Pesticide-Induced Inflammation at a Glance
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Pesticide-Triggered Effects on the Immune System
3.2. Risk of Pesticide Mixtures Contamination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2,4-D | 2,4-dichlorophenoxyacetic acid |
ccl4 | C-C motif chemokine ligand 4 |
CPF | chlorpyrifos |
cxcl2 | C-X-C motif chemokine ligand 2 |
CYP | cytochrome P450 |
DDD | dichlorodiphenyldichloroethane |
DDE | dichlorodiphenyldichloroethylene |
DDT | dichlorodiphenyltrichloroethane |
EPSP | 5-enolpyruvylshikimate-3-phosphate |
ETU | ethylenethiourea |
HCH | hexachlorocyclohexane |
HMGB1 | high-mobility group box 1 |
IFN-γ | interferon gamma |
IL-10 | interleukin-10 |
IL-17A | interleukin-17-A |
IL-1β | interleukin-1-beta |
IL-22 | interleukin-22 |
IL-25 | interleukin-25 |
IL-33 | interleukin-33 |
IL-6 | interleukin-6 |
IL-8 | interleukin-8 |
IPM | integrated pest management |
LPS | lipopolysaccharide |
MCP-1 | monocyte chemoattractant protein-1 |
mmp9 | matrix metallopeptidase 9 |
mRNA | messenger RNA |
NETs | neutrophil extracellular traps |
NF-kB | nuclear factor kappa B |
NO | nitric oxide |
PCP | Pentachlorophenol |
POEA | polyethoxylated tallow amine |
QpE | Quizalofop-p-Ethyl |
ROS | reactive oxygen species |
ΤLR4 | Toll-like receptor 4 |
TNF-α | tumor necrosis factor-alpha |
TSLP | thymic stromal lymphopoietin |
UN | United Nations |
USA | United States of America |
ZO-1 | zonula occludens-1 |
References
- Food and Agriculture Organization—FAO. Pesticides Use, Pesticides Trade and Pesticides Indicators: Global, Regional and Country Trends, 1990–2020; FAO: Rome, Italy, 2022. [Google Scholar]
- Giglio, A.; Vommaro, M.L. Dinitroaniline Herbicides: A Comprehensive Review of Toxicity and Side Effects on Animal Non-Target Organisms. Environ. Sci. Pollut. Res. Int. 2022, 29, 76687–76711. [Google Scholar] [CrossRef]
- Madani, F.Z.; Hafida, M.; Merzouk, S.A.; Loukidi, B.; Taouli, K.; Narce, M. Hemostatic, Inflammatory, and Oxidative Markers in Pesticide User Farmers. Biomarkers 2016, 21, 138–145. [Google Scholar] [CrossRef] [PubMed]
- An, G.; Park, J.; Lim, W.; Song, G. Thiobencarb Induces Phenotypic Abnormalities, Apoptosis, and Cardiovascular Toxicity in Zebrafish Embryos through Oxidative Stress and Inflammation. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 261, 109440. [Google Scholar] [CrossRef] [PubMed]
- Thota, S.; Begum, R.; Kaur, G.; Bagam, P.; Dorsey, W.; Batra, S. Pentachlorophenol Mediated Regulation of DAMPs and Inflammation: In Vitro Study. Toxicol. Vitr. 2022, 83, 105378. [Google Scholar] [CrossRef] [PubMed]
- Bou Zerdan, M.; Moussa, S.; Atoui, A.; Assi, H.I. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int. J. Mol. Sci. 2021, 22, 8242. [Google Scholar] [CrossRef]
- Galloway, T.; Handy, R. Immunotoxicity of Organophosphorous Pesticides. Ecotoxicology 2003, 12, 345–363. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Yang, D.; Han, Z.; Oppenheim, J.J. Alarmins and Immunity. Immunol. Rev. 2017, 280, 41–56. [Google Scholar] [CrossRef]
- Kumar, S.; Khodoun, M.; Kettleson, E.M.; McKnight, C.; Reponen, T.; Grinshpun, S.A.; Adhikari, A. Glyphosate-Rich Air Samples Induce IL-33, TSLP and Generate IL-13 Dependent Airway Inflammation. Toxicology 2014, 325, 42–51. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, B.; Zhang, B.; Wu, K.; Tian, T.; Yan, W.; Huang, M. Paraquat Inhibits Autophagy via Intensifying the Interaction Between HMGB1 and α-Synuclein. Neurotox. Res. 2022, 40, 520–529. [Google Scholar] [CrossRef]
- Huang, M.; Guo, M.; Wang, K.; Wu, K.; Li, Y.; Tian, T.; Wang, Y.; Yan, W.; Zhou, Z.; Yang, H. HMGB1 Mediates Paraquat-Induced Neuroinflammatory Responses via Activating RAGE Signaling Pathway. Neurotox. Res. 2020, 37, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V. Neutrophil Extracellular Traps in Immunity and Disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Khuman, S.N.; Park, M.-K.; Kim, H.-J.; Hwang, S.-M.; Lee, C.-H.; Choi, S.-D. Organochlorine Pesticides in the Urban, Suburban, Agricultural, and Industrial Soil in South Korea after Three Decades of Ban: Spatial Distribution, Sources, Time Trend, and Implicated Risks. Environ. Pollut. 2022, 311, 119938. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhong, M.; Lu, M.; Xu, D.; Xue, Y.; Huang, J.; Blaney, L.; Yu, G. Occurrence, Spatiotemporal Distribution, and Risk Assessment of Current-Use Pesticides in Surface Water: A Case Study near Taihu Lake, China. Sci. Total Environ. 2021, 782, 146826. [Google Scholar] [CrossRef] [PubMed]
- Czarnocka, W.; Karpiński, S. Friend or Foe? Reactive Oxygen Species Production, Scavenging and Signaling in Plant Response to Environmental Stresses. Free Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef]
- Felix, M.; Holst, N.; Sharp, A. PestTox: An Object Oriented Model for Modeling Fate and Transport of Pesticides in the Environment and Their Effects on Population Dynamics of Non-Target Organisms. Comput. Electron. Agric. 2019, 166, 105022. [Google Scholar] [CrossRef]
- Sun, S.; Sidhu, V.; Rong, Y.; Zheng, Y. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Curr. Pollut. Rep. 2018, 4, 240–250. [Google Scholar] [CrossRef]
- Cao, J.; Feng, C.; Xie, L.; Li, L.; Chen, J.; Yun, S.; Guo, W.; Wang, T.; Wu, Y.; Meng, R.; et al. Sesamin Attenuates Histological Alterations, Oxidative Stress and Expressions of Immune-Related Genes in Liver of Zebrafish (Danio rerio) Exposed to Fluoride. Fish Shellfish Immunol. 2020, 106, 715–723. [Google Scholar] [CrossRef]
- Zahran, E.; Risha, E.; Awadin, W.; Palić, D. Acute Exposure to Chlorpyrifos Induces Reversible Changes in Health Parameters of Nile Tilapia (Oreochromis niloticus). Aquat. Toxicol. 2018, 197, 47–59. [Google Scholar] [CrossRef]
- Wu, C.-H.; Lu, C.-W.; Hsu, T.-H.; Wu, W.-J.; Wang, S.-E. Neurotoxicity of Fipronil Affects Sensory and Motor Systems in Zebrafish. Pestic. Biochem. Physiol. 2021, 177, 104896. [Google Scholar] [CrossRef]
- Souders, C.L.; Rushin, A.; Sanchez, C.L.; Toth, D.; Adamovsky, O.; Martyniuk, C.J. Mitochondrial and Transcriptome Responses in Rat Dopaminergic Neuronal Cells Following Exposure to the Insecticide Fipronil. Neurotoxicology 2021, 85, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus Pesticide Chlorpyrifos Intake Promotes Obesity and Insulin Resistance through Impacting Gut and Gut Microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.S.; Liu, D.H.; Hou, H.N.; Yao, J.N.; Xiao, S.C.; Ma, X.R.; Li, P.Z.; Cao, Q.; Liu, X.K.; Zhou, Z.Q.; et al. Dietary Pattern Interfered with the Impacts of Pesticide Exposure by Regulating the Bioavailability and Gut Microbiota. Sci. Total Environ. 2023, 858, 159936. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Falcão, M.A.P.; Rosa, J.G.S.; Disner, G.R.; Lopes-Ferreira, M. Pesticides and Their Impairing Effects on Epithelial Barrier Integrity, Dysbiosis, Disruption of the AhR Signaling Pathway and Development of Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 2022, 23, 12402. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Ma, Y.; Huang, W.; Ling, Y.; Sun, L.; Wang, X.; Zeng, A.; Dahlgren, R.A.; Wang, C.; Wang, H. Dietary Lactobacillus plantarum ST-III Alleviates the Toxic Effects of Triclosan on Zebrafish (Danio rerio) via Gut Microbiota Modulation. Fish Shellfish Immunol. 2019, 84, 1157–1169. [Google Scholar] [CrossRef]
- Shah, H.K.; Sharma, T.; Banerjee, B.D. Organochlorine Pesticides Induce Inflammation, ROS Production, and DNA Damage in Human Epithelial Ovary Cells: An in Vitro Study. Chemosphere 2020, 246, 125691. [Google Scholar] [CrossRef]
- Chang, X.; Wang, X.; Feng, J.; Su, X.; Liang, J.; Li, H.; Zhang, J. Impact of Chronic Exposure to Trichlorfon on Intestinal Barrier, Oxidative Stress, Inflammatory Response and Intestinal Microbiome in Common Carp (Cyprinus carpio L.). Environ. Pollut. 2020, 259, 113846. [Google Scholar] [CrossRef]
- Zhao, G.-P.; Wang, X.-Y.; Li, J.-W.; Wang, R.; Ren, F.-Z.; Pang, G.-F.; Li, Y.-X. Imidacloprid Increases Intestinal Permeability by Disrupting Tight Junctions. Ecotoxicol. Environ. Saf. 2021, 222, 112476. [Google Scholar] [CrossRef]
- Takano, H.K.; Ovejero, R.F.L.; Belchior, G.G.; Maymone, G.P.L.; Dayan, F.E. ACCase-Inhibiting Herbicides: Mechanism of Action, Resistance Evolution and Stewardship. Sci. Agric. 2021, 78, e20190102. [Google Scholar] [CrossRef]
- MORELAND, D.E. Biochemical Mechanisms of Action of Herbicides and the Impact of Biotechnology on the Development of Herbicides. J. Pestic. Sci. 1999, 24, 299–307. [Google Scholar] [CrossRef]
- Young, B.W. The Need for a Greater Understanding in the Application of Pesticides. Outlook Agric. 1986, 15, 80–87. [Google Scholar] [CrossRef]
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.S. Herbicides. In Encyclopedia of Biodiversity; Elsevier: Amsterdam, The Netherlands, 2013; pp. 87–95. [Google Scholar]
- Devault, D.A.; Gérino, M.; Laplanche, C.; Julien, F.; Winterton, P.; Merlina, G.; Delmas, F.; Lim, P.; Miguel Sánchez-Pérez, J.; Pinelli, E. Herbicide Accumulation and Evolution in Reservoir Sediments. Sci. Total Environ. 2009, 407, 2659–2665. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J.; Zhao, M.; Muños, S.; Li, Q.X.; Zhou, W. Potential Impact of the Herbicide 2,4-Dichlorophenoxyacetic Acid on Human and Ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef] [PubMed]
- Rieg, C.E.H.; Cattani, D.; Naspolini, N.F.; Cenci, V.H.; de Liz Oliveira Cavalli, V.L.; Jacques, A.V.; Nascimento, M.V.P.D.S.; Dalmarco, E.M.; De Moraes, A.C.R.; Santos-Silva, M.C.; et al. Perinatal Exposure to a Glyphosate Pesticide Formulation Induces Offspring Liver Damage. Toxicol. Appl. Pharmacol. 2022, 454, 116245. [Google Scholar] [CrossRef]
- Bai, G.; Zhou, R.; Jiang, X.; Zou, Y.; Shi, B. Glyphosate-based Herbicides Induces Autophagy in IPEC-J2 Cells and the Intervention of N-acetylcysteine. Environ. Toxicol. 2022, 37, 1878–1890. [Google Scholar] [CrossRef]
- Buchenauer, L.; Junge, K.M.; Haange, S.-B.; Simon, J.C.; von Bergen, M.; Hoh, A.-L.; Aust, G.; Zenclussen, A.C.; Stangl, G.I.; Polte, T. Glyphosate Differentially Affects the Allergic Immune Response across Generations in Mice. Sci. Total Environ. 2022, 850, 157973. [Google Scholar] [CrossRef]
- de Brito Rodrigues, L.; Gonçalves Costa, G.; Lundgren Thá, E.; da Silva, L.R.; de Oliveira, R.; Morais Leme, D.; Cestari, M.M.; Koppe Grisolia, C.; Campos Valadares, M.; de Oliveira, G.A.R. Impact of the Glyphosate-Based Commercial Herbicide, Its Components and Its Metabolite AMPA on Non-Target Aquatic Organisms. Mutat. Res. Toxicol. Environ. Mutagen. 2019, 842, 94–101. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Q.; Zhang, T.; Chen, L.; Li, S.; Xu, S. Glyphosate Induces Lymphocyte Cell Dysfunction and Apoptosis via Regulation of MiR-203 Targeting of PIK3R1 in Common Carp (Cyprinus carpio L.). Fish Shellfish Immunol. 2020, 101, 51–57. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, J.; Wang, W.; Ruan, P.; Rajeshkumar, S.; Li, X. Biochemical and Molecular Impacts of Glyphosate-Based Herbicide on the Gills of Common Carp. Environ. Pollut. 2019, 252, 1288–1300. [Google Scholar] [CrossRef]
- Qi, L.; Dong, Y.-M.; Chao, H.; Zhao, P.; Ma, S.-L.; Li, G. Glyphosate Based-Herbicide Disrupts Energy Metabolism and Activates Inflammatory Response through Oxidative Stress in Mice Liver. Chemosphere 2023, 315, 137751. [Google Scholar] [CrossRef] [PubMed]
- Panza, S.B.; Vargas, R.; Balbo, S.L.; Bonfleur, M.L.; Granzotto, D.C.T.; Sant’Ana, D.M.G.; Nogueira-Melo, G.A. Perinatal Exposure to Low Doses of Glyphosate-Based Herbicide Combined with a High-Fat Diet in Adulthood Causes Changes in the Jejunums of Mice. Life Sci. 2021, 275, 119350. [Google Scholar] [CrossRef] [PubMed]
- Parizi, J.L.S.; de Mello Odorizzi, G.A.S.; Sato, G.M.R.H.; Patrão, I.B.; Nai, G.A. Oral Mucosa Changes Associated with Chronic Oral and Inhalation Exposure to 2,4-Dichlorophenoxiacetic Acid (2,4-D) in Wistar Rats. Toxicol. Res. 2021, 9, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Parizi, J.L.S.; Tolardo, A.J.; Lisboa, A.C.G.; Barravieira, B.; de Azevedo Mello, F.; Rossi, R.C.; Nai, G.A. Evaluation of Buccal Damage Associated with Acute Inhalation Exposure to 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Mice. BMC Vet. Res. 2020, 16, 244. [Google Scholar] [CrossRef]
- Mittra, N.; Chauhan, A.K.; Singh, G.; Patel, D.K.; Singh, C. Postnatal Zinc or Paraquat Administration Increases Paraquat or Zinc-Induced Loss of Dopaminergic Neurons: Insight into Augmented Neurodegeneration. Mol. Cell. Biochem. 2020, 467, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, C.; Jiang, H.; Zhang, L.; Mao, L.; Zhang, Y.; Qi, S.; Liu, X. Quizalofop-P-Ethyl Induced Developmental Toxicity and Cardiotoxicity in Early Life Stage of Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 238, 113596. [Google Scholar] [CrossRef]
- Cui, Y.; Yin, K.; Gong, Y.; Qu, Y.; Liu, H.; Lin, H. Atrazine Induces Necroptosis by MiR-181–5p Targeting Inflammation and Glycometabolism in Carp Lymphocytes. Fish Shellfish Immunol. 2019, 94, 730–738. [Google Scholar] [CrossRef]
- Arici, M.; Abudayyak, M.; Boran, T.; Özhan, G. Does Pendimethalin Develop in Pancreatic Cancer Induced Inflammation? Chemosphere 2020, 252, 126644. [Google Scholar] [CrossRef]
- Choi, S.E.; Park, Y.S.; Koh, H.C. NF-κB/P53-activated Inflammatory Response Involves in Diquat-induced Mitochondrial Dysfunction and Apoptosis. Environ. Toxicol. 2018, 33, 1005–1018. [Google Scholar] [CrossRef]
- Stukenbrock, E.; Gurr, S. Address the growing urgency of fungal disease in crops. Nature 2023, 617, 31–34. [Google Scholar] [CrossRef]
- Li, G.; Li, D.; Rao, H.; Liu, X. Potential Neurotoxicity, Immunotoxicity, and Carcinogenicity Induced by Metribuzin and Tebuconazole Exposure in Earthworms (Eisenia fetida) Revealed by Transcriptome Analysis. Sci. Total Environ. 2022, 807, 150760. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Sun, W.; Liu, W.; Wang, Y.; Jia, M.; Tian, S.; Chen, X.; Zhu, W.; Zhou, Z. A Common Fungicide Tebuconazole Promotes Colitis in Mice via Regulating Gut Microbiota. Environ. Pollut. 2022, 292, 118477. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Vebrosky, E.N.; Armbrust, K.L. Potential Risk to Human Skin Cells from Exposure to Dicloran Photodegradation Products in Water. Environ. Int. 2018, 121, 861–870. [Google Scholar] [CrossRef]
- Runkle, J.; Flocks, J.; Economos, J.; Dunlop, A.L. A Systematic Review of Mancozeb as a Reproductive and Developmental Hazard. Environ. Int. 2017, 99, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, A.F.; Hued, A.C. Single and Joint Effects of Chronic Exposure to Chlorpyrifos and Glyphosate Based Pesticides on Structural Biomarkers in Cnesterodon Decemmaculatus. Chemosphere 2019, 236, 124311. [Google Scholar] [CrossRef]
- Docea, A.O.; Goumenou, M.; Calina, D.; Arsene, A.L.; Dragoi, C.M.; Gofita, E.; Pisoschi, C.G.; Zlatian, O.; Stivaktakis, P.D.; Nikolouzakis, T.K.; et al. Adverse and Hormetic Effects in Rats Exposed for 12 Months to Low Dose Mixture of 13 Chemicals: RLRS Part III. Toxicol. Lett. 2019, 310, 70–91. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.F.; Gil, F.; Lacasaña, M. Toxicological Interactions of Pesticide Mixtures: An Update. Arch. Toxicol. 2017, 91, 3211–3223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes-Ferreira, M.; Farinha, L.R.L.; Costa, Y.S.O.; Pinto, F.J.; Disner, G.R.; da Rosa, J.G.d.S.; Lima, C. Pesticide-Induced Inflammation at a Glance. Toxics 2023, 11, 896. https://doi.org/10.3390/toxics11110896
Lopes-Ferreira M, Farinha LRL, Costa YSO, Pinto FJ, Disner GR, da Rosa JGdS, Lima C. Pesticide-Induced Inflammation at a Glance. Toxics. 2023; 11(11):896. https://doi.org/10.3390/toxics11110896
Chicago/Turabian StyleLopes-Ferreira, Monica, Luiz Rogério Ludwig Farinha, Yasmin Stefanie Oliveira Costa, Felipe Justiniano Pinto, Geonildo Rodrigo Disner, João Gabriel dos Santos da Rosa, and Carla Lima. 2023. "Pesticide-Induced Inflammation at a Glance" Toxics 11, no. 11: 896. https://doi.org/10.3390/toxics11110896