Estrogenic Effect Mechanism and Influencing Factors for Transformation Product Dimer Formed in Preservative Parabens Photolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Photolysis Experiment
2.3. Analytical Methods
2.4. Design of Experiment Using RSM
2.5. Quantum Chemistry and Toxicology Calculations
3. Results and Discussion
3.1. Formation of Product Dimer during Photolysis
3.2. Influence of Environmental Factors on Dimer Formation
3.3. Multiple Factors Interaction for the Formation of Product Dimer
3.4. Health Effect of Product Dimer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mboula, V.M.; Hequet, V.; Andres, Y.; Gru, Y.; Colin, R.; Dona-Rodriguez, J.; Pastrana-Martinez, L.; Silva, A.; Leleu, M.; Tindall, A.; et al. Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. Appl. Catal. B-Environ. 2015, 162, 437–444. [Google Scholar] [CrossRef]
- Lincho, J.; Martins, R.C.; Gomes, J. Paraben Compounds-Part I: An Overview of Their Characteristics, Detection, and Impacts. Appl. Sci. 2021, 11, 2307. [Google Scholar] [CrossRef]
- Amir, S.; Shah, S.T.A.; Mamoulakis, C.; Docea, A.O.; Kalantzi, O.I.; Zachariou, A.; Calina, D.; Carvalho, F.; Sofikitis, N.; Makrigiannakis, A.; et al. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. Int. J. Environ. Res. Public Health 2021, 18, 1464. [Google Scholar] [CrossRef] [PubMed]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, E.O.; Rahman, M.S.; Park, Y.J.; Kim, Y.J.; Pang, M.G. Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. Int. J. Mol. Sci. 2021, 22, 3939. [Google Scholar] [CrossRef]
- Zoeller, R.T.; Brown, T.R.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Woodruff, T.J.; Saal, F.S.V. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society. Endocrinology 2012, 153, 4097–4110. [Google Scholar] [CrossRef] [PubMed]
- Escher, B.I.; Stapleton, H.M.; Schymanski, E.L. Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367, 388–392. [Google Scholar] [CrossRef]
- Darbre, P.D.; Harvey, P.W. Paraben esters: Review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J. Appl. Toxicol. 2008, 28, 561–578. [Google Scholar] [CrossRef]
- Darbre, P.D.; Aljarrah, A.; Miller, W.R.; Coldham, N.G.; Sauer, M.J.; Pope, G.S. Concentrations of parabens in human breast tumours. J. Appl. Toxicol. 2004, 24, 5–13. [Google Scholar] [CrossRef]
- Routledge, E.J.; Parker, J.; Odum, J.; Ashby, J.; Sumpter, J.P. Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol. Appl. Pharm. 1998, 153, 12–19. [Google Scholar] [CrossRef]
- Haman, C.; Dauchy, X.; Rosin, C.; Munoz, J.F. Occurrence, fate and behavior of parabens in aquatic environments: A review. Water Res. 2015, 68, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Styszko, K.; Proctor, K.; Castrignano, E.; Kasprzyk-Hordern, B. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Sci. Total Environ. 2021, 768, 144360. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.W.; Troester, M.A.; Herring, A.H.; Engel, L.S.; Nichols, H.B.; Sandler, D.P.; Baird, D.D. Associations between Personal Care Product Use Patterns and Breast Cancer Risk among White and Black Women in the Sister Study. Environ. Health Perspect. 2018, 126, 027011. [Google Scholar] [CrossRef] [PubMed]
- Galinaro, C.A.; Pereira, F.M.; Vieira, E.M. Determination of Parabens in Surface Water from Mogi Guau River (So Paulo, Brazil) Using Dispersive Liquid-Liquid Microextraction Based on Low Density Solvent and LC-DAD. J. Braz. Chem. Soc. 2015, 26, 2205–2213. [Google Scholar]
- Wang, L.; Kannan, K. Alkyl protocatechuates as novel urinary biomarkers of exposure to p-hydroxybenzoic acid esters (parabens). Environ. Int. 2013, 59, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Bledzka, D.; Gromadzinska, J.; Wasowicz, W. Parabens. From environmental studies to human health. Environ. Int. 2014, 67, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Escher, B.I.; Fenner, K. Recent Advances in Environmental Risk Assessment of Transformation Products. Environ. Sci. Technol. 2011, 45, 3835–3847. [Google Scholar] [CrossRef]
- An, T.C.; Fang, H.S.; Li, G.Y.; Wang, S.L.; Yao, S.D. Experimental and Theoretical Insights into Photochemical Transformation Kinetics and Mechanisms of Aqueous Propylparaben and Risk Assessment of Its Degradation Products. Environ. Toxicol. Chem. 2014, 33, 1809–1816. [Google Scholar] [CrossRef]
- Frontistis, Z.; Antonopoulou, M.; Venieri, D.; Dailianis, S.; Konstantinou, I.; Mantzavinos, D. Solar photocatalytic decomposition of ethyl paraben in zinc oxide suspensions. Catal Today 2017, 280, 139–148. [Google Scholar] [CrossRef]
- Gao, Y.P.; Niu, X.L.; Qin, Y.X.; Guo, T.; Ji, Y.M.; Li, G.Y.; An, T.C. Unexpected culprit of increased estrogenic effects: Oligomers in the photodegradation of preservative ethylparaben in water. Water Res. 2020, 176, 115745. [Google Scholar] [CrossRef]
- Petala, A.; Frontistis, Z.; Antonopoulou, M.; Konstantinou, I.; Kondarides, D.I.; Mantzavinos, D. Kinetics of ethyl paraben degradation by simulated solar radiation in the presence of N-doped TiO2 catalysts. Water Res. 2015, 81, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Reisfeld, B.; Mayeno, A.N. What is computational toxicology? Methods Mol. Biol. 2012, 929, 3–7. [Google Scholar] [PubMed]
- Daston, G.P.; Mahony, C.; Thomas, R.S.; Vinken, M. Assessing Safety Without Animal Testing: The Road Ahead. Toxicol. Sci. 2022, 187, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Mostrag-Szlichtyng, A.; Comenges, J.M.Z.; Worth, A.P. Computational toxicology at the European Commission’s Joint Research Centre. Expert Opin. Drug Metab. Toxicol. 2010, 6, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, T.B.; Spencer, R.M.; Pierro, J.D.; Baker, N.C. Computational biology and in silico toxicodynamics. Curr. Opin. Toxicol. 2020, 23–24, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Liu, Z.H.; Lan, H.; Wang, Y.; Zhang, J.S.; Qin, J.; Zhang, R.X.; Dong, N. Highly efficient degradation of bisphenol A with persulfate activated by vacuum-ultraviolet/ultraviolet light (VUV/UV): Experiments and theoretical calculations. Chem. Eng. J. 2022, 429, 132485. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Gao, Y.P.; Ji, Y.M.; Li, G.Y.; An, T.C. Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: Influence of alkyl-chain length. Water Res. 2016, 91, 77–85. [Google Scholar] [CrossRef]
- Lu, J.J.; Zhou, F.M.; Hu, X.J.; Fang, J.J.; Liu, C.X.; Zhu, B.Q.; Ding, Z.S. Molecular docking simulation and in vitro studies on estrogenic activities of flavonoids from leaves of Carya cathayensis Sarg. Steroids 2020, 163, 108726. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Sun, L.B.; Hu, Y.; Jiao, J.; Hu, J.Y. Inverse antagonist activities of parabens on human oestrogen-related receptor gamma (ERR gamma): In vitro and in silico studies. Toxicol. Appl. Pharmacol. 2013, 270, 16–22. [Google Scholar] [CrossRef]
Factors | Symbols | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Initial concentration (µM) | A | 20 | 160 | 300 |
Optical power (W) | B | 200 | 500 | 800 |
pH | C | 5 | 7 | 9 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 4.31 × 1014 | 13 | 3.32 × 1013 | 1657.14 | <0.0001 |
A-C0 | 8.86 × 1012 | 1 | 8.86 × 1012 | 442.92 | <0.0001 |
B-P | 3.77 × 1011 | 1 | 3.77 × 1011 | 18.83 | 0.0123 |
C-pH | 2.15 × 1013 | 1 | 2.15 × 1013 | 1073.71 | <0.0001 |
AB | 3.48 × 1013 | 1 | 3.48 × 1013 | 1740.63 | <0.0001 |
AC | 7.98 × 1013 | 1 | 7.98 × 1013 | 3988.78 | <0.0001 |
BC | 2.58 × 1013 | 1 | 2.58 × 1013 | 1290.94 | <0.0001 |
A2 | 1.13 × 1012 | 1 | 1.13 × 1012 | 56.2 | 0.0017 |
B2 | 5.92 × 1011 | 1 | 5.92 × 1011 | 29.57 | 0.0056 |
C2 | 1.03 × 1013 | 1 | 1.03 × 1013 | 514.13 | <0.0001 |
ABC | 2.99 × 1013 | 1 | 2.99 × 1013 | 1491.7 | <0.0001 |
A2B | 3.66 × 1012 | 1 | 3.66 × 1012 | 182.65 | 0.0002 |
A2C | 4.29 × 109 | 1 | 4.29 × 109 | 0.2145 | 0.6673 |
AB2 | 2.58 × 1012 | 1 | 2.58 × 1012 | 129.09 | 0.0003 |
Residual | 8.01 × 1010 | 4 | 2.00 × 1010 | ||
Lack of Fit | 7.49 × 109 | 1 | 7.49 × 109 | 0.3095 | 0.6168 |
Pure Error | 7.26 × 1010 | 3 | 2.42 × 1010 | ||
Cor Total | 4.31 × 1014 | 17 | |||
Std.Dev. | 1.415 × 105 | R2 | 0.9998 | ||
Mean | 2.615 × 106 | Adj R2 | 0.9992 | ||
C.V.% | 5.41 | Pred R2 | 0.9753 | ||
PRESS | 1.06 × 1013 | Adep Precision | 170.0202 |
Blood | Cardiovascular System | Gastrointestinal System | Kidney | Liver | Lungs | |
---|---|---|---|---|---|---|
Parent EPB | 0.07 | 0.15 | 0.22 | 0.05 | 0.04 | 0.22 |
Product Dimer | 0.14 | 0.34 | 0.28 | 0.25 | 0.1 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Chen, G.; Chen, Y.; Luo, N.; Wang, M.; Hu, X.; Gao, Y.; Ji, Y.; An, T. Estrogenic Effect Mechanism and Influencing Factors for Transformation Product Dimer Formed in Preservative Parabens Photolysis. Toxics 2023, 11, 186. https://doi.org/10.3390/toxics11020186
Niu X, Chen G, Chen Y, Luo N, Wang M, Hu X, Gao Y, Ji Y, An T. Estrogenic Effect Mechanism and Influencing Factors for Transformation Product Dimer Formed in Preservative Parabens Photolysis. Toxics. 2023; 11(2):186. https://doi.org/10.3390/toxics11020186
Chicago/Turabian StyleNiu, Xiaolin, Guanhui Chen, Yi Chen, Na Luo, Mei Wang, Xinyi Hu, Yanpeng Gao, Yuemeng Ji, and Taicheng An. 2023. "Estrogenic Effect Mechanism and Influencing Factors for Transformation Product Dimer Formed in Preservative Parabens Photolysis" Toxics 11, no. 2: 186. https://doi.org/10.3390/toxics11020186
APA StyleNiu, X., Chen, G., Chen, Y., Luo, N., Wang, M., Hu, X., Gao, Y., Ji, Y., & An, T. (2023). Estrogenic Effect Mechanism and Influencing Factors for Transformation Product Dimer Formed in Preservative Parabens Photolysis. Toxics, 11(2), 186. https://doi.org/10.3390/toxics11020186