Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Elst, L.A.; Gokce Kurtoglu, M.; Leffel, T.; Zheng, M.; Gumennik, A. Rapid Fabrication of Sterile Medical Nasopharyngeal Swabs by Stereolithography for Widespread Testing in a Pandemic. Adv. Eng. Mater. 2020, 22, 2000759. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.; Bond, K.; Isles, N.; Chong, B.; Johnson, D.; Druce, J.; Hoang, T.; Ballard, S.A.; Hall, V.; Muhi, S.; et al. Pandemic Printing: A Novel 3D-printed Swab for Detecting SARS-CoV-2. Med. J. Aust. 2020, 213, 276–279. [Google Scholar] [CrossRef]
- Decker, S.J.; Goldstein, T.A.; Ford, J.M.; Teng, M.N.; Pugliese, R.S.; Berry, G.J.; Pettengill, M.; Silbert, S.; Hazelton, T.R.; Wilson, J.W.; et al. 3-Dimensional Printed Alternative to the Standard Synthetic Flocked Nasopharyngeal Swabs Used for Coronavirus Disease 2019 Testing. Clin. Infect. Dis. 2021, 73, e3027–e3032. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ahmed, J.A.; Eidex, R.B.; Nyoka, R.; Waiboci, L.W.; Erdman, D.; Tepo, A.; Mahamud, A.S.; Kabura, W.; Nguhi, M.; et al. Comparison of Nasopharyngeal and Oropharyngeal Swabs for the Diagnosis of Eight Respiratory Viruses by Real-Time Reverse Transcription-PCR Assays. PLoS ONE 2011, 6, e21610. [Google Scholar] [CrossRef] [PubMed]
- Scansen, K.A.; Bonsu, B.K.; Stoner, E.; Mack, K.; Salamon, D.; Leber, A.; Marcon, M.J. Comparison of Polyurethane Foam to Nylon Flocked Swabs for Collection of Secretions from the Anterior Nares in Performance of a Rapid Influenza Virus Antigen Test in a Pediatric Emergency Department. J. Clin. Microbiol. 2010, 48, 852–856. [Google Scholar] [CrossRef]
- Verdon, T.J.; Mitchell, R.J.; van Oorschot, R.A.H. Swabs as DNA Collection Devices for Sampling Different Biological Materials from Different Substrates. J. Forensic Sci. 2014, 59, 1080–1089. [Google Scholar] [CrossRef]
- Bolaños-Suaréz, V.; Villalobos-Osnaya, A.; García-García, J.A.; de León-Hernández, A.; Sánchez-Pérez, C.; Espinosa-García, A.M. Validation of 3D-Printed Swabs for Sampling in SARS-CoV-2 Detection: A Pilot Study. Ann. Biomed. Eng. 2022, 51, 527–537. [Google Scholar] [CrossRef]
- Zasada, A.A.; Zacharczuk, K.; Woźnica, K.; Główka, M.; Ziółkowski, R.; Malinowska, E. The Influence of a Swab Type on the Results of Point-of-Care Tests. AMB Express 2020, 10, 46. [Google Scholar] [CrossRef]
- McCarthy, A.; Saldana, L.; Ackerman, D.N.; Su, Y.; John, J.V.; Chen, S.; Weihs, S.; Reid, S.P.; Santarpia, J.L.; Carlson, M.A.; et al. Ultra-Absorptive Nanofiber Swabs for Improved Collection and Test Sensitivity of SARS-CoV-2 and Other Biological Specimens. Nano Lett. 2021, 21, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Kashapov, R.N.; Tsibin, A.N. Comparison of the Physical Properties and Effectiveness of Medical Swabs for Sampling Biomaterials. Biomed. Eng. 2021, 55, 289–293. [Google Scholar] [CrossRef]
- Vashist, V.; Banthia, N.; Kumar, S.; Agrawal, P. A Systematic Review on Materials, Design, and Manufacturing of Swabs. Ann. 3D Print. Med. 2023, 9, 100092. [Google Scholar] [CrossRef]
- Gupta, K.; Bellino, P.M.; Charness, M.E. Adverse Effects of Nasopharyngeal Swabs: Three-Dimensional Printed versus Commercial Swabs. Infect. Control. Hosp. Epidemiol. 2021, 42, 641–642. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, A.; Tolvi, M.; Jauhiainen, M.; Kekäläinen, E.; Laulajainen-Hongisto, A.; Lamminmäki, S. Complications of COVID-19 Nasopharyngeal Swab Test. JAMA Otolaryngol.–Head Neck Surg. 2021, 147, 672. [Google Scholar] [CrossRef]
- Sullivan, C.B.; Schwalje, A.T.; Jensen, M.; Li, L.; Dlouhy, B.J.; Greenlee, J.D.; Walsh, J.E. Cerebrospinal Fluid Leak After Nasal Swab Testing for Coronavirus Disease 2019. JAMA Otolaryngol.–Head Neck Surg. 2020, 146, 1179. [Google Scholar] [CrossRef] [PubMed]
- Föh, B.; Borsche, M.; Balck, A.; Taube, S.; Rupp, J.; Klein, C.; Katalinic, A. Complications of Nasal and Pharyngeal Swabs: A Relevant Challenge of the COVID-19 Pandemic? Eur. Respir. J. 2021, 57, 2004004. [Google Scholar] [CrossRef]
- Fazekas, B.; Fazekas, B.; Darraj, E.; Jayakumar, D. Preseptal Cellulitis and Infraorbital Abscess as a Complication of a Routine COVID-19 Swab. BMJ Case Rep. 2021, 14, e241963. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, D.; Moon, J.W.; Chae, S.-W.; Rhyu, I.J. Complications of Nasopharyngeal Swabs and Safe Procedures for COVID-19 Testing Based on Anatomical Knowledge. J. Korean Med. Sci. 2022, 37, e88. [Google Scholar] [CrossRef]
- Alberola-Amores, F.J.; Valdeolivas-Urbelz, E.; Torregrosa-Ortiz, M.; Álvarez-Sauco, M.; Alom-Poveda, J. Meningitis Due to Cerebrospinal Fluid Leak after Nasal Swab Testing for COVID-19. Eur. J. Neurol. 2021, 28, e91–e92. [Google Scholar] [CrossRef]
- Krupińska, M.; Borkowski, J.; Goll, A.; Nowicka, J.; Baranowicz, K.; Bourret, V.; Strandin, T.; Mäki, S.; Kant, R.; Sironen, T.; et al. Wild Red Deer (Cervus Elaphus) Do Not Play a Role as Vectors or Reservoirs of SARS-CoV-2 in North-Eastern Poland. Viruses 2022, 14, 2290. [Google Scholar] [CrossRef]
- Hamdy, M.E.; El-Deeb, A.H.; Hagag, N.M.; Shahein, M.A.; Liyanage, N.P.M.; Shalaan, M.; Hussein, H.A. SARS-CoV-2 Infection of Companion Animals in Egypt and Its Risk of Spillover. Vet. Med. Sci. 2022, 9, 13–24. [Google Scholar] [CrossRef]
- Sangkachai, N.; Chaiwattanarungruengpaisan, S.; Thongdee, M.; Suksai, P.; Tangsudjai, S.; Wongluechai, P.; Suwanpakdee, S.; Wiriyarat, W.; Buddhirongawatr, R.; Prasittichai, L.; et al. Serological and Molecular Surveillance for SARS-CoV-2 Infection in Captive Tigers (Panthera Tigris), Thailand. Animals 2022, 12, 3350. [Google Scholar] [CrossRef]
- Stojilovic, N. Why Can’t We See Hydrogen in X-Ray Photoelectron Spectroscopy? J. Chem. Educ. 2012, 89, 1331–1332. [Google Scholar] [CrossRef]
- Shi, B.; Topolkaraev, V.; Wang, J. Biopolymers, Processing, and Biodegradation. In Renewable and Sustainable Polymers; American Chemical Society: Washington, DC, USA, 2011; pp. 117–132. [Google Scholar]
- Darie-Niță, R.N.; Râpă, M.; Frąckowiak, S. Special Features of Polyester-Based Materials for Medical Applications. Polymers 2022, 14, 951. [Google Scholar] [CrossRef]
- Deopura, B.L. Polyamide Fibers. In Polyesters and Polyamides; Elsevier: Amsterdam, The Netherlands, 2008; pp. 41–61. [Google Scholar]
- Das, A.; Mahanwar, P. A Brief Discussion on Advances in Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Costa, N.; Correa, R.; Júnior, I.; Figueiredo, A.; Vilhena, K.; Farias-Junior, P.; Teixeira, F.; Ferreira, N.; Pereira-Júnior, J.; Dantas, K.; et al. Physical, Chemical, and Immunohistochemical Investigation of the Damage to Salivary Glands in a Model of Intoxication with Aluminium Citrate. Int. J. Environ. Res. Public Health 2014, 11, 12429–12440. [Google Scholar] [CrossRef] [PubMed]
- Peto, M.V. Aluminium and Iron in Humans: Bioaccumulation, Pathology, and Removal. Rejuvenation Res. 2010, 13, 589–598. [Google Scholar] [CrossRef]
- Aguirre-Sierra, A.; Alonso, Á.; Camargo, J.A. Fluoride Bioaccumulation and Toxic Effects on the Survival and Behavior of the Endangered White-Clawed Crayfish Austropotamobius Pallipes (Lereboullet). Arch. Environ. Contam. Toxicol. 2013, 65, 244–250. [Google Scholar] [CrossRef]
- Johnston, N.R.; Strobel, S.A. Principles of Fluoride Toxicity and the Cellular Response: A Review. Arch. Toxicol. 2020, 94, 1051–1069. [Google Scholar] [CrossRef] [PubMed]
- Novaes, R.D.; Mouro, V.G.S.; Gonçalves, R.V.; Mendonça, A.A.S.; Santos, E.C.; Fialho, M.C.Q.; Machado-Neves, M. Aluminum: A Potentially Toxic Metal with Dose-Dependent Effects on Cardiac Bioaccumulation, Mineral Distribution, DNA Oxidation and Microstructural Remodeling. Environ. Pollut. 2018, 242, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Tuncsoy, B.; Mese, Y. Influence of Titanium Dioxide Nanoparticles on Bioaccumulation, Antioxidant Defense and Immune System of Galleria mellonella, L. Environ. Sci. Pollut. Res. 2021, 28, 38007–38015. [Google Scholar] [CrossRef] [PubMed]
- Marisa, I.; Matozzo, V.; Martucci, A.; Franceschinis, E.; Brianese, N.; Marin, M.G. Bioaccumulation and Effects of Titanium Dioxide Nanoparticles and Bulk in the Clam Ruditapes Philippinarum. Mar. Environ. Res. 2018, 136, 179–189. [Google Scholar] [CrossRef]
- Bourgeault, A.; Cousin, C.; Geertsen, V.; Cassier-Chauvat, C.; Chauvat, F.; Durupthy, O.; Chanéac, C.; Spalla, O. The Challenge of Studying TiO2 Nanoparticle Bioaccumulation at Environmental Concentrations: Crucial Use of a Stable Isotope Tracer. Environ. Sci. Technol. 2015, 49, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.; Tiwari, S.; Srivastava, S.; Srivastava, M.; Yadav, B.K.; Kumar, S.; Tran, T.T.; Dewan, A.K.; Mulchandani, A.; et al. Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection. Adv. Sci. 2015, 2, 1500048. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Bao, S.; Liu, F.; Jiang, X.; Zhang, Q.; Sun, B.; Zhu, M. Wear Behavior of Light-Cured Resin Composites with Bimodal Silica Nanostructures as Fillers. Mater. Sci. Eng. C 2013, 33, 4759–4766. [Google Scholar] [CrossRef] [PubMed]
- Sajtos, Z.; Fehér, M.; Molnár, Á.; Stündl, L.; Nagy, L.N.; Martins, J.C.; Harangi, S.; Magyar, I.; Fehér, K.; Baranyai, E. The Retention of Zr from Potential Therapeutic Silica-Zirconia Core–Shell Nanoparticles in Aquatic Organisms. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100572. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, J. Nonporous Silica Nanoparticles for Nanomedicine Application. Nano Today 2013, 8, 290–312. [Google Scholar] [CrossRef]
- Vivero-Escoto, J.L.; Huxford-Phillips, R.C.; Lin, W. Silica-Based Nanoprobes for Biomedical Imaging and Theranostic Applications. Chem. Soc. Rev. 2012, 41, 2673. [Google Scholar] [CrossRef]
- Douroumis, D.; Onyesom, I.; Maniruzzaman, M.; Mitchell, J. Mesoporous Silica Nanoparticles in Nanotechnology. Crit. Rev. Biotechnol. 2013, 33, 229–245. [Google Scholar] [CrossRef]
- Duan, J.; Yu, Y.; Shi, H.; Tian, L.; Guo, C.; Huang, P.; Zhou, X.; Peng, S.; Sun, Z. Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae. PLoS ONE 2013, 8, e74606. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Usha Rani, P.; Desneux, N. Nanoparticles for Pest Control: Current Status and Future Perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Fluorides, Hydrogen Fluoride, and Fluorine; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2003. [Google Scholar]
- Zuo, H.; Chen, L.; Kong, M.; Qiu, L.; Lü, P.; Wu, P.; Yang, Y.; Chen, K. Toxic Effects of Fluoride on Organisms. Life Sci. 2018, 198, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Bartos, M.; Gumilar, F.; Baier, C.J.; Dominguez, S.; Bras, C.; Cancela, L.M.; Minetti, A.; Gallegos, C.E. Rat Developmental Fluoride Exposure Affects Retention Memory, Leads to a Depressive-like Behavior, and Induces Biochemical Changes in Offspring Rat Brains. Neurotoxicology 2022, 93, 222–232. [Google Scholar] [CrossRef] [PubMed]
- ATSDR. Toxicological Profile for Aluminum; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2008. [Google Scholar]
- Chalansonnet, M.; Carabin, N.; Boucard, S.; Merlen, L.; Melczer, M.; Antoine, G.; Devoy, J.; Remy, A.; Gagnaire, F. Study of Potential Transfer of Aluminum to the Brain via the Olfactory Pathway. Toxicol. Lett. 2018, 283, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-T.; Seo, G.-B.; Lee, M.; Kim, H.-M.; Shim, I.; Jo, E.; Kim, P.; Choi, K. Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure. Korean J. Environ. Health Sci. 2013, 39, 48–55. [Google Scholar] [CrossRef]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human Health Risk Assessment for Aluminium, Aluminium Oxide, and Aluminium Hydroxide. J. Toxicol. Environ. Health Part B 2007, 10, 1–269. [Google Scholar] [CrossRef]
- Polyzois, I.; Nikolopoulos, D.; Michos, I.; Patsouris, E.; Theocharis, S. Local and Systemic Toxicity of Nanoscale Debris Particles in Total Hip Arthroplasty. J. Appl. Toxicol. 2012, 32, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Elsabahy, M.; Wooley, K.L. Cytokines as Biomarkers of Nanoparticle Immunotoxicity. Chem. Soc. Rev. 2013, 42, 5552. [Google Scholar] [CrossRef]
- Sasaki, E.; Asanuma, H.; Momose, H.; Furuhata, K.; Mizukami, T.; Hamaguchi, I. Nasal Alum-Adjuvanted Vaccine Promotes IL-33 Release from Alveolar Epithelial Cells That Elicits IgA Production via Type 2 Immune Responses. PLoS Pathog. 2021, 17, e1009890. [Google Scholar] [CrossRef]
- Steenland, K.; Brown, D. Silicosis among Gold Miners: Exposure—Response Analyses and Risk Assessment. Am. J. Public Health 1995, 85, 1372–1377. [Google Scholar] [CrossRef]
- Rood, M.; ten Kate, L.; Boeddha, N.P.; van ‘t Kruys, K. Clinical Characteristics, Transmission Rate and Outcome of Neonates Born to COVID-19-Positive Mothers: A Prospective Case Series from a Resource-Limited Setting. Pediatr. Infect. Dis. J. 2023, 42, 35–42. [Google Scholar] [CrossRef]
- Chen, M.; Tse, L.A. Laryngeal Cancer and Silica Dust Exposure: A Systematic Review and Meta-Analysis. Am. J. Ind. Med. 2012, 55, 669–676. [Google Scholar] [CrossRef]
- Kusaka, T.; Nakayama, M.; Nakamura, K.; Ishimiya, M.; Furusawa, E.; Ogasawara, K. Effect of Silica Particle Size on Macrophage Inflammatory Responses. PLoS ONE 2014, 9, e92634. [Google Scholar] [CrossRef] [PubMed]
- Napierska, D.; Thomassen, L.C.; Lison, D.; Martens, J.A.; Hoet, P.H. The Nanosilica Hazard: Another Variable Entity. Part. Fibre Toxicol. 2010, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Reissig, F.; Kopka, K.; Mamat, C. The Impact of Barium Isotopes in Radiopharmacy and Nuclear Medicine—From Past to Presence. Nucl. Med. Biol. 2021, 98–99, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Gillett, N.A.; Muggenburg, B.A.; Boecker, B.B.; Griffith, W.C.; Hahn, F.F.; McClellan, R.O. Single Inhalation Exposure to 90SrCl2 in the Beagle Dog: Late Biological Effects. J. Natl. Cancer Inst. 1987, 79, 359–376. [Google Scholar] [PubMed]
- ASTDR. Toxicological Profile for Strontium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2004. [Google Scholar]
- Buache, E.; Velard, F.; Bauden, E.; Guillaume, C.; Jallot, E.; Nedelec, J.M.; Laurent-Maquin, D.; Laquerriere, P. Effect of Strontium-Substituted Biphasic Calcium Phosphate on Inflammatory Mediators Production by Human Monocytes. Acta Biomater. 2012, 8, 3113–3119. [Google Scholar] [CrossRef]
- Nielsen, E.; Greve, K.; Ladefoged, O. Strontium, Inorganic and Soluble Salts; Evaluation of Health Hazards and Proposal of Health Based Quality Criteria for Drinking Water; Danish Ministry of the Environment: Copenhagen, Denmark, 2008. [Google Scholar]
- Hext, P.M.; Tomenson, J.A.; Thompson, P. Titanium Dioxide: Inhalation Toxicology and Epidemiology. Ann. Occup. Hyg. 2005, 49, 461–472. [Google Scholar] [CrossRef]
- Parlar, H.; Brock, T.H. Zirconium and Its Compounds [MAK Value Documentation, 1999]. In The MAK-Collection for Occupational Health and Safety; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; pp. 224–236. [Google Scholar]
- Bermudez, E. Long-Term Pulmonary Responses of Three Laboratory Rodent Species to Subchronic Inhalation of Pigmentary Titanium Dioxide Particles. Toxicol. Sci. 2002, 70, 86–97. [Google Scholar] [CrossRef]
- Hext, P.M.; Warheit, D.B.; Mangum, J.; Asgharian, B.; Wong, B.; Bermudez, E.; Everitt, J. Comparison of the Pulmonary Responses to Inhaled Pigmentary and Ultrafine Titanium Dioxide Particles in the Rat, Mouse and Hamster. Ann. Occup. Hyg. 2002, 46, 191–196. [Google Scholar] [CrossRef]
- Petković, J.; Žegura, B.; Stevanović, M.; Drnovšek, N.; Uskoković, D.; Novak, S.; Filipič, M. DNA Damage and Alterations in Expression of DNA Damage Responsive Genes Induced by TiO2 Nanoparticles in Human Hepatoma HepG2 Cells. Nanotoxicology 2011, 5, 341–353. [Google Scholar] [CrossRef]
- Ahn, M.-H.; Kang, C.-M.; Park, C.-S.; Park, S.-J.; Rhim, T.; Yoon, P.-O.; Chang, H.S.; Kim, S.-H.; Kyono, H.; Kim, K.C. Titanium Dioxide Particle—Induced Goblet Cell Hyperplasia: Association with Mast Cells and IL-13. Respir. Res. 2005, 6, 34. [Google Scholar] [CrossRef]
- Rossi, E.M.; Pylkkänen, L.; Koivisto, A.J.; Nykäsenoja, H.; Wolff, H.; Savolainen, K.; Alenius, H. Inhalation Exposure to Nanosized and Fine TiO2 Particles Inhibits Features of Allergic Asthma in a Murine Model. Part Fibre Toxicol. 2010, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Su, S.; Chien, C.; Lin, W.; Yu, S.; Chou, C.; Chen, J.J.W.; Yang, P.; Chen, H.; Su, S.; et al. Titanium Dioxide Nanoparticles Induce Emphysema-like Lung Injury in Mice. FASEB J. 2006, 20, 2393–2395. [Google Scholar] [CrossRef]
- Ramenzoni, L.L.; Flückiger, L.B.; Attin, T.; Schmidlin, P.R. Effect of Titanium and Zirconium Oxide Microparticles on Pro-Inflammatory Response in Human Macrophages under Induced Sterile Inflammation: An In Vitro Study. Materials 2021, 14, 4166. [Google Scholar] [CrossRef]
- Schwarz, F.; Langer, M.; Hagena, T.; Hartig, B.; Sader, R.; Becker, J. Cytotoxicity and Proinflammatory Effects of Titanium and Zirconia Particles. Int. J. Implant. Dent. 2019, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Obando-Pereda, G.A.; Fischer, L.; Stach-Machado, D.R. Titanium and Zirconia Particle-Induced pro-Inflammatory Gene Expression in Cultured Macrophages and Osteolysis, Inflammatory Hyperalgesia and Edema in Vivo. Life Sci. 2014, 97, 96–106. [Google Scholar] [CrossRef]
- Ahmadimanesh, M.; Shadnia, S.; Ghazi-Khansari, M. Acute Inhalation Exposure to Titanium Ethanolate as a Possible Cause of Metal Fume Fever. Int. J. Occup. Environ. Med. 2014, 5, 106–108. [Google Scholar] [PubMed]
- Otani, N.; Ishimatsu, S.; Mochizuki, T. Acute Group Poisoning by Titanium Dioxide: Inhalation Exposure May Cause Metal Fume Fever. Am. J. Emerg. Med. 2008, 26, 608–611. [Google Scholar] [CrossRef]
- Jayaram, D.T.; Kumar, A.; Kippner, L.E.; Ho, P.-Y.; Kemp, M.L.; Fan, Y.; Payne, C.K. TiO2 Nanoparticles Generate Superoxide and Alter Gene Expression in Human Lung Cells. RSC Adv. 2019, 9, 25039–25047. [Google Scholar] [CrossRef]
- Baan, R.A. Carcinogenic Hazards from Inhaled Carbon Black, Titanium Dioxide, and Talc Not Containing Asbestos or Asbestiform Fibers: Recent Evaluations by an IARC Monographs Working Group. Inhal. Toxicol. 2007, 19, 213–228. [Google Scholar] [CrossRef]
- Liu, K.; Lin, X.; Zhao, J. Toxic Effects of the Interaction of Titanium Dioxide Nanoparticles with Chemicals or Physical Factors. Int. J. Nanomed. 2013, 8, 2509–2520. [Google Scholar] [CrossRef][Green Version]
- Du, H.; Zhu, X.; Fan, C.; Xu, S.; Wang, Y.; Zhou, Y. Oxidative Damage and OGG1 Expression Induced by a Combined Effect of Titanium Dioxide Nanoparticles and Lead Acetate in Human Hepatocytes. Environ. Toxicol. 2012, 27, 590–597. [Google Scholar] [CrossRef]
- Muller, C.P. Do Asymptomatic Carriers of SARS-COV-2 Transmit the Virus? Lancet Reg. Health—Eur. 2021, 4, 100082. [Google Scholar] [CrossRef] [PubMed]
- Methi, F.; Madslien, E.H. Lower Transmissibility of SARS-CoV-2 among Asymptomatic Cases: Evidence from Contact Tracing Data in Oslo, Norway. BMC Med. 2022, 20, 427. [Google Scholar] [CrossRef]
- He, D.; Zhao, S.; Lin, Q.; Zhuang, Z.; Cao, P.; Wang, M.H.; Yang, L. The Relative Transmissibility of Asymptomatic COVID-19 Infections among Close Contacts. Int. J. Infect. Dis. 2020, 94, 145–147. [Google Scholar] [CrossRef]
- Cao, S.; Gan, Y.; Wang, C.; Bachmann, M.; Wei, S.; Gong, J.; Huang, Y.; Wang, T.; Li, L.; Lu, K.; et al. Post-Lockdown SARS-CoV-2 Nucleic Acid Screening in Nearly Ten Million Residents of Wuhan, China. Nat. Commun. 2020, 11, 5917. [Google Scholar] [CrossRef] [PubMed]
- Pezzullo, A.M.; Axfors, C.; Contopoulos-Ioannidis, D.G.; Apostolatos, A.; Ioannidis, J.P.A. Age-Stratified Infection Fatality Rate of COVID-19 in the Non-Elderly Population. Environ. Res. 2023, 216, 114655. [Google Scholar] [CrossRef] [PubMed]
Brand | Fabric | Purpose | Sterilization | CE | Manufacturer | Lot Number |
---|---|---|---|---|---|---|
iHealth | Foam | NP | EO | No | iHealth Labs, Inc. | 20211213 |
HydraFlock | Flocked Nylon | NP | EO | Yes | Puritan Med Products, CHN | (10) 50173 |
Nasal Swab | Flocked Nylon | NP | EO | Yes | CM LAB SAS, BOG and COL | 20201221 |
MANTACC | Nylon | NP | EO | Yes, 0197 | Miraclean Technology Co., Ltd., CHN | 2021120864 |
FLOQSwabs | Flocked Nylon | NP | EO | Yes, 0123 | COPAN, IT and USA | 2010482 |
Kangdaan | Flocked Nylon | NP | R | Yes, 0197 | Shenzhen Kangdaan Biological Technology Co., Ltd., CHN | 21CY12001 |
Taizhou | Flocked Nylon | NP | EO | Yes, 0123 | Rich Medical Products, CHN | 20220104 |
Generic | Cotton | A | EO | No | DM Productora S.A. de C.V. MX | 070319 |
Transystem | Cotton | T | R | Yes, 0123 | COPAN, IT and USA | 211701500 |
iHealth | HydraFlock | Nasal Swab | MANTACC | FLOQSwabs | Kangdaan | Taizhou | Generic Applicator | Transystem | |
---|---|---|---|---|---|---|---|---|---|
Carbon | 623.30 ±5.60 | 576.84 ±59.11 | 569.97 ±45.99 | 677.35 ±52.51 | 611.07 ±4.81 | 548.70 ±30.26 | 490.82 NA | 509.91 NA | |
Oxygen | 320.69 ±22.69 | 352.14 ±41.63 | 363.36 ±2.86 | 327.33 ±30.43 | 245.49 ±17.52 | 245.08 ±2.62 | 324.98 ±41.61 | 504.19 NA | 470.96 NA |
Nitrogen | 64.10 ±23.16 | - - | 46.19 ±3.45 | 58.45 ±16.87 | 51.46 ±72.77 | 101.46 ±2.01 | 56.59 ±13.98 | - - | - - |
Fluorine | - - | 3.49 ±3.02 | 2.67 ±3.78 | 2.28 ±3.95 | - - | 2.81 ±0.97 | 5.33 ±0.25 | 4.99 NA | 5.64 NA |
Silicon | - - | - - | 48.49 ±9.05 | 43.53 ±7.42 | 5.78 ±0.54 | - - | 49.66 ±2.20 | - - | - - |
Titanium | - - | - - | - - | 29.02 ±25.67 | 5.74 ±0.40 | 5.93 ±0.86 | - - | - - | 13.48 NA |
Zirconium | - - | - - | - - | 2.93 ±5.07 | 14.20 ±2.91 | 25.26 ±2.26 | - - | - - | - - |
Strontium | - - | - - | - - | 4.63 ±8.01 | - - | - - | - - | - - | - - |
Aluminium | - - | - - | 7.12 ±1.24 | - - | - - | 0.03 ±0.04 | 0.11 ±0.01 | - - | - - |
Gallium | - - | - - | - - | - - | - - | 0.05 ±0.05 | - - | - - | - - |
Sulphur | - - | - - | - - | - - | - - | 0.06 ±0.00 | - - | - - | - - |
Head Mass | 0.0471 g | 0.0539 g | 0.0468 g | 0.0385 g | 0.0371 g | 0.0493 g | 0.0513 g | 0.0501 g | 0.0575 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio-Alonso, M.; Torres-Solórzano, V.; Méndez-Contreras, J.F.; Acevedo-Whitehouse, K. Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing. Toxics 2023, 11, 805. https://doi.org/10.3390/toxics11100805
Aparicio-Alonso M, Torres-Solórzano V, Méndez-Contreras JF, Acevedo-Whitehouse K. Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing. Toxics. 2023; 11(10):805. https://doi.org/10.3390/toxics11100805
Chicago/Turabian StyleAparicio-Alonso, Manuel, Verónica Torres-Solórzano, José Francisco Méndez-Contreras, and Karina Acevedo-Whitehouse. 2023. "Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing" Toxics 11, no. 10: 805. https://doi.org/10.3390/toxics11100805
APA StyleAparicio-Alonso, M., Torres-Solórzano, V., Méndez-Contreras, J. F., & Acevedo-Whitehouse, K. (2023). Scanning Electron Microscopy and EDX Spectroscopy of Commercial Swabs Used for COVID-19 Lateral Flow Testing. Toxics, 11(10), 805. https://doi.org/10.3390/toxics11100805