A Scoping Assessment of Implemented Toxicokinetic Models of Per- and Polyfluoro-Alkyl Substances, with a Focus on One-Compartment Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Screening
2.2. Data Extraction and Curation
2.3. Analyses
3. Results
3.1. Corpus of Extracted Texts
3.2. Exploring Evidence: Influential Publications Co-Citation
3.3. A Chronology of One-Compartment Models
4. Discussion
4.1. Search Effectiveness
4.2. One Compartment Models: Half-Lives and PFAS as a Class
4.3. Emerging TK Models and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Organisation for Economic Cooperation Development. Toward a New Comprehensive Global Database of per-and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of per-and Polyfluoroalkyl Substances (PFASs); Organisation for Economic Cooperation Development (OECD): Paris, France, 2018. [Google Scholar]
- Vecitis, C.D.; Wang, Y.; Cheng, J.; Park, H.; Mader, B.T.; Hoffmann, M.R. Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams. Environ. Sci. Technol. 2010, 44, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A Never-Ending Story of per-and Polyfluoroalkyl Substances (PFASs)? ACS Publications: Washington, DC, USA, 2017. [Google Scholar]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Scheringer, M.; Wang, Z. The high persistence of PFAS is sufficient for their management as a chemical class. Environ. Sci. Process. Impacts 2020, 22, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Giesy, J.P.; Kannan, K. Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Kato, K.; Hubbard, K.; Jia, T.; Botelho, J.C.; Wong, L.-Y. Legacy and alternative per-and polyfluoroalkyl substances in the US general population: Paired serum-urine data from the 2013–2014 National Health and Nutrition Examination Survey. Environ. Int. 2019, 131, 105048. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services; Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2015. [Google Scholar]
- Göckener, B.; Weber, T.; Rüdel, H.; Bücking, M.; Kolossa-Gehring, M. Human biomonitoring of per-and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. Environ. Int. 2020, 145, 106123. [Google Scholar] [CrossRef] [PubMed]
- Duffek, A.; Conrad, A.; Kolossa-Gehring, M.; Lange, R.; Rucic, E.; Schulte, C.; Wellmitz, J. Per-and polyfluoroalkyl substances in blood plasma–Results of the German Environmental Survey for children and adolescents 2014–2017 (GerES V). Int. J. Hyg. Environ. Health 2020, 228, 113549. [Google Scholar] [CrossRef] [PubMed]
- Gebbink, W.A.; Glynn, A.; Berger, U. Temporal changes (1997–2012) of perfluoroalkyl acids and selected precursors (including isomers) in Swedish human serum. Environ. Pollut. 2015, 199, 166–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.Y.; Kang, Q.Y.; Peng, H.; Ding, M.Y.; Zhao, F.R.; Zhou, Y.Y.; Dong, Z.M.; Zhang, H.F.; Yang, M.; Tao, S.; et al. Relationship between perfluorooctanoate and perfluorooctane sulfonate blood concentrations in the general population and routine drinking water exposure. Environ. Int. 2019, 126, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Khalil, N.; Lee, M.; Steenland, K. Epidemiological findings. In Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances; Springer: Berlin, Germany, 2015; pp. 305–335. [Google Scholar]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Perluoroalkyls; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2021. [Google Scholar]
- Zhang, Y.; Beesoon, S.; Zhu, L.; Martin, J.W. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environ. Sci. Technol. 2013, 47, 10619–10627. [Google Scholar] [CrossRef] [PubMed]
- Worley, R.R.; Moore, S.M.; Tierney, B.C.; Ye, X.Y.; Calafat, A.M.; Campbell, S.; Woudneh, M.B.; Fisher, J. Per-and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environ. Int. 2017, 106, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fletcher, T.; Pineda, D.; Lindh, C.H.; Nilsson, C.; Glynn, A.; Vogs, C.; Norström, K.; Lilja, K.; Jakobsson, K. Serum half-lives for short-and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam. Environ. Health Perspect. 2020, 128, 077004. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D.E.; Lau, C.; Pradeep, P.; Sayre, R.R.; Judson, R.S.; Tornero-Velez, R.; Wambaugh, J.F. A Machine Learning Model to Estimate Toxicokinetic Half-lives of Per- and Polyfluoro-alkyl Substances (PFAS) in Multiple Species. Toxics 2023, 11, 98. [Google Scholar] [CrossRef]
- Chang, S.-C.; Das, K.; Ehresman, D.J.; Ellefson, M.E.; Gorman, G.S.; Hart, J.A.; Noker, P.E.; Tan, Y.-M.; Lieder, P.H.; Lau, C. Comparative pharmacokinetics of perfluorobutyrate in rats, mice, monkeys, and humans and relevance to human exposure via drinking water. Toxicol. Sci. 2008, 104, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Olsen, G.W.; Chang, S.-C.; Noker, P.E.; Gorman, G.S.; Ehresman, D.J.; Lieder, P.H.; Butenhoff, J.L. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans. J. Toxicol. 2009, 256, 65–74. [Google Scholar] [CrossRef]
- EPA, U.S. PFAS Strategic Roadmap: EPA’s Commitments to Action 2021–2024. Available online: https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024 (accessed on 15 November 2022).
- Harada, K.; Inoue, K.; Morikawa, A.; Yoshinaga, T.; Saito, N.; Koizumi, A. Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion. Environ. Res. 2005, 99, 253–261. [Google Scholar] [CrossRef]
- Kudo, N. Metabolism and pharmacokinetics. In Toxicological Effects of Perfluoroalkyl and Polyfluoroalkyl Substances; Springer: Berlin, Germany, 2015; pp. 151–175. [Google Scholar]
- Han, X.; Nabb, D.L.; Russell, M.H.; Kennedy, G.L.; Rickard, R.W. Renal elimination of perfluorocarboxylates (PFCAs). Chem. Res. Toxicol. 2012, 25, 35–46. [Google Scholar] [CrossRef]
- Kudo, N.; Katakura, M.; Sato, Y.; Kawashima, Y. Sex hormone-regulated renal transport of perfluorooctanoic acid. Chem. Biol. Interact. 2002, 139, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Glover, K.P.; Han, X. Characterization of cellular uptake of perfluorooctanoate via organic anion-transporting polypeptide 1A2, organic anion transporter 4, and urate transporter 1 for their potential roles in mediating human renal reabsorption of perfluorocarboxylates. Toxicol. Sci. 2010, 117, 294–302. [Google Scholar] [CrossRef]
- Andersen, M.E.; Clewell, H.J.; Tan, Y.M.; Butenhoff, J.L.; Olsen, G.W. Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys—Probing the determinants of long plasma half-lives. Toxicology 2006, 227, 156–164. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck, A. PFAS exposure pathways for humans and wildlife: A synthesis of current knowledge and key gaps in understanding. Environ. Toxicol. Chem. 2021, 40, 631–657. [Google Scholar] [CrossRef] [PubMed]
- James, K.L.; Randall, N.P.; Haddaway, N.R. A methodology for systematic mapping in environmental sciences. Environ. Evid. 2016, 5, 1–13. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Angrish, M.; Wilkins, A.; Thayer, K.; Hubal, E.A.C. Human exposure pathways to poly-and perfluoroalkyl substances (PFAS) from indoor media: A systematic review protocol. Environ. Int. 2021, 146, 106308. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.E.; Phillips, J.; Miller, K.; Tandon, A.; Mav, D.; Shah, M.R.; Holmgren, S.; Pelch, K.E.; Walker, V.; Rooney, A.A. SWIFT-Review: A text-mining workbench for systematic review. Syst. Rev. 2016, 5, 87. [Google Scholar] [CrossRef]
- Buckland, M.; Gey, F. The relationship between recall and precision. J. Am. Soc. Inf. Sci. 1994, 45, 12–19. [Google Scholar] [CrossRef]
- East, A.; Egeghy, P.P.; Hubal, E.A.C.; Slover, R.; Vallero, D.A. Computational estimates of daily aggregate exposure to PFOA/PFOS from 2011 to 2017 using a basic intake model. J. Expo. Sci. Environ. Epidemiol. 2021, 33, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Wambaugh, J.F.; Barton, H.A.; Setzer, R.W. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis. J. Pharmacokinet. Pharmacodyn. 2008, 35, 683–712. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, Y.; Seong, J.; Stanescu, A.; Hwang, C.S. A comparison of network clustering algorithms in keyword network analysis: A case study with geography conference presentations. Int. J. Geospat. Environ. Res. 2020, 7, 1. [Google Scholar]
- Cavadas, A. Visualising the Collaboration Network of a European Marine Research Infrastructure: A Bibliometric and Social Network Analysis. U. Porto J. Eng. 2020, 6, 98–118. [Google Scholar] [CrossRef]
- Osareh, F. Bibliometrics, Citation Analysis and Co-Citation Analysis: A Review of Literature I. Libri 1996, 46, 149–158. [Google Scholar] [CrossRef]
- Balakrishnan, H.; Deo, N. Detecting communities using bibliographic metrics. In Proceedings of GrC; 2006; pp. 293–298. Available online: https://www.eecs.ucf.edu/~deo/deo/IEEE-GrC.pdf (accessed on 2 February 2023).
- Garfield, E. Historiographic mapping of knowledge domains literature. J. Inf. Sci. 2004, 30, 119–145. [Google Scholar] [CrossRef]
- Fruchterman, T.M.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Seacat, A.M.; Thomford, P.J.; Hansen, K.J.; Olsen, G.W.; Case, M.T.; Butenhoff, J.L. Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol. Sci. 2002, 68, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Kärrman, A.; Ericson, I.; van Bavel, B.; Darnerud, P.O.; Aune, M.; Glynn, A.; Lignell, S.; Lindström, G. Exposure of perfluorinated chemicals through lactation: Levels of matched human milk and serum and a temporal trend, 1996–2004, in Sweden. Environ. Health Perspect. 2007, 115, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Wong, L.-Y.; Kuklenyik, Z.; Reidy, J.A.; Needham, L.L. Polyfluoroalkyl chemicals in the US population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ. Health Perspect. 2007, 115, 1596–1602. [Google Scholar] [CrossRef] [PubMed]
- Ehresman, D.J.; Froehlich, J.W.; Olsen, G.W.; Chang, S.-C.; Butenhoff, J.L. Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. Environ. Res. 2007, 103, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Weaver, Y.M.; Ehresman, D.J.; Butenhoff, J.L.; Hagenbuch, B. Roles of Rat Renal Organic Anion Transporters in Transporting Perfluorinated Carboxylates with Different Chain Lengths. Toxicol. Sci. 2010, 113, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Heuvel, J.P.V.; Kuslikis, B.I.; Van Rafelghem, M.J.; Peterson, R.E. Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J. Biochem. Toxicol. 1991, 6, 83–92. [Google Scholar] [CrossRef]
- Emmett, E.A.; Shofer, F.S.; Zhang, H.; Freeman, D.; Desai, C.; Shaw, L.M. Community exposure to perfluorooctanoate: Relationships between serum concentrations and exposure sources. J. Occup. Environ. Med. /Am. Coll. Occup. Environ. Med. 2006, 48, 759. [Google Scholar] [CrossRef]
- Butenhoff, J.L.; Kennedy Jr, G.L.; Frame, S.R.; O’Connor, J.C.; York, R.G. The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. Toxicology 2004, 196, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Olsen, G.W.; Burris, J.M.; Ehresman, D.J.; Froehlich, J.W.; Seacat, A.M.; Butenhoff, J.L.; Zobel, L.R. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ. Health Perspect. 2007, 115, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Snow, T.A.; Kemper, R.A.; Jepson, G.W. Binding of perfluorooctanoic acid to rat and human plasma proteins. Chem. Res. Toxicol. 2003, 16, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef]
- Fromme, H.; Tittlemier, S.A.; Völkel, W.; Wilhelm, M.; Twardella, D. Perfluorinated compounds–exposure assessment for the general population in Western countries. Int. J. Hyg. Environ. Health 2009, 212, 239–270. [Google Scholar] [CrossRef] [PubMed]
- Bartell, S.M.; Calafat, A.M.; Lyu, C.; Kato, K.; Ryan, P.B.; Steenland, K. Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia. Environ. Health Perspect. 2010, 118, 222–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trudel, D.; Horowitz, L.; Wormuth, M.; Scheringer, M.; Cousins, I.T.; Hungerbuhler, K. Estimating consumer exposure to PFOS and PFOA. Risk Anal. 2008, 28, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.M.; Clewell, H.J.; Andersen, M.E. Time dependencies in perfluorooctylacids disposition in rat and monkeys: A kinetic analysis. Toxicol. Lett. 2008, 177, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Loccisano, A.E.; Campbell, J.L., Jr.; Andersen, M.E.; Clewell III, H.J. Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. Regul. Toxicol. Pharmacol. 2011, 59, 157–175. [Google Scholar] [CrossRef] [PubMed]
- Lou, I.C.; Wambaugh, J.F.; Lau, C.; Hanson, R.G.; Lindstrom, A.B.; Strynar, M.J.; Zehr, R.D.; Setzer, R.W.; Barton, H.A. Modeling Single and Repeated Dose Pharmacokinetics of PFOA in Mice. Toxicol. Sci. 2009, 107, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Fromme, H.; Schlummer, M.; Moller, A.; Gruber, L.; Wolz, G.; Ungewiss, J.; Bohmer, S.; Dekant, W.; Mayer, R.; Liebl, B.; et al. Exposure of an adult population to perfluorinated substances using duplicate diet portions and biomonitoring data. Environ. Sci. Technol. 2007, 41, 7928–7933. [Google Scholar] [CrossRef]
- Vestergren, R.; Cousins, I.T. Tracking the pathways of human exposure to perfluorocarboxylates. Environ. Sci. Technol. 2009, 43, 5565–5575. [Google Scholar] [CrossRef]
- Thompson, J.; Lorber, M.; Toms, L.M.L.; Kato, K.; Calafat, A.M.; Mueller, J.F. Use of simple pharmacokinetic modeling to characterize exposure of Australians to perfluorooctanoic acid and perfluorooctane sulfonic acid (vol 36, pg 390, 2010). Environ. Int. 2010, 36, 647–648. [Google Scholar] [CrossRef]
- Niisoe, T.; Harada, K.H.; Ishikawa, H.; Koizumi, A. Long-Term Simulation of Human Exposure to Atmospheric Perfluorooctanoic Acid (PFOA) and Perfluorooctanoate (PFO) in the Osaka Urban Area, Japan. Environ. Sci. Technol. 2010, 44, 7852–7857. [Google Scholar] [CrossRef]
- Lorber, M.; Egeghy, P.P. Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid, PFOA. Environ. Sci. Technol. 2011, 45, 8006–8014. [Google Scholar] [CrossRef] [PubMed]
- Haug, L.S.; Huber, S.; Becher, G.; Thomsen, C. Characterisation of human exposure pathways to perfluorinated compounds—Comparing exposure estimates with biomarkers of exposure. Environ. Int. 2011, 37, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kho, Y.L.; Shoeib, M.; Kim, K.S.; Kim, K.R.; Park, J.E.; Shin, Y.S. Occurrence of perfluorooctanoate and perfluorooctanesulfonate in the Korean water system: Implication to water intake exposure. Environ. Pollut. 2011, 159, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.; Webster, T.F.; Bartell, S.M.; Weisskopf, M.G.; Fletcher, T.; Vieira, V.M. Private Drinking Water Wells as a Source of Exposure to Perfluorooctanoic Acid (PFOA) in Communities Surrounding a Fluoropolymer Production Facility. Environ. Health Perspect. 2011, 119, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Egeghy, P.P.; Lorber, M. An assessment of the exposure of Americans to perfluorooctane sulfonate: A comparison of estimated intake with values inferred from NHANES data. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, J.Q.; Liu, W.; Li, X.N.; Zhang, X.; Jiang, Y.S.; Zhou, J.; Jin, Y.H. Serum levels of perfluorinated compounds in the general population in Shenzhen, China. Chin. Sci. Bull. 2011, 56, 3092–3099. [Google Scholar] [CrossRef]
- Savitz, D.A.; Stein, C.R.; Bartell, S.M.; Elston, B.; Gong, J.; Shin, H.M.; Wellenius, G.A. Perfluorooctanoic Acid Exposure and Pregnancy Outcome in a Highly Exposed Community. Epidemiology 2012, 23, 386–392. [Google Scholar] [CrossRef]
- Shin, H.M.; Steenland, K.; Ryan, P.B.; Vieira, V.M.; Bartell, S.M. Biomarker-Based Calibration of Retrospective Exposure Predictions of Perfluorooctanoic Acid. Environ. Sci. Technol. 2014, 48, 5636–5642. [Google Scholar] [CrossRef]
- Wong, F.; MacLeod, M.; Mueller, J.F.; Cousins, I.T. Enhanced elimination of perfluorooctane sulfonic acid by menstruating women: Evidence from population-based pharmacokinetic modeling. Environ. Sci. Technol. 2014, 48, 8807–8814. [Google Scholar] [CrossRef]
- Gebbink, W.A.; Berger, U.; Cousins, I.T. Estimating human exposure to PFOS isomers and PFCA homologues: The relative importance of direct and indirect (precursor) exposure. Environ. Int. 2015, 74, 160–169. [Google Scholar] [CrossRef]
- Lorber, M.; Eaglesham, G.E.; Hobson, P.; Toms, L.M.L.; Mueller, J.F.; Thompson, J.S. The effect of ongoing blood loss on human serum concentrations of perfluorinated acids. Chemosphere 2015, 118, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Gomis, M.I.; Vestergren, R.; Nilsson, H.; Cousins, I.T. Contribution of Direct and Indirect Exposure to Human Serum Concentrations of Perfluorooctanoic Acid in an Occupationally Exposed Group of Ski Waxers. Environ. Sci. Technol. 2016, 50, 7037–7046. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Vestergren, R.; Herzke, D.; Melhus, M.; Evenset, A.; Hanssen, L.; Brustad, M.; Sandanger, T.M. Exposure to per- and polyfluoroalkyl substances through the consumption of fish from lakes affected by aqueous film-forming foam emissions—A combined epidemiological and exposure modeling approach. The SAMINOR 2 Clinical Study. Environ. Int. 2016, 94, 272–282. [Google Scholar] [CrossRef]
- Tian, Z.; Kim, S.K.; Shoeib, M.; Oh, J.E.; Park, J.E. Human exposure to per- and polyfluoroalkyl substances (PFASs) via house dust in Korea: Implication to exposure pathway. Sci. Total Environ. 2016, 553, 266–275. [Google Scholar] [CrossRef]
- Shan, G.Q.; Wang, Z.; Zhou, L.Q.; Du, P.; Luo, X.X.; Wu, Q.N.; Zhu, L.Y. Impacts of daily intakes on the isomeric profiles of perfluoroalkyl substances (PFASs) in human serum. Environ. Int. 2016, 89–90, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Avanasi, R.; Shin, H.M.; Vieira, V.M.; Savitz, D.A.; Bartell, S.M. Impact of Exposure Uncertainty on the Association between Perfluorooctanoate and Preeclampsia in the C8 Health Project Population. Environ. Health Perspect. 2016, 124, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Avanasi, R.; Shin, H.M.; Vieira, V.M.; Bartell, S.M. Variability and epistemic uncertainty in water ingestion rates and pharmaco-kinetic parameters, and impact on the association between perfluorooctanoate and preeclampsia in the C8 Health Project popula-tion. Environ. Res. 2016, 146, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Gomis, M.I.; Vestergren, R.; MacLeod, M.; Mueller, J.F.; Cousins, I.T. Historical human exposure to perfluoroalkyl acids in the United States and Australia reconstructed from biomonitoring data using population-based pharmacokinetic modelling. Environ. Int. 2017, 108, 92–102. [Google Scholar] [CrossRef]
- Herrick, R.L.; Buckholz, J.; Biro, F.M.; Calafat, A.M.; Ye, X.Y.; Xie, C.C.; Pinney, S.M. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012. Environ. Pollut. 2017, 228, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Liu, L.; Wang, X.; Jin, Y.H.; Dong, G.H. Human exposure to perfluoroalkyl substances near a fluorochemical industrial park in China. Environ. Sci. Pollut. Res. 2017, 24, 9194–9201. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hoppmann, S.; Du, P.; Li, H.; Evans, P.M.; Moestue, S.A.; Yu, W.; Dong, F.; Liu, H.; Liu, L. Pharmacokinetics of perfluorobutane after intra-venous bolus injection of Sonazoid in healthy Chinese volunteers. Ultrasound Med. Biol. 2017, 43, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Dassuncao, C.; Hu, X.D.C.; Nielsen, F.; Weihe, P.; Grandjean, P.; Sunderland, E.M. Shifting Global Exposures to Poly- and Perfluoroalkyl Substances (PFASs) Evident in Longitudinal Birth Cohorts from a Seafood-Consuming Population. Environ. Sci. Technol. 2018, 52, 3738–3747. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.D.C.; Tokranov, A.K.; Liddie, J.; Zhang, X.M.; Grandjean, P.; Hart, J.E.; Laden, F.; Sun, Q.; Yeung, L.W.Y.; Sunderland, E.M. Tap Water Contributions to Plasma Concentrations of Poly- and Perfluoroalkyl Substances (PFAS) in a Nationwide Prospective Cohort of US Women. Environ. Health Perspect. 2019, 127, 11. [Google Scholar] [CrossRef] [PubMed]
- Goeden, H.M.; Greene, C.W.; Jacobus, J.A. A transgenerational toxicokinetic model and its use in derivation of Minnesota PFOA water guidance. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kedikoglou, K.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L. Preliminary assessment of general population exposure to perfluoroalkyl substances through diet in Greece. Environ. Res. 2019, 177, 8. [Google Scholar] [CrossRef] [PubMed]
- Balk, F.G.; Pütz, K.W.; Ribbenstedt, A.; Gomis, M.I.; Filipovic, M.; Cousins, I.T. Children’s exposure to perfluoroalkyl acids–a modelling approach. Environ. Sci. Process. Impacts 2019, 21, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Saito, N.; Sasaki, K.; Inoue, K.; Koizumi, A. Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: Estimated effects on resident serum levels. Bull. Environ. Contam. Toxicol. 2003, 71, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Cohen Hubal, E.A.; Frank, J.J.; Nachman, R.; Angrish, M.; Deziel, N.C.; Fry, M.; Tornero-Velez, R.; Kraft, A.; Lavoie, E. Advancing systematic-review methodology in exposure science for environmental health decision making. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 906–916. [Google Scholar] [CrossRef]
- Ritter, R.; Scheringer, M.; MacLeod, M.; Moeckel, C.; Jones, K.C.; Hungerbühler, K. Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environ. Health Perspect. 2011, 119, 225–231. [Google Scholar] [CrossRef]
- Andersen, M.E.; Butenhoff, J.L.; Chang, S.C.; Farrar, D.G.; Kennedy, G.L.; Lau, C.; Olsen, G.W.; Seed, J.; Wallacekj, K.B. Perfluoroalkyl acids and related chemistries - Toxicokinetics and modes of action. Toxicol. Sci. 2008, 102, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Gomis, M.I.; Vestergren, R.; Borg, D.; Cousins, I.T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ. Int. 2018, 113, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Gu, W.; Barrett, H.; Yang, D.; Tang, S.; Sun, J.; Liu, J.; Krause, H.M.; Houck, K.A.; Peng, H. A roadmap to the structure-related metabolism pathways of per-and polyfluoroalkyl substances in the early life stages of zebrafish (Danio rerio). Environ. Health Perspect. 2021, 129, 077004. [Google Scholar] [CrossRef] [PubMed]
- McDonough, C.A.; Choyke, S.; Ferguson, P.L.; DeWitt, J.C.; Higgins, C.P. Bioaccumulation of novel per-and polyfluoroalkyl substances in mice dosed with an aqueous film-forming foam. Environ. Sci. Technol. 2020, 54, 5700–5709. [Google Scholar] [CrossRef] [PubMed]
- Tal, T.; Vogs, C. Invited perspective: PFAS bioconcentration and biotransformation in early life stage Zebrafish and Its implications for human health protection. Environ. Health Perspect. 2021, 129, 071304. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Choi, E.J.; Choi, G.W.; Lee, Y.B.; Cho, H.Y. Exploring sex differences in human health risk assessment for PFNA and PFDA using a PBPK model. Arch. Toxicol. 2019, 93, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Shin, H.; Lee, Y.B.; Cho, H.Y. Sex-specific risk assessment of PFHxS using a physiologically based pharmacokinetic model. Arch. Toxicol. 2018, 92, 1113–1131. [Google Scholar] [CrossRef] [PubMed]
- Loccisano, A.E.; Campbell, J.L.; Butenhoff, J.L.; Andersen, M.E.; Clewell, H.J. Comparison and evaluation of pharmacokinetics of PFOA and PFOS in the adult rat using a physiologically based pharmacokinetic model. Reprod. Toxicol. 2012, 33, 452–467. [Google Scholar] [CrossRef] [PubMed]
- Loccisano, A.E.; Campbell, J.L.; Butenhoff, J.L.; Andersen, M.E.; Clewell, H.J. Evaluation of placental and lactational pharmacokinetics of PFOA and PFOS in the pregnant, lactating, fetal and neonatal rat using a physiologically based pharmacokinetic model. Reprod. Toxicol. 2012, 33, 468–490. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Martinez, M.A.; Sharma, R.P.; Espuis, T.; Nadal, M.; Kumar, V.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Domingo, J.L.; et al. Prenatal exposure to PFOS and PFOA in a pregnant women cohort of Catalonia, Spain. Environ. Res. 2019, 175, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Worley, R.R.; Fisher, J. Application of physiologically-based pharmacokinetic modeling to explore the role of kidney transporters in renal reabsorption of perfluorooctanoic acid in the rat. Toxicol. Appl. Pharmacol. 2015, 289, 428–441. [Google Scholar] [CrossRef]
- Cheng, W.X.; Ng, C.A. A Permeability-Limited Physiologically Based Pharmacokinetic (PBPK) Model for Perfluorooctanoic acid (PFOA) in Male Rats. Environ. Sci. Technol. 2017, 51, 9930–9939. [Google Scholar] [CrossRef]
- Fabrega, F.; Kumar, V.; Benfenati, E.; Schuhmacher, M.; Domingo, J.L.; Nadal, M. Physiologically based pharmacokinetic modeling of perfluoroalkyl substances in the human body. Toxicol. Environ. Chem. 2015, 97, 814–827. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, A.S.; Kapraun, D.F.; Schlosser, P.M. A model template approach for rapid evaluation and application of physiologically based pharmacokinetic models for use in human health risk assessments: A case study on per-and polyfluoroalkyl substances. Toxicol. Sci. 2021, 182, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Verner, M.A.; Ngueta, G.; Jensen, E.T.; Fromme, H.; Volkel, W.; Nygaard, U.C.; Granum, B.; Longnecker, M.P. A Simple Pharmacokinetic Model of Prenatal and Postnatal Exposure to Perfluoroalkyl Substances (PFASs). Environ. Sci. Technol. 2016, 50, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Wambaugh, J.F.; Setzer, R.W.; Pitruzzello, A.M.; Liu, J.; Reif, D.M.; Kleinstreuer, N.C.; Wang, N.C.Y.; Sipes, N.; Martin, M.; Das, K.; et al. Dosimetric Anchoring of In Vivo and In Vitro Studies for Perfluorooctanoate and Perfluorooctanesulfonate. Toxicol. Sci. 2013, 136, 308–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPA. Notification of a Public Meetings of the Science Advisory Board Per- and Polyfluoroalkyl Substances (PFAS) Review Panel. Fed. Reg. 2021, 86, 62526. [Google Scholar]
Description | Results |
---|---|
Range of years published | 2005–2020 |
Unique Sources (Journals, Books, etc) | 31 |
Documents | 92 |
Average years from publication | 7.45 |
Average citations per study | 41.02 |
Average citations per year per document | 4.406 |
Total number of references | 2670 |
Unique Authors | 358 |
Authors per study | 3.89 |
Node | DOI | Between-Ness | GCS | TK Model | Class | Objective | |
---|---|---|---|---|---|---|---|
Olsen GW, 2007 [56] | 10.1289/ehp.10009 | 19.3 | 760 | Yes | Measurement | Estimated half-life of PFOS, PFHS, and PFOA in fluorochemical production workers | |
Lau C, 2007 [58] | 10.1093/toxsci/kfm128 | 11.9 | 2407 | No | Review | PFAS concentrations in environment, wildlife and humans. Toxicology and mode of action | |
Andersen ME, 2006 [30] | 10.1016/j.tox.2006.08.004 | 11.0 | 193 | Yes | Dynamic PBTK Animal | Developed a PBPK model using renal resoprtion | |
Trudel D, 2008 [61] | 10.1111/j.1539-6924.2008.01017.x | 5.9 | 472 | Yes | Steady State OCH | Estimated Daily intakes of PFOA and PFOS | |
Calafat AM, 2007 [50] | 10.1289/ehp.10598 | 5.1 | 1012 | No | Measurement | Shared NHANES PFAS summary statistics | |
Butenhoff JL, 2004 [55] | 10.1016/j.tox.2003.11.005 | 3.9 | 220 | No | Measurement | Gestational Rat observations for PFOA | |
Emmett EA, 2006 [54] | 10.1097/01.jom.0000232486.07658.74 | 3.6 | 377 | No | Measurement | Determined serum PFOA levels of population living near production facility | |
Kudo N, 2002 [28] | 10.1016/S0009-2797(02)00006-6 | 3.5 | 267 | Yes | Dynamic TC Animal | Evaluated role of sex hormones in renal clearance of PFOA in rats | |
Han X, 2003 [57] | 10.1021/tx034005w | 2.9 | 392 | No | Measurement | Examined binding of PFOA to serum albumin in rats and humans | |
Bartell SM, 2010 [60] | 10.1289/ehp.0901252 | 2.8 | 340 | Yes | Dynamic OCH | Detemined decline of PFOA in serum samples after filtration intervention in water district | |
Karrman A, 2007 [49] | 10.1289/ehp.9491 | 2.7 | 520 | No | Measurement | Compared occurance of PFAS in breastmilk and primiparous women serum | |
Ehresman DJ, 2007 [51] | 10.1016/j.envres.2006.06.008 | 2.5 | 310 | No | Measurement | Evaluated PFAS concentration across human blood-based matrices (blood, plasma, serum) | |
Prevedouros K, 2006 [4] | 10.1021/es0512475 | 2.5 | 2374 | No | Review | Reviewed fate and transport of PFAS in the environment | |
Fromme H, 2009 [59] | 10.1016/j.ijheh.2008.04.007 | 2.5 | 228 | No | Review | Reviewed enviromental and biomonitoring data for PFOS, PFOA and precursors | |
Seacat AM, 2002 [48] | 10.1093/toxsci/68.1.249 | 2.4 | 618 | No | Measurement | Identified lowest measurable responses for PFOS in humans using monkeys | |
Lou IC, 2009 [64] | 10.1093/toxsci/kfn234 | 2.0 | 97 | Yes | Dynamic OCH, TCH, PBTK | Characterize pharmacokinetics of PFOA in mice to estimate exposure | |
Tan YM, 2008 [62] | 10.1016/j.toxlet.2007.12.007 | 1.9 | 70 | Yes | PBTK Animal | Evaluated determinants of disposition of PFOA and PFOS in rats, monkeys | |
Loccisano AE, 2011 [63] | 10.1016/j.yrtph.2010.12.004 | 1.7 | 94 | Yes | PBTK Animal/Human | Predicts/evaluates PFOA/PFOS pharmacokinetics for monkeys and humans | |
Vandenheuvel JP, 1991 [53] | 10.1002/jbt.2570060202 | 1.5 | 278 | No | Measurement | Exploration of sex differences in elimination of PFOA in rats | |
Weaver YM, 2010 [52] | 10.1093/toxsci/kfp275 | 1.4 | 126 | No | Measurement | Evaluated PFAS of differing chain length as substrates of renal transporters |
Document | DOI | GCS | LCS | Model Structure | Model Purpose |
---|---|---|---|---|---|
Trudel D, 2008 [61] | 10.1111/j.1539-6924.2008.01017.x | 286 | 15 | Steady State | Validation of exposure estimates |
Vestergren R, 2009 [66] | 10.1021/es900228k | 242 | 9 | Steady State | Validation of exposure estimates |
Haug LS, 2011 [70] | 10.1016/j.envint.2011.01.011 | 203 | 7 | Steady State | Validation of exposure estimates |
Harada K, 2005, [25] | 10.1016/j.envres.2004.12.003 | 171 | 10 | Dynamic | Evaluation of sex-based differences in elimination |
Fromme H, 2007 [65] | 10.1021/es071244n | 163 | 10 | Steady State | Validation of exposure estimates |
Wong F, 2014 [77] | 10.1021/es500796y | 90 | 6 | Dynamic | Evaluation of sex-based differences in elimination |
Hoffman K, 2011 [72] | 10.1289/ehp.1002503 | 90 | 0 | Steady State | Estimate relative contributions of contaminated drinking water to serum concentation |
Savitz DA, 2012 [75] | 10.1097/EDE.0b013e31824cb93b | 82 | 3 | Dynamic | Assess association between exposure and pregnancy outcomes |
Egeghy PP, 2011 [73] | 10.1038/jes.2009.73 | 79 | 0 | Steady State | Validation of exposure estimates |
Worley RR, 2017 [19] | 10.1016/j.envint.2017.06.007 | 68 | 2 | Dynamic | Determination of half-lifes to characterize exposure |
Gebbink WA, 2015 [78] | 10.1016/j.envint.2014.10.013 | 66 | 5 | Steady State | Identification of relative source contributions and precursors |
Lorber M, 2011 [69] | 10.1021/es103718h | 60 | 7 | Steady State | Validation of exposure estimates |
Thompson J, 2010 [67] | 10.1016/j.envint.2010.02.008 | 56 | 14 | Steady State | Characterization of exposure from serum concentrations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
East, A.; Dawson, D.E.; Brady, S.; Vallero, D.A.; Tornero-Velez, R. A Scoping Assessment of Implemented Toxicokinetic Models of Per- and Polyfluoro-Alkyl Substances, with a Focus on One-Compartment Models. Toxics 2023, 11, 163. https://doi.org/10.3390/toxics11020163
East A, Dawson DE, Brady S, Vallero DA, Tornero-Velez R. A Scoping Assessment of Implemented Toxicokinetic Models of Per- and Polyfluoro-Alkyl Substances, with a Focus on One-Compartment Models. Toxics. 2023; 11(2):163. https://doi.org/10.3390/toxics11020163
Chicago/Turabian StyleEast, Alexander, Daniel E. Dawson, Sydney Brady, Daniel A. Vallero, and Rogelio Tornero-Velez. 2023. "A Scoping Assessment of Implemented Toxicokinetic Models of Per- and Polyfluoro-Alkyl Substances, with a Focus on One-Compartment Models" Toxics 11, no. 2: 163. https://doi.org/10.3390/toxics11020163