Distribution of Natural Radionuclides and 137Cs in Urban Soil Samples from the City of Novi Sad, Serbia-Radiological Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Locations
2.2. Sample Preparation
2.3. Gross Alpha and Gross Beta Activity
2.4. Gamma Spectrometry
- The activity of 226Ra, via the energies of 295 keV, 352 keV, 609 keV, 1120 keV, and 1764 keV from its progenies 214Pb and 214Bi;
- The activity of 232Th via the energies of 338 keV and 911 keV from its progeny 228Ac;
- The activity of 40K via the energy of 1460 keV;
- The activity of 235U via the energy of 143 keV and 186 keV, which was corrected for the contribution from 226Ra;
- The activity of 238U via the energy of 63 keV from its progeny 234Th or via 1000 keV from its progeny 234mPa;
- The activity of artificial radionuclide 137Cs via the energy of 661 keV.
2.5. Hazard Indexes Calculation
2.5.1. Outdoor Absorbed Gamma Dose Rate in Air
2.5.2. Annual Effective Dose Rate
2.5.3. Radium Equivalent Activity
2.5.4. External Hazard Index
2.5.5. Lifetime Cancer Risk
3. Results and Discussion
3.1. Gross Alpha and Gross Beta Activity
3.2. Gamma Spectrometry Measurement Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alharbi, T. Simulation of α and β gross activity measurement of soil samples with proportional counters. Appl. Radiat. Isot. 2018, 136, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Calin, M.R.; Druker, A.E.; Radulescu, I. The calculation of the detection efficiency in the calibration of gross alpha–beta systems. J. Radioanal. Nucl. Chem. 2013, 295, 283–288. [Google Scholar] [CrossRef]
- Ogundare, F.O.; Adekoya, O.I. Gross alpha and beta radioactivity in surface soil and drinkable water around a steel processing facility. J. Rad. Res. Appl. Sci. 2015, 8, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Wagiran, H.; Termizi Ramli, A. A survey of gross alpha and gross beta activity in soil samples in Kinta District, Perak, Malaysia. Radiat. Prot. Dosim. 2014, 162, 345–350. [Google Scholar] [CrossRef]
- Shahzadi, C.; Jabbar, A.; Rafique, M.; Khan, M.; Dilband, M.; Satti, K.H. Study of gross alpha, gross beta and natural radioactivity in soil samples of district Muzaffarabad. Int. J. Environ. Anal. Chem. 2022, 102, 5549–5566. [Google Scholar] [CrossRef]
- Masok, F.B.; Masiteng, P.L.; Mavunda, R.D.; Maleka, P.P.; Winkler, H. Determination of uranium and thorium concentration and gross alpha and beta activity measurement in top soil samples from Richards Bay, South Africa. J. Rad. Res. Appl. Sci. 2018, 11, 305–310. [Google Scholar] [CrossRef]
- Zorer, O.S.; Ceylan, H.; Dogru, M. Gross alpha and beta radioactivity concentration in water, soil and sediment of the Bendimahi River and Van Lake (Turkey). Environ. Monit. Assess. 2009, 148, 39–46. [Google Scholar] [CrossRef]
- Biswas, S.; Ferdous, J.; Begum, A.; Ferdous, N. Study of Gross Alpha and Gross Beta Radioactivities in Environmental Samples. J. Sci. Res. 2015, 7, 35–44. [Google Scholar]
- Dimovska, S.; Stafilov, T.; Sajn, R.; Frontasyeva, M. Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs. Radiat. Prot. Dosim. 2010, 138, 144–157. [Google Scholar] [CrossRef]
- Zorer, O.S.; Ceylan, H.; Dogru, M. Determination of Heavy Metals and Comparison to Gross Radioactivity Concentrations in Soil and Sediment Samples of the Bendimahi River Basin (Van, Turkey). Water Air Soil. Pollut. 2009, 196, 75–87. [Google Scholar] [CrossRef]
- Missimer, T.M.; Teaf, C.; Maliva, R.G.; Danley-Thomson, A.; Covert, D.; Hegy, M. Natural Radiation in the Rocks, Soils, and Groundwater of Sothern Florida with a Discussion on Potential Health Impacts. Int. J. Environ. Res. Public Health 2019, 16, 1793. [Google Scholar] [CrossRef] [Green Version]
- Montaña, M.; Camacho, A.; Devesa, R.; Vallés, I.; Céspedes, R.; Serrano, I.; Blàzquez, S.; Barjola, V. The presence of radionuclides in waste water treatment plants in Spain and their effect on human health. J. Clean. Prod. 2013, 60, 77–82. [Google Scholar] [CrossRef]
- Sarap, N.B.; Krneta Nikolić, J.D.; Trifković, J.Đ.; Janković, M.M. Assessment of radioactivity contribution and transfer characteristics of natural radionuclides in agroecosystem. J. Radioanal. Nucl. Chem. 2020, 323, 805–815. [Google Scholar] [CrossRef]
- Gulan, L.; Stajic, J.M.; Milenkovic, B.; Zeremski, T.; Milic, S.; Krstic, D. Plant uptake and soil retention of radionuclides and metals in vineyard environments. Environ. Sci. Pollut. Res. 2021, 28, 49651–49662. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Vu, N.B.; Huynh, N.P.T. Gross alpha and beta radioactivity in food crops and surface soil from Ho Chi Minh City, Vietnam. J. Radioanal. Nucl. Chem. 2018, 315, 65–73. [Google Scholar] [CrossRef]
- Yussuf, N.M.; Saeed, M.A.; Wagiran, H.; Hossain, I. Soil-to-Plant Transfers Factor of Natural Radionuclides in Groundnut Crops Grown on Soils with Different Levels of Background Radioactivity. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2020, 90, 383–387. [Google Scholar] [CrossRef]
- Solecki, J.; Chibowski, S. Determination of transfer factors for 137Cs and 90Sr isotopes in soil-plant system. J. Radioanal. Nucl. Chem. 2002, 252, 89–93. [Google Scholar] [CrossRef]
- Al-Hamarneh, I.F.; Awadallah, M.I. Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan. Radiat. Meas. 2009, 44, 102–110. [Google Scholar] [CrossRef]
- Guagliardi, I.; Rovella, N.; Apollaro, C.; Bloise, A.; De Rosa, R.; Scarciglia, F.; Buttafuoco, G. Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy. J. Earth Syst. Sci. 2016, 125, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Chinnaesakki, S.; Chopra, M.; Kumar, S.; Arora, V.; Sartandel, S.J.; Bara, S.V.; Tripathi, R.M.; Puranik, V.D.; Bajwa, B.S. Assessment of natural radioactivity in soil samples and comparison of direct and indirect measurement of environmental air kerma rate. J. Radioanal. Nucl. Chem. 2011, 289, 885–892. [Google Scholar] [CrossRef]
- Bikit, I.; Slivka, J.; Conkic, L.; Krmar, M.; Veskovic, M.; Zikic-Todorovic, N.; Varga, E.; Curcic, S.; Mrdja, D. Radioactivity of the soil in Vojvodina (northern province of Serbia and Montenegro). J. Environ. Radioact. 2005, 78, 11–19. [Google Scholar] [CrossRef]
- Gulan, L.; Stajic, J.M.; Zeremski, T.; Durlevic, U.; Valjarevic, A. Radionuclides and metals in the parks of the city of Belgrade, Serbia; Spatial distribution and health risk assessment. Forests 2022, 13, 1648. [Google Scholar] [CrossRef]
- Vukašinović, I.; Todorović, D.; Životić, L.; Kaluđerović, L.; Đorđević, A. An analysis of naturally occurring radionuclides and 137Cs in the soils of urban areas using gamma-ray spectrometry. Int. J. Environ. Sci. Technol. 2018, 15, 1049–1060. [Google Scholar] [CrossRef]
- Filgueiras, R.A.; Silva, A.X.; Ribeiro, F.C.A.; Lauria, D.C.; Viglio, E.P. Baseline, mapping and dose estimation of natural radioactivity in soils of the Brazilian state of Alagoas. Radiat. Phys. Chem. 2020, 167, 108332. [Google Scholar] [CrossRef]
- Bai, H.; Hu, B.; Wang, C.; Bao, S.; Sai, G.; Xu, X.; Zhang, S.; Li, Y. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China. Int. J. Environ. Res. Public Health 2017, 14, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satyanarayana, G.V.V.; Sivakumar, N.S.; VidyaSagar, D.; Murali, N.; Rao, A.D.P.; Lakshmi Narayana, P.V. Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Visakhapatnam, Andhra Pradesh, India. J. Indian Chem. Soc. 2023, 100, 100856. [Google Scholar] [CrossRef]
- Dimovska, S.; Stafilov, T.; Sajn, R. Radioactivity in soil from the city of Kavadarci (Republic of Macedonia) and its environs. Radiat. Prot. Dosim. 2012, 148, 107–120. [Google Scholar] [CrossRef]
- Jankovic, M.; Todorovic, D.; Savanović, M. Radioactivity measurements in soil samples collected in the Republic of Srpska. Radiat. Meas. 2008, 43, 1448–1452. [Google Scholar] [CrossRef]
- Radolić, V.; Miklavčić, I.; Poje Sovilj, M.; Stanić, D.; Petrinec, B.; Vuković, B. The natural radioactivity of Istria, Croatia. Radiat. Phys. Chem. 2019, 155, 332–340. [Google Scholar] [CrossRef]
- Antovic, N.; Boskovic, D.; Svrkota, N.; Antovic, I. Radioactivity in soil from Mojkovac, Montenegro, and assessment of radiological and cancer risk. Nucl. Technol. Radiat. 2012, 27, 57–63. [Google Scholar] [CrossRef]
- Kovács, T.; Szeiler, G.; Fábián, F.; Kardos, R.; Gregorič, A.; Vaupotič, J. Systematic survey of natural radioactivity of soil in Slovenia. J. Environ. Radioact. 2013, 122, 70–78. [Google Scholar] [CrossRef]
- Manić, V.; Manić, G.; Radojković, B.; Vučić, D.; Nikezić, D.; Krstić, D. Radioactivity of soil in the region of the town of Niš, Serbia. Radiat. Prot. Dosim. 2019, 185, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Dugalic, G.; Krstic, D.; Jelic, M.; Nikezic, D.; Milenkovic, B.; Pucarevic, M.; Zeremski-Skoric, T. Heavy metals, organics and radioactivity in soil of western Serbia. J. Hazar Mater. 2010, 177, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic, B.; Stajic, J.M.; Gulan, L.; Zeremski, T.; Nikezic, D. Radioactivity levels and heavy metals in the urban soil of Central Serbia. Environ. Sci. Pollut. Res. 2015, 22, 16732–16741. [Google Scholar] [CrossRef]
- Papic, M.; Vukovic, M.; Bikit, I.; Mrđa, D.; Forkapic, S.; Bikit, K.; Nikolić, Đ. Multi-criteria analysis of soil radioactivity in Čačak basin, Serbia. Rom. J. Phys. 2014, 59, 846–861. [Google Scholar]
- Dragovic, S.; Mihailovic, N.; Gajic, B. Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 2008, 72, 491–495. [Google Scholar] [CrossRef]
- Mitrovic, B.; Ajtic, J.; Lazic, M.; Andric, V.; Krstic, N.; Vranjes, B.; Vicentijevic, M. Natural and anthropogenic radioactivity in the environment of Kopaonik mountain, Serbia. Environ. Pollut. 2016, 215, 273–279. [Google Scholar] [CrossRef]
- Jankovic, M.M.; Todorović, J.D.; Nikolić, J.D.; Rajačić, M.M.; Pantelić, G.K.; Sarap, N.B. Radioactivity in the Environment in Vicinity of Power Plants in Serbia: Dose Assessment. In Energy Science and Technology; Multi Volume Set; Prasad, R., Sivakumar, S., Sharma, U.C., Govil, J.N., Eds.; Studium Press LLC: Houston, Texas, USA, 2015; Volume 4, Chapter 18; pp. 467–491. [Google Scholar]
- Mihailović, A.; Budinski-Petković, L.; Popov, S.; Ninkov, J.; Vasin, J.; Ralević, N.M.; Vučinić Vasić, M. Spatial distribution of metals in urban soil of Novi Sad, Serbia: GIS based approach. J. Geochem. Explor. 2015, 150, 104–114. [Google Scholar] [CrossRef]
- Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP); Volume II, Appendix F, Part II; United States Environmental Protection Agency: Washington, DC, USA, 2004; pp. 12-1–12-44.
- International Atomic Energy Agency (IAEA). Measurement of Radionuclides in Food and the Environment; A Guidebook, Technical Reports Series No. 295; IAEA: Vienna, Austria, 1989. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. Report to the General Assembly with Scientific Annexes; UNSCEAR: New York, NY, USA, 2010; Volume I. [Google Scholar]
- Caridi, F.; Spoto, S.E.; Mottese, A.F.; Paladini, G.; Crupi, V.; Belvedere, A.; Marguccio, S.; D’Agostino, M.; Faggio, G.; Grillo, R.; et al. Multivariate Statistics, Mineralogy, and Radiological Hazards Assessment Due to the Natural Radioactivity Content in Pyroclastic Products from Mt. Etna, Sicily, Southern Italy. Int. J. Environ. Res. Public Health 2022, 19, 11040. [Google Scholar] [CrossRef] [PubMed]
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Garcıa, G.S.; Vargas, M.J. Study of self-absorption for the determination of gross alpha and beta activities in water and soil samples. Appl. Radiat. Isot. 2009, 67, 817–820. [Google Scholar] [CrossRef]
- Niedrée, B.; Berns, A.E.; Vereecken, H.; Burauel, P. Do Chernobyl-like contaminations with (137)Cs and (90)Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil? J. Environ. Radioact. 2013, 118, 21–29. [Google Scholar] [CrossRef]
- Sarap, N.B.; Rajačić, M.M.; Đalović, I.G.; Šeremešić, S.I.; Đorđević, A.R.; Janković, M.M.; Daković, M.Z. Distribution of natural and artificial radionuclides in chernozem soil/crop system from stationary experiments. Environ. Sci. Pollut. Res. 2016, 23, 17761–17773. [Google Scholar] [CrossRef] [PubMed]
- Forkapic, S.; Vasin, J.; Bikit, I.; Mrdja, D.; Bikit, K.; Milic, S. Correlations between soil characteristics and radioactivity content of Vojvodina soil. J. Environ. Radioact. 2017, 166, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Markovic, J.; Stevovic, S. Influence of Radioactive Isotopes from Soil on the Growth and Development of Different Plant Cultures. J. Ecol. Nat. Resour. 2021, 5, 000251. [Google Scholar]
- Popovic, D.; Spasic Jokic, V. Consequences of the Chernobyl disaster in the region of the Republic of Serbia. Mil. Med. Examin. 2006, 63, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, J.; Cujic, M.; Djordjevic, M.; Dragovic, R.; Gajic, B.; Miljanic, S.; Dragovic, S. Spatial distribution and vertical migration of 137Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident. Environ. Sci. Processes Impacts 2013, 15, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Navas, A.; Gaspar, L.; López-Vicente, M.; Machín, J. Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees). Radiat. Meas. 2011, 46, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Statistical Yearbook of Belgrade 2021, Secretariat for Management of the City of Belgrade, Sector fot Statistics. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://zis.beograd.gov.rs/images/ZIS/Files/Godisnjak/G_2021E.pdf (accessed on 1 March 2023).
No. | Gross Alpha Activity | Gross Beta Activity |
---|---|---|
S1 | <253 | <191 |
S2 | <156 | 460 ± 53 |
S3 | <221 | 400 ± 53 |
S4 | <306 | <198 |
S5 | <214 | 210 ± 49 |
S6 | <226 | <174 |
S7 | <221 | <158 |
S8 | <248 | <172 |
S9 | <228 | <179 |
S10 | <214 | 285 ± 52 |
S11 | <247 | <169 |
S12 | <222 | 252 ± 51 |
S13 | <162 | 427 ± 50 |
S14 | <168 | 512 ± 54 |
S15 | 243 ± 50 | 566 ± 54 |
S16 | <226 | <174 |
S17 | <221 | <166 |
S18 | <227 | <180 |
S19 | <209 | 195 ± 51 |
S20 | <234 | 360 ± 58 |
S21 | <233 | <179 |
No. | 226Ra | 232Th | 40K | 238U | 235U | 137Cs |
---|---|---|---|---|---|---|
S1 | 29 ± 2 | 30 ± 3 | 510 ± 40 | 28 ± 7 | 1.6 ± 0.3 | <0.03 |
S2 | 29 ± 2 | 36 ± 3 | 610 ± 40 | 20 ± 5 | <0.5 | 6.0 ± 0.5 |
S3 | 32 ± 2 | 39 ± 3 | 620 ± 40 | 22 ± 5 | <0.5 | 3.9 ± 0.4 |
S4 | 32 ± 2 | 33 ± 3 | 470 ± 30 | 27 ± 4 | 1.7 ± 0.2 | 1.4 ± 0.3 |
S5 | 30 ± 2 | 32 ± 3 | 470 ± 30 | 32 ± 7 | 1.7 ± 0.3 | <0.2 |
S6 | 27 ± 1 | 32 ± 3 | 470 ± 30 | 25 ± 4 | <0.4 | 2.5 ± 0.3 |
S7 | 38 ± 3 | 39 ± 5 | 550 ± 40 | 39 ± 9 | 2.0 ± 0.3 | 5.5 ± 0.9 |
S8 | 26 ± 1 | 28 ± 3 | 440 ± 30 | 24 ± 5 | 1.7 ± 0.2 | 5.7 ± 0.5 |
S9 | 39 ± 2 | 40 ± 3 | 610 ± 40 | 39 ± 6 | 2.4 ± 0.2 | 7.5 ± 0.6 |
S10 | 36 ± 2 | 36 ± 4 | 590 ± 40 | 33 ± 6 | 2.2 ± 0.3 | 8.7 ± 0.9 |
S11 | 42 ± 3 | 43 ± 5 | 620 ± 40 | 85 ± 10 | 4.1 ± 0.5 | 4.6 ± 0.8 |
S12 | 15 ± 1 | 18 ± 2 | 210 ± 10 | 18 ± 3 | 1.3 ± 0.2 | 1.5 ± 0.2 |
S13 | 42 ± 2 | 57 ± 2 | 570 ± 40 | 46 ± 6 | 3.4 ± 0.3 | 2.2 ± 0.4 |
S14 | 43 ± 2 | 62 ± 5 | 610 ± 40 | 49 ± 6 | 3.2 ± 0.3 | 4.2 ± 0.5 |
S15 | 39 ± 2 | 54 ± 4 | 560 ± 40 | 45 ± 6 | 3.1 ± 0.3 | 1.6 ± 0.3 |
S16 | 29 ± 2 | 27 ± 2 | 430 ± 30 | 31 ± 4 | 1.4 ± 0.1 | 5.2 ± 0.4 |
S17 | 37 ± 3 | 25 ± 2 | 410 ± 30 | 26 ± 4 | 1.3 ± 0.1 | 4.4 ± 0.4 |
S18 | 24 ± 2 | 28 ± 3 | 430 ± 30 | 33 ± 10 | 1.6 ± 0.2 | 4.9 ± 0.5 |
S19 | 37 ± 2 | 36 ± 3 | 550 ± 30 | 32 ± 5 | 1.9 ± 0.2 | 2.7 ± 0.4 |
S20 | 51 ± 2 | 44 ± 3 | 580 ± 40 | 41 ± 6 | 2.4 ± 0.2 | 21 ± 1 |
S21 | 35 ± 2 | 32 ± 3 | 480 ± 30 | 33 ± 4 | 2.3 ± 0.2 | 2.3 ± 0.2 |
Mean | 33.9 | 36.7 | 513.8 | 34.7 | 1.9 | 4.6 |
St. deviation | 7.9 | 10.8 | 99.5 | 14.4 | 0.9 | 4.4 |
Minimum | 15 | 18 | 210 | 18 | 0.4 | 0.03 |
Median | 35 | 36 | 550 | 32 | 1.7 | 4.2 |
Maximum | 51 | 62 | 620 | 85 | 4.1 | 21 |
Variable | 238U | 226Ra | 232Th | 40K | 235U | 137Cs |
---|---|---|---|---|---|---|
238U | 1 | |||||
226Ra | 0.63 | 1 | ||||
232Th | 0.59 | 0.75 | 1 | |||
40K | 0.49 | 0.73 | 0.74 | 1 | ||
235U | 0.90 | 0.67 | 0.84 | 0.72 | 1 | |
137Cs | 0.11 | 0.49 | 0.10 | 0.33 | 0.02 | 1 |
No. | 238U/226Ra | 232Th/226Ra |
---|---|---|
S1 | 0.97 | 1.03 |
S2 | 0.69 | 1.24 |
S3 | 0.69 | 1.22 |
S4 | 0.84 | 1.03 |
S5 | 1.07 | 1.07 |
S6 | 0.93 | 1.19 |
S7 | 1.03 | 1.03 |
S8 | 0.92 | 1.08 |
S9 | 1 | 1.03 |
S10 | 0.92 | 1 |
S11 | 2.02 | 1.02 |
S12 | 1.20 | 1.20 |
S13 | 1.10 | 1.36 |
S14 | 1.14 | 1.44 |
S15 | 1.15 | 1.38 |
S16 | 1.07 | 0.93 |
S17 | 0.70 | 0.68 |
S18 | 1.38 | 1.17 |
S19 | 0.86 | 0.97 |
S20 | 0.80 | 0.86 |
S21 | 0.94 | 0.91 |
Mean | 1.02 | 1.09 |
Country | 226Ra | 232Th | 40K | 238U | 235U | 137Cs | Reference |
---|---|---|---|---|---|---|---|
Spain | 27 | 35 | 590 | 40 | 31 | [52] | |
China | 25 | 29 | 923 | 26 | 5.6 | [25] | |
Brazil | 28 | 630 | [24] | ||||
India | 53 | 203 | 479 | [26] | |||
North Macedonia | 38.8 | 43.7 | 546 | 41.5 | [27] | ||
Republic of Srpska | 47 | 41 | 536 | 64 | 3.4 | 26 | [28] |
Croatia | 69 | 60 | 418 | 61 | 2.6 | [29] | |
Montenegro | 28.6 | 43.1 | 620.8 | 55 | [30] | ||
Slovenia | 63 | 77 | 800 | 34 | [31] | ||
Serbia (Niš) southeast | 21 | 26 | 414 | 4.7 | [32] | ||
Serbia west | 33.2 | 49.1 | 379 | 60.4 | 36.4 | [33] | |
Serbia (Kragujevac) central | 33.5 | 50.3 | 425.8 | 40.2 | [34] | ||
Serbia (Čačak) central | 26.8 | 35.1 | 433.8 | 47.1 | 42.8 | [35] | |
Serbia (Zlatibor) southwest | 17.9 | 142 | 27.1 | 232 | [36] | ||
Serbia (Kopaonik) southwest | 80 | 77 | 725 | 4.2–142 | [37] | ||
Serbia Belgrade | 27.5–47 | 31–49 | 510–620 | 32–61 | 1.4–2.5 | 3–47 | [53] |
Serbia Belgrade city parks | 33–50 | 28–50 | 424–576 | 14–46 | 1.2–3.4 | 0.7–35.8 | [23] |
Serbia Lazarevac | 25.1–58 | 45.9–63 | 470–586 | 45–54 | 1.8–3.2 | 28.6–65 | [53] |
Serbia Obrenovac | 33.1–41 | 51 | 580–660 | 39–50 | 2.4–2.7 | 15–22.3 | [53] |
This work | 33.9 | 36.7 | 513.8 | 34.7 | 1.9 | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janković, M.; Jelić, I.; Rajačić, M.; Krneta Nikolić, J.; Vukanac, I.; Dimović, S.; Sarap, N.; Šljivić-Ivanović, M. Distribution of Natural Radionuclides and 137Cs in Urban Soil Samples from the City of Novi Sad, Serbia-Radiological Risk Assessment. Toxics 2023, 11, 345. https://doi.org/10.3390/toxics11040345
Janković M, Jelić I, Rajačić M, Krneta Nikolić J, Vukanac I, Dimović S, Sarap N, Šljivić-Ivanović M. Distribution of Natural Radionuclides and 137Cs in Urban Soil Samples from the City of Novi Sad, Serbia-Radiological Risk Assessment. Toxics. 2023; 11(4):345. https://doi.org/10.3390/toxics11040345
Chicago/Turabian StyleJanković, Marija, Ivana Jelić, Milica Rajačić, Jelena Krneta Nikolić, Ivana Vukanac, Slavko Dimović, Nataša Sarap, and Marija Šljivić-Ivanović. 2023. "Distribution of Natural Radionuclides and 137Cs in Urban Soil Samples from the City of Novi Sad, Serbia-Radiological Risk Assessment" Toxics 11, no. 4: 345. https://doi.org/10.3390/toxics11040345