Cytotoxicity and Oxidative Stress Effects of Indene on Coelomocytes of Earthworm (Eisenia foetida): Combined Analysis at Cellular and Molecular Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Test Organisms
2.3. Intracellular Oxidative Stress Analysis
2.3.1. Extraction of Earthworm Coelomocytes and IND Exposure Experiment
2.3.2. Cell Viability Assay
2.3.3. ROS Determination
2.3.4. Antioxidant Enzyme Activity and Malondialdehyde (MDA) Level Determination
2.3.5. Lactate Dehydrogenase (LDH) Activity Determination
2.3.6. Na+ K+ ATPase Activity Determination
2.3.7. Total Protein (TP) Determination
2.4. Analysis of Functional and Structural Changes of SOD
2.4.1. Reaction System Configuration
2.4.2. SOD Activity Assay
2.4.3. Isothermal Calorimetric Titration (ITC)
2.4.4. Fluorescence Spectrum Experiment
2.4.5. Internal Rate Deduction Experiment
2.4.6. UV-Vis Absorption Spectra Experiment
2.4.7. Circular Dichroic Spectra Experiment
2.4.8. Molecular Docking Experiment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of IND on Cell Viability of Coelomocytes
3.2. Changes in Intracellular Oxidative Stress Index Induced by IND
3.2.1. Changes in ROS Level
3.2.2. Changes of SOD and CAT Activity in Coelomocytes
3.2.3. Changes of GSH Content in Coelomocytes
3.3. Cell Membrane Damage
3.3.1. Changes of MDA Level in Coelomocytes
3.3.2. Changes of LDH Activity in Coelomocytes
3.3.3. Changes of Na+ K+ ATPase Activity in Coelomocytes
3.4. Molecular Mechanism of IND Interaction with SOD
3.4.1. Changes in SOD Enzyme Activity In Vitro
3.4.2. Study on Binding Constants, Thermodynamic Parameters and Acting Forces
3.4.3. Effect of IND on SOD Endogenous Fluorescence
3.4.4. Effect of IND on SOD Particle Size
3.4.5. Effects of IND on SOD Skeleton and Aromatic Amino Acid Microenvironment
3.4.6. Effect of IND on the Secondary Structure of SOD
3.4.7. Molecular Docking of IND and SOD Binding Sites and Binding Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Nie, C.; Yang, Q. Deep Processing Present Situation, New Technology and Development Direction of Coal Tar. Appl. Chem. Ind. 2008, 37, 1496–1499. [Google Scholar] [CrossRef]
- Xiong, D.; Chen, Y.; Ouyang, J. Research progress of coal tar deep processing. Clean Coal Technol. 2012, 18, 53–57. [Google Scholar] [CrossRef]
- Cameron, G.R.; Doniger, C.R. The toxicity of indene. J. Pathol. Bacteriol. 1939, 49, 529–533. [Google Scholar] [CrossRef]
- El-Azhary, A.A. A DFT study of the geometries and vibrational spectra of indene and some of its heterocyclic analogues, benzofuran, benzoxazole, bensothiophene, benzothiazole, indole and indazole. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 2437–2446. [Google Scholar] [CrossRef]
- Borin, A.C.; Serrano-Andrés, L. An ab initio study of the low-lying 1A′ electronic states of indene. J. Mol. Struct. THEOCHEM 1999, 464, 121–128. [Google Scholar] [CrossRef]
- Machnikowski, J.; Machnikowska, H.; Brzozowska, T.; Zieliński, J. Mesophase development in coal-tar pitch modified with various polymers. J. Anal. Appl. Pyrolysis 2002, 65, 147–160. [Google Scholar] [CrossRef]
- Spiteller, M.; Jovanovic, J.A. Oligomerization and alkylation products of the oil obtained by naphtha steam pyrolysis (RPO). Fuel 1999, 78, 1263–1276. [Google Scholar] [CrossRef]
- Brzozowska, T.; Zieliñski, J.; Machnikowski, J. Effect of polymeric additives to coal tar pitch on carbonization behaviour and optical texture of resultant cokes. J. Anal. Appl. Pyrolysis 1998, 48, 45–58. [Google Scholar] [CrossRef]
- Arnstein, H.R.V. Handbook of Intermediary Metabolism of Aromatic Compounds. FEBS Lett. 1978, 85, 368–369. [Google Scholar] [CrossRef] [Green Version]
- Acgih. Documentation of the Threshold Limit Values and Biological Exposure Indices, 7th ed.; Acgih: Cincinnati, OH, USA, 2001. [Google Scholar]
- Ng, C.T.; Yong, L.Q.; Hande, M.P.; Ong, C.N.; Yu, L.E.; Bay, B.H.; Baeg, G.H. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int. J. Nanomed. 2017, 12, 1621–1637. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Jing, M.; Xu, M.; Han, D.; Niu, Q.; Liu, R. Cytotoxicity of perfluorodecanoic acid on mouse primary nephrocytes through oxidative stress: Combined analysis at cellular and molecular levels. J. Hazard. Mater. 2020, 393, 122444. [Google Scholar] [CrossRef] [PubMed]
- Somani, S.M.; Husain, K.; Whitworth, C.; Trammell, G.L.; Malafa, M.; Rybak, L.P. Dose-Dependent Protection by Lipoic Acid against Cisplatin-Induced Nephrotoxicity in Rats: Antioxidant Defense System. Pharmacol. Toxicol. 2000, 86, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, S.H.; Li, W.; Fang Wang, P.; Li, L. Nitric oxide supplementation alleviates ammonium toxicity in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Ecotoxicol. Environ. Saf. 2011, 74, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Jing, M.; Zhao, X.; Liu, R. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion. J. Photochem. Photobiol. B Biol. 2015, 143, 100–106. [Google Scholar] [CrossRef]
- Dyshinevich, N. Hygienic studies to establish a permissible level of indene escape from polymeric construction materials. Gig. Sanit. 1976, 4, 104–105. [Google Scholar]
- Huang, L.; Wang, W.; Zhang, S.; Tang, S.; Zhao, P.; Ye, Q. Bioaccumulation and bound-residue formation of 14C-decabromodiphenyl ether in an earthworm-soil system. J. Hazard. Mater. 2017, 321, 591–599. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Z. Effects of the Chiral Fungicides Metalaxyl and Metalaxyl-M on the Earthworm Eisenia fetida as Determined by ¹H-NMR-Based Untargeted Metabolomics. Molecules 2019, 24, 1293. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, J.; Wang, G.; Zhu, L.; Wang, J. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere 2016, 144, 510–517. [Google Scholar] [CrossRef]
- Umeh, A.C.; Panneerselvan, L.; Duan, L.; Naidu, R.; Semple, K.T. Bioaccumulation of benzo[a]pyrene nonextractable residues in soil by Eisenia fetida and associated background-level sublethal genotoxicity (DNA single-strand breaks). Sci. Total Environ. 2019, 691, 605–610. [Google Scholar] [CrossRef]
- Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–151. [Google Scholar] [CrossRef]
- He, F.; Chu, S.; Sun, N.; Li, X.; Jing, M.; Wan, J.; Zong, W.; Tang, J.; Liu, R. Binding interactions of acrylamide with lysozyme and its underlying mechanisms based on multi-spectra, isothermal titration microcalorimetry and docking simulation. J. Mol. Liq. 2021, 337, 116460. [Google Scholar] [CrossRef]
- Pour-Esmaeil, S.; Sharifi-Sanjani, N.; Khoee, S.; Taheri-Qazvini, N. Biocompatible chemical network of α-cellulose-ESBO (epoxidized soybean oil) scaffold for tissue engineering application. Carbohydr. Polym. 2020, 241, 116322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, R.; Lu, Q. Separation and Characterization of Phenolamines and Flavonoids from Rape Bee Pollen, and Comparison of Their Antioxidant Activities and Protective Effects Against Oxidative Stress. Molecules 2020, 25, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalyanaraman, B.; Darley-Usmar, V.; Davies, K.J.A.; Dennery, P.A.; Forman, H.J.; Grisham, M.B.; Mann, G.E.; Moore, K.; Roberts, L.J.; Ischiropoulos, H. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 2012, 52, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Eruslanov, E.; Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol. 2010, 594, 57–72. [Google Scholar] [CrossRef]
- Ruiz-Ramos, R.; Lopez-Carrillo, L.; Rios-Perez, A.D.; De Vizcaya-Ruíz, A.; Cebrian, M.E. Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-κB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 674, 109–115. [Google Scholar] [CrossRef]
- He, F.; Liu, Q.; Jing, M.; Wan, J.; Huo, C.; Zong, W.; Tang, J.; Liu, R. Toxic mechanism on phenanthrene-induced cytotoxicity, oxidative stress and activity changes of superoxide dismutase and catalase in earthworm (Eisenia foetida): A combined molecular and cellular study. J. Hazard. Mater. 2021, 418, 126302. [Google Scholar] [CrossRef]
- Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef]
- Hong, Y.; Li, L.; Luan, G.; Drlica, K.; Zhao, X. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat. Microbiol. 2017, 2, 1667–1675. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, D.R. Contaminant-stimulated Reactive Oxygen Species Production and Oxidative Damage in Aquatic Organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef]
- Gaweł, S.; Wardas, M.; Niedworok, E.; Wardas, P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek. 2004, 57, 453–455. [Google Scholar] [PubMed]
- Jing, M.; Han, G.; Wan, J.; Zhang, S.; Yang, J.; Zong, W.; Niu, Q.; Liu, R. Catalase and superoxide dismutase response and the underlying molecular mechanism for naphthalene. Sci. Total Environ. 2020, 736, 139567. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, S.; Yang, K.; Zhu, L.; Lin, D. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. Environ. Pollut. 2016, 214, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, X.; Ji, Y.; Bai, R.; Zhao, Y.; Wu, X.; Chen, C. Surface chemistry of gold nanorods: Origin of cell membrane damage and cytotoxicity. Nanoscale 2013, 5, 8384–8391. [Google Scholar] [CrossRef]
- Agrahari, S.; Gopal, K. Inhibition of Na+–K+-ATPase in different tissues of freshwater fish Channa punctatus (Bloch) exposed to monocrotophos. Pestic. Biochem. Physiol. 2008, 92, 57–60. [Google Scholar] [CrossRef]
- Yadwad, V.B.; Kallapur, V.L.; Basalingappa, S. Inhibition of gill Na+ K(+)-ATPase activity in dragonfly larva, Pantala flavesens, by endosulfan. Bull. Environ. Contam. Toxicol. 1990, 44, 585–589. [Google Scholar] [CrossRef]
- Ozcan Oruc, E.; Uner, N.; Tamer, L. Comparison of Na+K+-ATPase Activities and Malondialdehyde Contents in Liver Tissue for Three Fish Species Exposed to Azinphosmethyl. Bull. Environ. Contam. Toxicol. 2002, 69, 271–277. [Google Scholar] [CrossRef]
- Koshland, D.E., Jr. Correlation of structure and function in enzyme action. Science 1963, 142, 1533–1541. [Google Scholar] [CrossRef]
- Turnbull, W.B.; Daranas, A.H. On the Value of c: Can Low Affinity Systems Be Studied by Isothermal Titration Calorimetry? J. Am. Chem. Soc. 2003, 125, 14859–14866. [Google Scholar] [CrossRef]
- Canterbury, T.R.; Arachchige, S.M.; Brewer, K.J.; Moore, R.B. Probing Co-Assembly of Supramolecular Photocatalysts and Polyelectrolytes Using Isothermal Titration Calorimetry. J. Phys. Chem. B 2017, 121, 6238–6244. [Google Scholar] [CrossRef]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Lin, J.; Liu, R. Interaction of sodium benzoate with trypsin by spectroscopic techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 83, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Liu, G.; Xu, M.; Li, X.; Zong, W.; Liu, R. Characterizing the binding interactions of sodiumbenzoatewithlysozymeat the molecular level using multi-spectroscopy, ITC and modeling methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120213. [Google Scholar] [CrossRef] [PubMed]
- Stroobants, K.; Saadallah, D.; Bruylants, G.; Parac-Vogt, T.N. Thermodynamic study of the interaction between hen egg white lysozyme and Ce(iv)-Keggin polyoxotungstate as artificial protease. Phys. Chem. Chem. Phys. 2014, 16, 21778–21787. [Google Scholar] [CrossRef]
- Wu, L.-L.; Gao, H.-W.; Gao, N.-Y.; Chen, F.-F.; Chen, L. Interaction of perfluorooctanoic acid with human serum albumin. BMC Struct. Biol. 2009, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Jia, R.; Zheng, X.; Liu, R.; Zong, W. Superoxide dismutase response and the underlying molecular mechanism induced by iodoacetic acid. Chemosphere 2019, 234, 513–519. [Google Scholar] [CrossRef]
- Charbonneau, D.M.; Tajmir-Riahi, H.-A. Study on the Interaction of Cationic Lipids with Bovine Serum Albumin. J. Phys. Chem. B 2010, 114, 1148–1155. [Google Scholar] [CrossRef]
- Zhang, H.M.; Wang, Y.Q.; Zhou, Q.H. Fluorimetric study of interaction of benzidine with trypsin. J. Lumin. 2010, 130, 781–786. [Google Scholar] [CrossRef]
- Mei, J.; Zhang, N.; Yu, Y.; Wang, Q.; Jiugang, Y.; Cui, L.; Fan, X. A novel “trifunctional protease” with reducibility, hydrolysis, and localization used for wool anti-felting treatment. Appl. Microbiol. Biotechnol. 2018, 102, 9159–9170. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, R. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 2012, 40, 244–255. [Google Scholar] [CrossRef]
- Xl, A.; Sc, A.; Zs, B.; Fh, A.; Zc, A.; Rl, A. Discrepancy of apoptotic events in mouse hepatocytes and catalase performance: Size-dependent cellular and molecular toxicity of ultrafine carbon black—ScienceDirect. J. Hazard. Mater. 2021, 421, 126781. [Google Scholar] [CrossRef]
- Gao, S.; Cao, Z.; Niu, Q.; Zong, W.; Liu, R. Probing the toxicity of long-chain fluorinated surfactants: Interaction mechanism between perfluorodecanoic acid and lysozyme. J. Mol. Liq. 2019, 285, 607–615. [Google Scholar] [CrossRef]
- Xu, M.; Cui, Z.; Zhao, L.; Hu, S.; Zong, W.; Liu, R. Characterizing the binding interactions of PFOA and PFOS with catalase at the molecular level. Chemosphere 2018, 203, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Wang, J.; Huang, M.; Xu, Q.; Ma, M. The changes of secondary structures and properties of lysozyme along with the egg storage. Int. J. Biol. Macromol. 2016, 92, 600–606. [Google Scholar] [CrossRef]
- Taheri-Kafrani, A.; Choiset, Y.; Fayzullin, D.; Zuev, Y.; Bezuglov, V.; Chobert, J.-M.; Bordbar, A.K.; Haertlé, T. Interactions of β-lactoglobulin with serotonin and arachidonyl serotonin. Biopolymers 2011, 95, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Zhang, H.; Yu, Q.; Chen, Z.; Liang, H. Studies on the Interaction of Cinnamic Acid with Bovine Serum Albumin. Chem. Pharm. Bull. 2007, 55, 871–875. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Song, W.; Wang, J.; Yan, Y.; Chen, J.; Liu, R. Mechanism of Dimercaptosuccinic Acid Coated Superparamagnetic Iron Oxide Nanoparticles with Human Serum Albumin. J. Biochem. Mol. Toxicol. 2015, 29, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xiang, B.; Wang, Y.; Chen, C.; Dong, Y.; Fang, H.; Wang, M. Spectroscopic investigation on the binding of bioactive pyridazinone derivative to human serum albumin and molecular modeling. Colloids Surf. B Biointerfaces 2008, 65, 113–119. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Cao, J.; Zhou, Q. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods. J. Mol. Struct. 2013, 1051, 78–85. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Song, W.; Yang, X.; Zong, W.; Liu, R. Molecular mechanism investigation of the neutralization of cadmium toxicity by transferrin. Phys. Chem. Chem. Phys. PCCP 2016, 18, 3536–3544. [Google Scholar] [CrossRef]
- Pasternack, R.F.; Collings, P.J. Resonance light scattering: A new technique for studying chromophore aggregation. Science 1995, 269, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Ganguly, T. Fluorescence Spectroscopic Characterization of the Interaction of Human Adult Hemoglobin and Two Isatins, 1-Methylisatin and 1-Phenylisatin: A Comparative Study. J. Phys. Chem. B 2009, 113, 14904–14913. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, X.; Zhang, H. Exploring the conformational changes in fibrinogen by forming protein corona with CdTe quantum dots and the related cytotoxicity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 220, 117143. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Zheng, X.; Liu, R.; Zong, W. In vitro toxicity and molecular interacting mechanisms of chloroacetic acid to catalase. Ecotoxicol. Environ. Saf. 2020, 189, 109981. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Zhao, J.; You, H.; Wang, M. Study on the Mechanism of Interaction between Phthalate Acid Esters and Bovine Hemoglobin. J. Agric. Food Chem. 2016, 64, 6035–6041. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Liu, R. Insights into potentially toxic effects of 4-aminoantipyrine on the antioxidant enzyme copper–zinc superoxide dismutase. J. Hazard. Mater. 2013, 262, 318–324. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, R.; Zong, W. Bisphenol S Interacts with Catalase and Induces Oxidative Stress in Mouse Liver and Renal Cells. J. Agric. Food Chem. 2016, 64, 6630–6640. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, Q. Probing the binding between norbixin and dairy proteins by spectroscopy methods. Food Chem. 2013, 139, 611–616. [Google Scholar] [CrossRef]
- Tabassum, S.; Al-Asbahy, W.M.; Afzal, M.; Arjmand, F.; Hasan Khan, R. Interaction and photo-induced cleavage studies of a copper based chemotherapeutic drug with human serum albumin: Spectroscopic and molecular docking study. Mol. Biosyst. 2012, 8, 2424–2433. [Google Scholar] [CrossRef]
- Zsila, F.; Hazai, E.; Sawyer, L. Binding of the Pepper Alkaloid Piperine to Bovine β-Lactoglobulin: Circular Dichroism Spectroscopy and Molecular Modeling Study. J. Agric. Food Chem. 2005, 53, 10179–10185. [Google Scholar] [CrossRef]
- Xu, M.; Wan, J.; Niu, Q.; Liu, R. PFOA and PFOS interact with superoxide dismutase and induce cytotoxicity in mouse primary hepatocytes: A combined cellular and molecular methods. Environ. Res. 2019, 175, 63–70. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, H.; Sun, T.; Zhang, B.; Liu, R. Probing the toxic mechanism of Ag+ with lysozyme. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 124–130. [Google Scholar] [CrossRef]
- Chi, Z.; Liu, R. Phenotypic Characterization of the Binding of Tetracycline to Human Serum Albumin. Biomacromolecules 2011, 12, 203–209. [Google Scholar] [CrossRef]
- Das, A.; Thakur, R.; Dagar, A.; Chakraborty, A. A spectroscopic investigation and molecular docking study on the interaction of hen egg white lysozyme with liposomes of saturated and unsaturated phosphocholines probed by an anticancer drug ellipticine. Phys. Chem. Chem. Phys. 2014, 16, 5368–5381. [Google Scholar] [CrossRef]
- Tainer, J.A.; Getzoff, E.D.; Richardson, J.S.; Richardson, D.C. Structure and mechanism of copper, zinc superoxide dismutase. Nature 1983, 306, 284–287. [Google Scholar] [CrossRef]
T (K) | K | N | ΔH (kJ M−1) | ΔG (kJ M−1) | ΔS (kJ M−1k−1) |
---|---|---|---|---|---|
298.15 | 4.95 × 103 | 0.999 | 0.166 | −21.1 | 0.0714 |
IND (mg/L) | Peak 3 | Peak 4 | ||
---|---|---|---|---|
Peak Position λex/λem (nm/nm) | Intensity | Peak Position λex/λem (nm/nm) | Intensity | |
0 | 280/325 | 2752.76 | 230/330 | 1499.97 |
0.1 | 280/325 | 2757.76 | 230/325 | 1492.85 |
1 | 280/325 | 2760.76 | 230/320 | 1396.85 |
IND Concentration (mg/L) | Secondary Structural Content in Enzyme (%) | |||
---|---|---|---|---|
α-Helix | β-Sheet | Turn | Unordered | |
0 | 20.8 | 42.9 | 14.2 | 22.1 |
0.1 | 21.0 | 41.4 | 15.6 | 22.0 |
0.5 | 22.3 | 35.6 | 18.2 | 23.9 |
1 | 23.1 | 32.1 | 20.2 | 24.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, C.; Zhao, Q.; Liu, R.; Li, X.; He, F.; Jing, M.; Wan, J.; Zong, W. Cytotoxicity and Oxidative Stress Effects of Indene on Coelomocytes of Earthworm (Eisenia foetida): Combined Analysis at Cellular and Molecular Levels. Toxics 2023, 11, 136. https://doi.org/10.3390/toxics11020136
Huo C, Zhao Q, Liu R, Li X, He F, Jing M, Wan J, Zong W. Cytotoxicity and Oxidative Stress Effects of Indene on Coelomocytes of Earthworm (Eisenia foetida): Combined Analysis at Cellular and Molecular Levels. Toxics. 2023; 11(2):136. https://doi.org/10.3390/toxics11020136
Chicago/Turabian StyleHuo, Chengqian, Qiang Zhao, Rutao Liu, Xiangxiang Li, Falin He, Mingyang Jing, Jingqiang Wan, and Wansong Zong. 2023. "Cytotoxicity and Oxidative Stress Effects of Indene on Coelomocytes of Earthworm (Eisenia foetida): Combined Analysis at Cellular and Molecular Levels" Toxics 11, no. 2: 136. https://doi.org/10.3390/toxics11020136