Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Anesthesia and Euthanasia
2.4. Experimental Design
2.5. In Vivo Evaluations for Neurotoxicity: Nerve Conduction Studies (NCS)
2.6. In Vivo Evaluation of Neuropathic Pain: Behavioral Test for Mechanical Thresholds
2.7. Morphological and Morphometric Analyses on the Peripheral Nervous System
2.7.1. Light and Transmission Electron Microscopy
2.7.2. Morphometric Analysis of DRG and Peripheral Nerves
2.7.3. Intraepidermal Nerve Fiber Density (IENF)
2.8. Light Microscopy for Histological Investigations
2.8.1. Quantitative Immunohistochemistry for GFAP
2.8.2. Three-Dimensional Immunofluorescence
2.9. Immunoblotting for Cx43
2.10. Statistics
3. Results
3.1. In Vivo Observations for PIPN and CIPN
3.1.1. Drug Tolerability
3.1.2. Nerve Conduction Studies
3.1.3. Behavioral Tests
3.2. Morphology and Morphometry of Peripheral Targets of Chemotherapy
3.2.1. PIPN
3.2.2. CIPN
3.3. Morphological and Morphometric Evaluations of SGCs in the DRG
3.3.1. Qualitative and Quantitative Evaluations of GFAP in the DRG
3.3.2. Ultrastructural Evaluation of SGCs in the DRG
3.4. Analysis of Connections between SGCs in the DRG
3.4.1. Quantitative Analysis of Cx43 in the DRG
3.4.2. Qualitative Analysis of Gap Junctions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldspiel, B.R. Clinical Overview of the Taxanes. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1997, 17, 110S–125S. [Google Scholar] [CrossRef]
- Schellens, J.H.M.; Pronk, L.C.; Verweij, J. Emerging Drug Treatments for Solid Tumours. Drugs 1996, 51, 45–72. [Google Scholar] [CrossRef] [PubMed]
- Scripture, C.D.; Figg, W.D.; Sparreboom, A. Peripheral Neuropathy Induced by Paclitaxel: Recent Insights and Future Perspectives. Curr. Neuropharmacol. 2006, 4, 165. [Google Scholar] [CrossRef] [Green Version]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, I.; Lehmann, H.C. Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. Toxics 2021, 9, 229. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Bruna, J.; Marmiroli, P.; Cavaletti, G. Chemotherapy-Induced Peripheral Neurotoxicity (CIPN): An Update. Crit. Rev. Oncol. Hematol. 2012, 82, 51–77. [Google Scholar] [CrossRef]
- Cavaletti, G.; Tredici, G.; Marmiroli, P.; Petruccioli, M.G.; Barajon, I.; Fabbrica, D. Morphometric Study of the Sensory Neuron and Peripheral Nerve Changes Induced by Chronic Cisplatin (DDP) Administration in Rats. Acta Neuropathol. 1992, 84, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Cece, R.; Petruccioli, M.G.; Pizzini, G.; Cavaletti, G.; Tredici, G. Ultrastructural Aspects of DRG Satellite Cell Involvement in Experimental Cisplatin Neuronopathy. J. Submicrosc. Cytol. Pathol. 1995, 27, 417–425. Available online: https://pubmed.ncbi.nlm.nih.gov/7585442/ (accessed on 20 July 2022).
- Meijer, C.; De Vries, E.G.E.; Marmiroli, P.; Tredici, G.; Frattola, L.; Cavaletti, G. Cisplatin-Induced DNA-Platination in Experimental Dorsal Root Ganglia Neuronopathy. Neurotoxicology 1999, 20, 883–887. [Google Scholar]
- Cavaletti, G.; Tredici, G.; Petruccioli, M.G.; Dondè, E.; Tredici, P.; Marmiroli, P.; Minoia, C.; Ronchi, A.; Bayssas, M.; Griffon Etienne, G. Effects of Different Schedules of Oxaliplatin Treatment on the Peripheral Nervous System of the Rat. Eur. J. Cancer 2001, 37, 2457–2463. [Google Scholar] [CrossRef]
- Cavaletti, G.; Cavalletti, E.; Oggioni, N.; Sottani, C.; Minoia, C.; D’Incalci, M.; Zucchetti, M.; Marmiroli, P.; Tredici, G. Distribution Of Paclitaxel Within The Nervous System Of The Rat After Repeated Intravenous Administration. J. Peripher. Nerv. Syst. 2001, 6, 61. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; De Carvalho-Barbosa, M.; Kavelaars, A.; Heijnen, C.J.; Albrecht, P.J.; Dougherty, P.M. Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. J. Pain 2016, 17, 775–786. [Google Scholar] [CrossRef]
- Duggett, N.A.; Griffiths, L.A.; Flatters, S.J.L. Paclitaxel-Induced Painful Neuropathy Is Associated with Changes in Mitochondrial Bioenergetics, Glycolysis, and an Energy Deficit in Dorsal Root Ganglia Neurons. Pain 2017, 158, 1499–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staff, N.P.; Fehrenbacher, J.C.; Caillaud, M.; Damaj, M.I.; Segal, R.A.; Rieger, S. Pathogenesis of Paclitaxel-Induced Peripheral Neuropathy: A Current Review of in Vitro and in Vivo Findings Using Rodent and Human Model Systems. Exp. Neurol. 2020, 324, 113121. [Google Scholar] [CrossRef] [PubMed]
- Pannese, E. The Satellite Cells of the Sensory Ganglia. In Advances in Anatomy, Embryology and Cell Biology; Springer: Berlin/Heidelberg, Germany, 1981; Volume 65. [Google Scholar] [CrossRef]
- Hanani, M. Satellite Glial Cells in Sensory Ganglia: From Form to Function. Brain Res. Rev. 2005, 48, 457–476. [Google Scholar] [CrossRef]
- Wu, A.; Green, C.R.; Rupenthal, I.D.; Moalem-Taylor, G. Role of Gap Junctions in Chronic Pain. J. Neurosci. Res. 2012, 90, 337–345. [Google Scholar] [CrossRef]
- Ji, R.-R.; Berta, T.; Nedergaard, M. Glia and Pain: Is Chronic Pain a Gliopathy? Pain 2013, 154, S10–S28. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.A.L.; Neto, F.L.M. Satellite Glial Cells in Sensory Ganglia: Its Role in Pain. Braz. J. Anesthesiol. (Engl. Ed.) 2015, 65, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Blum, E.; Procacci, P.; Conte, V.; Hanani, M. Systemic Inflammation Alters Satellite Glial Cell Function and Structure. A Possible Contribution to Pain. Neuroscience 2014, 274, 209–217. [Google Scholar] [CrossRef]
- Ohara, P.T.; Vit, J.P.; Bhargava, A.; Romero, M.; Sundberg, C.; Charles, A.C.; Jasmin, L. Gliopathic Pain: When Satellite Glial Cells Go Bad. Neuroscientist 2009, 15, 450. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Goettemoeller, T.; Berta, T. How Do Satellite Glial Cells Control Chronic Pain? J. Anesth. Perioper. Med. 2018, 5, 306–315. [Google Scholar] [CrossRef]
- Woodham, P.; Anderson, P.N.; Nadim, W.; Turmaine, M. Satellite Cells Surrounding Axotomised Rat Dorsal Root Ganglion Cells Increase Expression of a GFAP-like Protein. Neurosci. Lett. 1989, 98, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Blum, E.; Procacci, P.; Conte, V.; Sartori, P.; Hanani, M. Long Term Effects of Lipopolysaccharide on Satellite Glial Cells in Mouse Dorsal Root Ganglia. Exp. Cell Res. 2017, 350, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Pavel, J.; Oroszova, Z.; Hricova, L.; Lukacova, N. Effect of Subpressor Dose of Angiotensin II on Pain-Related Behavior in Relation with Neuronal Injury and Activation of Satellite Glial Cells in the Rat Dorsal Root Ganglia. Cell. Mol. Neurobiol. 2013, 33, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Sun, Y.N.; Wang, F.T.; Li, Q.; Su, L.; Zhao, Z.F.; Meng, X.L.; Zhao, H.; Wu, X.; Sun, Q.; et al. Activation of Satellite Glial Cells in Lumbar Dorsal Root Ganglia Contributes to Neuropathic Pain after Spinal Nerve Ligation. Brain Res. 2012, 1427, 65–77. [Google Scholar] [CrossRef]
- Hanani, M.; Huang, T.Y.; Cherkas, P.S.; Ledda, M.; Pannese, E. Glial Cell Plasticity in Sensory Ganglia Induced by Nerve Damage. Neuroscience 2002, 114, 279–283. [Google Scholar] [CrossRef]
- Ledda, M.; Blum, E.; De Palo, S.; Hanani, M. Augmentation in Gap Junction-Mediated Cell Coupling in Dorsal Root Ganglia Following Sciatic Nerve Neuritis in the Mouse. Neuroscience 2009, 164, 1538–1545. [Google Scholar] [CrossRef]
- Meregalli, C.; Fumagalli, G.; Alberti, P.; Canta, A.; Chiorazzi, A.; Monza, L.; Pozzi, E.; Valentina, A.C.; Blennow, K.; Zetterberg, H.; et al. Neurofilament Light Chain: A Specific Serum Biomarker of Axonal Damage Severity in Rat Models of Chemotherapy-Induced Peripheral Neurotoxicity. Arch. Toxicol. 2020, 94, 2517–2522. [Google Scholar] [CrossRef]
- Monza, L.; Fumagalli, G.; Chiorazzi, A.; Alberti, P. Translating Morphology from Bench Side to Bed Side via Neurophysiology: 8-Min Protocol for Peripheral Neuropathy Research. J. Neurosci. Methods 2021, 363, 109323. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
- Meregalli, C.; Monza, L.; Chiorazzi, A.; Scali, C.; Guarnieri, C.; Fumagalli, G.; Alberti, P.; Pozzi, E.; Canta, A.; Ballarini, E.; et al. Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity. Int. J. Mol. Sci. 2021, 22, 1058. [Google Scholar] [CrossRef] [PubMed]
- Cavaletti, G.; Cavalletti, E.; Montaguti, P.; Oggioni, N.; De Negri, O.; Tredici, G. Effect on the Peripheral Nervous System of the Short-Term Intravenous Administration of Paclitaxel in the Rat. Neurotoxicology 1997, 18, 137–145. [Google Scholar] [PubMed]
- Alberti, P.; Semperboni, S.; Cavaletti, G.; Scuteri, A. Neurons: The Interplay between Cytoskeleton, Ion Channels/Transporters and Mitochondria. Cells 2022, 11, 2499. [Google Scholar] [CrossRef] [PubMed]
- Carozzi, V.; Chiorazzi, A.; Canta, A.; Oggioni, N.; Gilardini, A.; Rodriguez-Menendez, V.; Avezza, F.; Crippa, L.; Ceresa, C.; Nicolini, G.; et al. Effect of the Chronic Combined Administration of Cisplatin and Paclitaxel in a Rat Model of Peripheral Neurotoxicity. Eur. J. Cancer 2009, 45, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, J.; Pereira, V.; Busserolles, J.; Authier, N.; Balayssac, D. Emerging Trends in Understanding Chemotherapy-Induced Peripheral Neuropathy. Curr. Pain Headache Rep. 2013, 17, 364. [Google Scholar] [CrossRef]
- Was, H.; Borkowska, A.; Bagues, A.; Tu, L.; Liu, J.Y.H.; Lu, Z.; Rudd, J.A.; Nurgali, K.; Abalo, R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front. Pharmacol. 2022, 13, 923. [Google Scholar] [CrossRef]
- Warwick, R.A.; Hanani, M. The Contribution of Satellite Glial Cells to Chemotherapy-Induced Neuropathic Pain. Eur. J. Pain 2013, 17, 571–580. [Google Scholar] [CrossRef]
- Peters, C.M.; Jimenez-Andrade, J.M.; Jonas, B.M.; Sevcik, M.A.; Koewler, N.J.; Ghilardi, J.R.; Wong, G.Y.; Mantyh, P.W. Intravenous Paclitaxel Administration in the Rat Induces a Peripheral Sensory Neuropathy Characterized by Macrophage Infiltration and Injury to Sensory Neurons and Their Supporting Cells. Exp. Neurol. 2007, 203, 42–54. [Google Scholar] [CrossRef]
- Jimenez-Andrade, J.M.; Peters, C.M.; Mejia, N.A.; Ghilardi, J.R.; Kuskowski, M.A.; Mantyh, P.W. Sensory Neurons and Their Supporting Cells Located in the Trigeminal, Thoracic and Lumbar Ganglia Differentially Express Markers of Injury Following Intravenous Administration of Paclitaxel in the Rat. Neurosci. Lett. 2006, 405, 62–67. [Google Scholar] [CrossRef]
- Di Cesare Mannelli, L.; Pacini, A.; Bonaccini, L.; Zanardelli, M.; Mello, T.; Ghelardini, C. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. J. Pain 2013, 14, 1585–1600. [Google Scholar] [CrossRef]
- Hanani, M. Satellite Glial Cells in Sympathetic and Parasympathetic Ganglia: In Search of Function. Brain Res. Rev. 2010, 64, 304–327. [Google Scholar] [CrossRef] [PubMed]
- Hanani, M.; Blum, E.; Liu, S.; Peng, L.; Liang, S. Satellite Glial Cells in Dorsal Root Ganglia Are Activated in Streptozotocin-Treated Rodents. J. Cell. Mol. Med. 2014, 18, 2367–2371. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, H.; DeLeo, J.A.; Colburn, R.W.; Weinstein, J.N. Spinal Glial Activation and Cytokine Expression After Lumbar Root Injury in the Rat. Spine (Phila Pa 1976) 2000, 25, 1206–1217. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, J.N.; Warwick, R.; Duroux, M.; Hanani, M.; Gazerani, P. Oxaliplatin Enhances Gap Junction-Mediated Coupling in Cell Cultures of Mouse Trigeminal Ganglia. Exp. Cell Res. 2015, 336, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Jha, M.K.; Kim, J.H.; Nam, Y.; Lee, M.G.; Go, Y.; Harris, R.A.; Park, D.H.; Kook, H.; Lee, I.K.; et al. Pyruvate Dehydrogenase Kinase-Mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy. J. Biol. Chem. 2016, 291, 6011–6025. [Google Scholar] [CrossRef] [Green Version]
- Milosavljević, A.; Jančić, J.; Mirčić, A.; Dožić, A.; Boljanović, J.; Milisavljević, M.; Ćetković, M. Morphological and Functional Characteristics of Satellite Glial Cells in the Peripheral Nervous System. Folia Morphol. (Warsz) 2021, 80, 745–755. [Google Scholar] [CrossRef]
- Hanani, M.; Spray, D.C. Emerging Importance of Satellite Glia in Nervous System Function and Dysfunction. Nat. Rev. Neurosci. 2020, 21, 485–498. [Google Scholar] [CrossRef]
- Pannese, E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. In Advances in Anatomy, Embryology and Cell Biology; Springer: Cham, Switzerland, 2018; Volume 226, pp. 1–63. [Google Scholar] [CrossRef]
- Hara, T.; Chiba, T.; Abe, K.; Makabe, A.; Ikeno, S.; Kawakami, K.; Utsunomiya, I.; Hama, T.; Taguchi, K. Effect of Paclitaxel on Transient Receptor Potential Vanilloid 1 in Rat Dorsal Root Ganglion. Pain 2013, 154, 882–889. [Google Scholar] [CrossRef]
- Li, Y.; Adamek, P.; Zhang, H.; Tatsui, C.E.; Rhines, L.D.; Mrozkova, P.; Li, Q.; Kosturakis, A.K.; Cassidy, R.M.; Harrison, D.S.; et al. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4. J. Neurosci. 2015, 35, 13487. [Google Scholar] [CrossRef] [Green Version]
- Rossato, M.F.; Rigo, F.K.; Oliveira, S.M.; Guerra, G.P.; Silva, C.R.; Cunha, T.M.; Gomez, M.V.; Ferreira, J.; Trevisan, G. Participation of Transient Receptor Potential Vanilloid 1 in Paclitaxel-Induced Acute Visceral and Peripheral Nociception in Rodents. Eur. J. Pharmacol. 2018, 828, 42–51. [Google Scholar] [CrossRef]
- Suadicani, S.O.; Cherkas, P.S.; Zuckerman, J.; Smith, D.N.; Spray, D.C.; Hanani, M. Bidirectional Calcium Signaling between Satellite Glial Cells and Neurons in Cultured Mouse Trigeminal Ganglia. Neuron Glia Biol. 2010, 6, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spray, D.C.; Iglesias, R.; Shraer, N.; Suadicani, S.O.; Belzer, V.; Hanstein, R.; Hanani, M. Gap Junction Mediated Signaling between Satellite Glia and Neurons in Trigeminal Ganglia. Glia 2019, 67, 791–801. [Google Scholar] [CrossRef] [PubMed]
Groups | In Vivo Analysis | Light and Electron Microscopy | IHC and IENF | 3D-IF | WB |
---|---|---|---|---|---|
VEH PTX | 12 | 3 | 3 | 3 | 3 |
PTX 10 mg/Kg 1qwx4 | 12 | 3 | 3 | 3 | 3 |
VEH CDDP | 12 | 3 | 3 | 3 | 3 |
CDDP 2 mg/Kg 2qwx4 | 12 | 3 | 3 | 3 | 3 |
Tests | Parameters Evaluated | Baseline | End of Treatment | Baseline | End of Treatment | Statistical Analysis | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
VEHPTX | PTX | VEHPTX | PTX | VEHCDDP | CDDP | VEHCDDP | CDDP | ||||
DYNAMIC TEST | MECHANICAL THRESHOLD | mean | 30.12 | 29.87 | 31.1 | 27.17 *** | 29.94 | 30.81 | 31.59 | 32.62 | *** p < 0.0001 vs VEH PTX end treatment |
(grams) | SD | 2.194 | 2.695 | 1.255 | 0.5398 | 2.349 | 2.059 | 3.335 | 4.808 | Non parametric t test, Mann Whitney | |
St. error | 0.6615 | 0.7781 | 0.3785 | 0.1627 | 0.6781 | 0.5943 | 0.9627 | 1.388 | |||
NEUROPHYSIOLOGY | PROXIMAL CAUDAL NERVE AMPLITUDE | mean | 122.3 | 124.5 | 171 | 56.64 *** | 148 | 142 | 99.35 | 90.09 | *** p = 0.0001 vs VEH PTX end treatment |
(micronVolt) | SD | 25.22 | 19.57 | 36.04 | 42.16 | 32.12 | 18.1 | 16.03 | 11.31 | Non parametric t test, Mann Whitney | |
St. error | 7.282 | 5.649 | 10.41 | 12.17 | 9.272 | 5.224 | 4.627 | 3.265 | |||
PROXIMAL NERVE SENSORY VELOCITY | mean | 36.6 | 36.31 | 41 | 35.17 ** | 43.73 | 42.31 | 42.52 | 42.43 | ** p = 0.0016 vs VEH PTX end treatment | |
(meters/second) | SD | 2.365 | 1.665 | 2.655 | 4.756 | 3.03 | 3.889 | 1.883 | 2.517 | Non parametric t test, Mann Whitney | |
St. error | 0.6828 | 0.4807 | 0.7665 | 1.373 | 0.8747 | 1.123 | 0.5435 | 0.7267 | |||
PROXIMAL DIGITAL NERVE AMPLITUDE | mean | 87.38 | 96.46 | 136.7 | 100.9 ** | 95.13 | 90.79 | 116 | 110.8 | ** p = 0.0011 vs VEH PTX end treatment | |
(micronVolt) | SD | 27.8 | 24.43 | 19.32 | 19.65 | 12.85 | 11.24 | 19.96 | 33.52 | Non parametric t test, Mann Whitney | |
St. error | 8.026 | 7.053 | 5.578 | 5.673 | 3.709 | 3.244 | 5.762 | 9.676 | |||
PROXIMAL DIGITAL NERVE SENSORY VELOCITY | mean | 39.19 | 39.96 | 40.68 | 40.63 | 42.26 | 41.6 | 42.86 | 41.46 | ||
(meters/second) | SD | 3.602 | 1.897 | 2.406 | 3.695 | 2.988 | 2.531 | 2.386 | 2.533 | ||
St. error | 1.04 | 0.5477 | 0.6946 | 1.067 | 0.8624 | 0.7308 | 0.6887 | 0.7311 | |||
DRG MORPHOMETRY | SOMATIC AREA | mean | 643.3 | 682.4 | 797.7 | 645.6 *** | *** p < 0.0001 vs VEHCDDP end treatment | ||||
(micron2) | SD | 338.2 | 378.2 | 482.1 | 404.9 | Unpaired t test | |||||
St. error | 15.71 | 15.23 | 19.46 | 16.31 | |||||||
NUCLEAR AREA | mean | 94.63 | 96.05 | 91.97 | 86.57 ** | ** p = 0.0036 vs VEHCDDP end treatment | |||||
(micron2) | SD | 37.46 | 35.03 | 37.78 | 37.38 | Unpaired t test | |||||
St. error | 1.52 | 1.41 | 1.525 | 1.506 | |||||||
NUCLEOLAR AREA | mean | 7.87 | 8.31 | 9.616 | 7.182 *** | *** p < 0.0001 vs VEHCDDP end treatment | |||||
(micron2) | SD | 5.01 | 4.92 | 5.661 | 4.216 | Unpaired t test | |||||
St. error | 0.20 | 0.20 | 0.2285 | 0.1699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozzi, E.; Ballarini, E.; Rodriguez-Menendez, V.; Canta, A.; Chiorazzi, A.; Monza, L.; Bossi, M.; Alberti, P.; Malacrida, A.; Meregalli, C.; et al. Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity. Toxics 2023, 11, 93. https://doi.org/10.3390/toxics11020093
Pozzi E, Ballarini E, Rodriguez-Menendez V, Canta A, Chiorazzi A, Monza L, Bossi M, Alberti P, Malacrida A, Meregalli C, et al. Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity. Toxics. 2023; 11(2):93. https://doi.org/10.3390/toxics11020093
Chicago/Turabian StylePozzi, Eleonora, Elisa Ballarini, Virginia Rodriguez-Menendez, Annalisa Canta, Alessia Chiorazzi, Laura Monza, Mario Bossi, Paola Alberti, Alessio Malacrida, Cristina Meregalli, and et al. 2023. "Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity" Toxics 11, no. 2: 93. https://doi.org/10.3390/toxics11020093
APA StylePozzi, E., Ballarini, E., Rodriguez-Menendez, V., Canta, A., Chiorazzi, A., Monza, L., Bossi, M., Alberti, P., Malacrida, A., Meregalli, C., Scuteri, A., Cavaletti, G., & Carozzi, V. A. (2023). Paclitaxel, but Not Cisplatin, Affects Satellite Glial Cells in Dorsal Root Ganglia of Rats with Chemotherapy-Induced Peripheral Neurotoxicity. Toxics, 11(2), 93. https://doi.org/10.3390/toxics11020093