste dust using simulated lung fluid. Environ. Geochem. Health 2018, 40, 1037–1049. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S.; Zereini, F. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos. Environ. 2014, 89, 282–289. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, C.; Jiang, W.; Qi, L. Evaluation of bioaccessible arsenic in fly ash by an in vitro method and influence of particle-size fraction on arsenic distribution. J. Mater. Cycles Waste Manag. 2013, 15, 516–521. [Google Scholar] [CrossRef]
- Lokeshappa, B.; Dikshit, A.K.; Luo, Y.; Hutchinson, T.J.; Giammar, D.E. Assessing bioaccessible fractions of arsenic, chromium, lead, selenium and zinc in coal fly ashes. Int. J. Environ. Sci. Technol. 2014, 11, 1601–1610. [Google Scholar] [CrossRef] [Green Version]
- Bourliva, A.; Papadopoulou, L.; Aidona, E.; Simeonidis, K.; Vourlias, G.; Devlin, E.; Sanakis, Y. Enrichment and oral bioaccessibility of selected trace elements in fly ash-derived magnetic components. Environ. Sci. Pollut. Res. 2017, 24, 2337–2349. [Google Scholar] [CrossRef]
- Bourliva, A.; Papadopoulou, L.; da Silva, E.F.; Patinha, C. In vitro assessment of oral and respiratory bioaccesibility of trace elements of environmental concern in Greek fly ashes: Assessing health risk via ingestion and inhalation. Sci. Total Environ. 2020, 704, 135324. [Google Scholar] [CrossRef]
- Ruby, M.V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstone, C.M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 1996, 30, 422–430. [Google Scholar] [CrossRef]
- Denys, S.; Caboche, J.; Tack, K.; Rychen, G.; Wragg, J. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ. Sci. Technol. 2012, 46, 6252–6260. [Google Scholar] [CrossRef] [Green Version]
- ISO 17924; Soil Quality—Assessment of Human Exposure from Ingestion of Soil and Soil Material—Procedure for the Estimation of the Human Bioaccessibility/Bioavailability of Metals in Soil. ISO: Genève, Switzerland, 2018.
- Pelfrêne, A.; Cave, M.R.; Wragg, J.; Douay, F. In vitro investigations of human bioaccessibility from reference materials using simulated lung fluids. Int. J. Environ. Res. Public Health 2017, 14, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wragg, J.; Cave, M.; Basta, N.; Brandon, E.; Casteel, S. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci. Total Environ. 2011, 409, 4016–4030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, E.M.; Barlow, T.S.; Gowing, C.J.B.; Watts, M.J. Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102. Microchem. J. 2015, 123, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.F.O.; DaBoit, K.; Sampaio, C.H.; Jasper, A.; Andrade, M.L.; Kostova, I.J.; Waanders, F.B.; Henke, K.R.; Hower, J.C. The occurrence of hazardous volatile elements and nanoparticles in Bulgarian coal fly ashes and the effect on human health exposure. Sci. Total Environ. 2012, 416, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, S.V.; Menendez, R.; Alvarez, D.; Dias-Somoano, M.; Martinez-Tarazona, R.M. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 1. Characterization of feed coals and fly ashes. Fuel 2003, 82, 1793–1811. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zyryanov, V.; Zhang, J.; Zheng, C. Physical–chemical characteristics and elements enrichment of magnetospheres from coal fly ashes. Fuel 2014, 135, 15–26. [Google Scholar] [CrossRef]
- Cui, J.-L.; Zhao, Y.-P.; Li, J.-S.; Beiyuan, J.-Z.; Tsang, D.C.W.; Poon, C.-S.; Chan, T.-S.; Wang, W.-X.; Li, X.-D. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environ. Pollut. 2018, 223, 375–384. [Google Scholar] [CrossRef]
- Fu, B.; Hower, J.C.; Li, S.; Huang, Y.; Zhang, Y.; Hu, H.; Liu, H.; Zhou, J.; Zhang, S.; Liu, J.; et al. The key roles of Fe-bearing minerals on arsenic capture and speciation transformation during high-As bituminous coal combustion: Experimental and theoretical investigations. J. Hazard. Mater. 2021, 415, 125610. [Google Scholar] [CrossRef]
- Palumbo-Roe, B.; Wragg, J.; Cave, M. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil. Environ. Pollut. 2015, 207, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Kelepertzis, E.; Chastný, V.; Botsou, F.; Sigala, E.; Kypritidou, Z.; Komárek, M.; Skordas, K.; Argyraki, A. Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. Sci. Total Environ. 2021, 771, 144827. [Google Scholar] [CrossRef]
- Morais, M.A.; Gasparon, M.; Delbem, I.D.; Caldeira, C.L.; Freitas, E.T.F.; Ng, J.C.; Ciminelli, V.S.T. Gastric/lung bioaccessibility and identification of arsenic-bearing phases and sources of fine surface dust in a gold mining district. Sci. Total Environ. 2019, 689, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourliva, A.; Kelepertzis, E.; Papadopoulou, L.; Patinha, C.; Kantiranis, N. Enhanced Gastric/Lung Arsenic Bioaccessibility from Lignite Fly Ashes: Comparing Bioaccessibility Rates with Multiple Environmental Matrices. Toxics 2023, 11, 358. https://doi.org/10.3390/toxics11040358
Bourliva A, Kelepertzis E, Papadopoulou L, Patinha C, Kantiranis N. Enhanced Gastric/Lung Arsenic Bioaccessibility from Lignite Fly Ashes: Comparing Bioaccessibility Rates with Multiple Environmental Matrices. Toxics. 2023; 11(4):358. https://doi.org/10.3390/toxics11040358
Chicago/Turabian StyleBourliva, Anna, Efstratios Kelepertzis, Lamprini Papadopoulou, Carla Patinha, and Nikolaos Kantiranis. 2023. "Enhanced Gastric/Lung Arsenic Bioaccessibility from Lignite Fly Ashes: Comparing Bioaccessibility Rates with Multiple Environmental Matrices" Toxics 11, no. 4: 358. https://doi.org/10.3390/toxics11040358