Drugs as Chemical Weapons: Past and Perspectives
Abstract
:1. Introduction
2. Traditional Agents
2.1. Arrow Poisons
2.2. Other Natural Poisons (Toxins) Notable from the Military Aspect
2.3. Agents Affecting the Psyche
2.4. Lethal CWAs
2.5. Irritants
3. A Shortlist of Other Agents
3.1. Synthetic Opioids
3.2. Peptide Bioregulators
3.3. Modern Methods of Research and Development
4. Considerations on the Possible Use of Certain Agents
4.1. Use of Certain Agents as Lethal Chemical Weapons
4.2. Use of Certain Agents as RCA/Non-Lethal Chemical Weapons
4.3. Additional Notes on the Role of Medicine and Pharmacy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Report of the OPCW on the Implementation of the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Warfare Weapons and on their Destruction in 2020; C-26/3; OPCW: The Hague, The Netherlands, 2021; Available online: https://www.opcw.org/resources/documents/annual-reports (accessed on 12 October 2022).
- Pitschmann, V. Overall view of chemical and biochemical weapons. Toxins 2014, 6, 1761–1784. [Google Scholar] [CrossRef]
- Pitschmann, V.; Hon, Z. Military importance of natural toxins and their analogs. Molecules 2016, 21, 556. [Google Scholar] [CrossRef] [Green Version]
- Gesler, R.M.; Hope, J.V. 3,6-bis(3-diethylaminopropoxy)pyridazine bismethiodide, a long-acting neuromuscular blocking agent. J. Pharm. Exp. Ther. 1956, 118, 395–406. [Google Scholar]
- Neuwinger, H.D. Afrikanische Arzneipflanzen und Jagdgifte. Chemie, Pharmakologie, Toxikologie; Wissenschaftliche Verlagsgesellschaft: Stuttgart, Germany, 1998. [Google Scholar]
- Selingman, C.G. On the physiological action of the Kenyah dart poison ipoh, and its active principle antiarin. J. Physiol. 1903, 29, 39–57. [Google Scholar] [CrossRef] [Green Version]
- Antonov, N.S. Chemical Weapons at the Turn of the Century; Progress: Moscow, Russia, 1994. [Google Scholar]
- Rossetto, O.; Montecucco, C. Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins 2019, 11, 686. [Google Scholar] [CrossRef] [Green Version]
- Fodstad, O.; Olsnes, S.; Pihl, A. Toxicity, distribution and elimination of the cancerostatic lectins abrin and ricin after parenteral injection into mice. Br. J. Cancer 1976, 34, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Chen, X.; Liu, W.; Li, S.; Zhou, Y.; Yang, X.; Liu, J. Effects of long-term low dose saxitoxin exposure on nerve damage in mice. Aging 2021, 13, 17211–17226. [Google Scholar] [CrossRef]
- Schultes, R.E.; Raffauf, R.F. The Healing Forest; Dioscurides Press: Portland, OR, USA, 1990. [Google Scholar]
- Feldman, S. Poison Arrows; Metro Publishing: London, UK, 2005. [Google Scholar]
- Tammelin, L.E. Choline esters: Substrates and inhibitors of cholinesterases. Sven. Kem. Tidskr. 1958, 70, 158–181. [Google Scholar]
- Kratina, T. Hallucinogen bufotenin and hazardous toads poisoning. Drug Forensic Bull. 2019, 25, 3–9. [Google Scholar]
- Chilton, W.S.; Bigwood, J.; Jensen, R.E. Psilocin, Bufotenine and Serotonin: Historical and Biosynthetic Observations. J. Psychedelic Drugs 1979, 11, 61–69. [Google Scholar] [CrossRef]
- Araújo, A.M.; Carvalho, F.; Bastos, M.L.; Guedes, P.P.; Carvalho, M. The Hallucinogenic World of Tryptamines: An Updated Review. Arch. Toxicol. 2015, 89, 1151–1173. [Google Scholar] [CrossRef]
- Qi, J.; Zulfiker, A.; Li, C.; Good, D.; Wei, M. The Development of Toad Toxins as Potential Therapeutic Agents. Toxins 2018, 10, 336. [Google Scholar] [CrossRef] [Green Version]
- Osseo-Asare, A.D. Bioprospecting and Resistance: Transforming Poisoned Arrows into Strophantin Pills in Colonial Gold Coast, 1885–1922. Soc. Hist. Med. 2008, 21, 269–290. [Google Scholar] [CrossRef]
- Newman, R.A.; Yang, P.; Pawlus, A.D.; Block, K.I. Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv. 2008, 8, 36–49. [Google Scholar] [CrossRef]
- Khan, H.; Saeedi, M.; Nabavi, S.M.; Mubarak, M.S.; Bishayee, A. Glycosides from medical plants as potential anticancer agents: Emerging trends towards future drugs. Curr. Med. Chem. 2019, 26, 2389–2406. [Google Scholar] [CrossRef]
- Puri, H.S. Uses of Aconites. J. D’agriculture Tradit. Et De Bot. Appliquée 1974, 21, 239–246. [Google Scholar] [CrossRef]
- Needham, J.; Ho, P.Y.; Lu, G.D.; Wang, L. Science and Civilisation in China; Cambridge University Press: Cambridge, UK, 1986; Volume 5. [Google Scholar]
- Rao, K.V. Taxol and related taxanes. I. Taxanes of Taxus brevifolia bark. Pharm. Res. 1993, 10, 521–524. [Google Scholar] [CrossRef]
- Saloustros, E.; Mavroudis, D.; Georgoulias, V. Paclitaxel and docetaxel in the treatment of breast cancer. Expert Opin. Pharmacother. 2008, 9, 2603–2616. [Google Scholar] [CrossRef]
- Sierra, M.A.; Martínez-Álvarez, R. Ricin and saxitoxin: Two natural products that became chemical weapons. J. Chem. Educ. 2020, 97, 1707–1714. [Google Scholar] [CrossRef]
- Gooriah, R.; Ahmed, F. Therapeutic uses of Botulinum toxin. J. Clin. Toxicol. 2015, 5, 1000225. [Google Scholar] [CrossRef] [Green Version]
- Kautilya. Arthashastra; Government Press: Bangalore, India, 1915.
- Kirby, R. Ricin Toxin: A Military History. CML Army Chem. Rev. 2004, 304, 38–40. [Google Scholar]
- Tyagi, N.; Tyagi, M.; Pachauri, M.; Ghosh, P.C. Potential therapeutic applications of plant toxin–Ricin in cancer: Challenges and advances. Tumor. Biol. 2015, 36, 8239–8246. [Google Scholar] [CrossRef]
- Embleton, M.J.; Charleston, A.; Robins, R.A.; Pimm, M.V.; Baldwin, R.W. Recombinant Ricin Toxin A Chain Cytotoxicity Against Carcinoembryonic Antigen Expressing Tumour Cells Mediated by a Bispecific Monoclonal Antibody and its Potentiation by Ricin Toxin B Chain. Br. J. Cancer 1991, 63, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Bhakta, S.; Das, S.K. The medical values of Abrus precatorius: A review study. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 84–91. [Google Scholar] [CrossRef]
- Wiese, M.; D’Agostinob, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef] [Green Version]
- Assunção, J.; Guedes, A.C.; Malcata, F.X. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from Dinoflagellates. Mar. Drugs 2017, 15, 393. [Google Scholar] [CrossRef] [Green Version]
- Nieto, F.R.; Cobos, E.J.; Tejada, M.A.; Sánchez-Fernández, C.; González-Cano, R.; Cendán, C.M. Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar. Drugs 2012, 20, 281–305. [Google Scholar] [CrossRef]
- Detournay, O.; Lorquin, J.; Gault, F. Palytoxin, its Medical Use and Process for its Isolation. WO2015/090591A1, 25 June 2015. [Google Scholar]
- Hofmann, A. LSD–My Problem Child; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Stoll, W.A. Lysergsäure-Diäthylamid, ein Phantastikum aus der Mutterkorngruppe. Schweiz. Arch. Für Neurol. Und Psychiatr. 1947, 60, 279–323. [Google Scholar]
- Kirby, R. Paradise Lost: The Psycho Agents. CBW Conv. Bull. 2006, 71, 1–5. [Google Scholar]
- Applegate, R. Riot Control–Materiel and Techniques; Stackpole: Harrisburg, PA, USA, 1969; pp. 284–287. [Google Scholar]
- Sternbach, L.H.; Kaiser, S. Antispasmodics. I. Bicyclic basic alcohols. J. Am. Chem. Soc. 1952, 74, 2215–2218. [Google Scholar] [CrossRef]
- Sternbach, L.H.; Kaiser, S. Antispasmodics II. Esters of basic bicyclic alcohols. J. Am. Chem. Soc. 1952, 74, 2219–2221. [Google Scholar] [CrossRef]
- Sternbach, L.H.; Kaiser, S. Antispasmodics III. Esters of basic bicyclic alcohols and their quaternary salts. J. Am. Chem. Soc. 1953, 75, 6068–6069. [Google Scholar] [CrossRef]
- Ketchum, J.S. Chemical Warfare: Secrets almost Forgotten; AuthorHouse: Bloomington, IN, USA, 2012; pp. 113–115. [Google Scholar]
- Ball, J.C. Dual use research of concern: Derivatives of 3-quinuclidinyl benzilate (BZ). Mil. Med. Sci. Lett. 2015, 84, 2–41. [Google Scholar] [CrossRef]
- Patočka, J.; Jelínková, R. Atropine and atropine-like substances usable in warfare. Mil. Med. Sci. Lett. 2017, 86, 58–69. [Google Scholar] [CrossRef]
- Field Manual FM 3-11-9. Potential Military Chemical/Biological Agents and Compounds; Eximdyne: Wentzeville, MO, USA, 2005. [Google Scholar]
- Waxman, S.; Anderson, K.C. History of the Development of Arsenic Derivatives in Cancer Therapy. Oncologist 2001, 6, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Thomas, X.; Troncy, J. Arsenic: A beneficial therapeutic poison–A historical overview. Adler Mus. Bull. 2009, 35, 3–13. [Google Scholar]
- Greenwood, D. Antimicrobial Drugs. Chronicle of Twentieth Century Medical Triumph; Oxford University Press: Oxford, UK, 2008; p. 281. [Google Scholar]
- Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic Journey of Nitrogen Mustard as Alkylating Anticancer Agents: Historic to Future Perspectives. Eur. J. Med. Chem. 2018, 151, 401–433. [Google Scholar] [CrossRef]
- Diethelm-Varela, B.; Ai, Y.; Liang, D.; Xue, F. Nitrogen Mustards as Anticancer Chemotherapies: Historic Perspective, Current Developments and Future Trends. Curr. Top Med. Chem. 2019, 19, 691–712. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, Y.; Song, W.; Zhang, L. Therapeutic potential of nitrogen mustard based hybrid molecules. Front. Pharmacol. 2018, 9, 1453. [Google Scholar] [CrossRef]
- Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006, 1, CD005593. [Google Scholar] [CrossRef]
- Carron, P.N.; Yersin, B. Management of the effects of exposure to tear gas. BMJ 2009, 338, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Peppin, J.F.; Pappagallo, M. Capsaicinoids in the treatment of neuropathic pain: A review. Ther. Adv. Neurol. Disord. 2014, 7, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saljoughian, M. Capsaicin: Risk and benefits. US Pharm. 2009, 34, HS-17–HS-18. [Google Scholar]
- Contri, R.V.; Frank, L.A.; Kaiser, M.; Pohlmann, A.R.; Guterres, S.S. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids. Int. J. Nanomed. 2014, 9, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.H. Chemical Warfare during the Vietnam War: Riot Control Agents in Combat; Routledge: New York, NY, USA, 2011. [Google Scholar]
- Sheikhhosseini, E.; Soltaninejad, S. Design and Efficient Synthesis of Novel Biological Benzylidenemalononitrile Derivatives Containing Ethylene Ether Spacers. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 111–117. [Google Scholar] [CrossRef]
- Gazit, A.; Levitzki, A.; Roifman, C. Use of Benzylidene-Malononitrile Derivates for Treatment of Leukemia. EP0754038A1, 22 January 1997. [Google Scholar]
- Ebadi, M.S. CRC Desk Reference of Clinical Pharmacology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 399. [Google Scholar]
- Hata, S.; Koizumi, M.; Kubodera, N.; Murakami, Y.; Nakakimura, H.; Sasahara, K.; Wada, S. Dibenzoxazepine Derivative and its Preparation. JPS5576869A, 10 June 1980. [Google Scholar]
- Shafer, S.L. Carfentanil: A weapon of mass destruction. Can. J. Anesth. 2019, 66, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Worsley, M.H.; MacLeod, A.D.; Brodie, M.J.; Asbury, A.J.; Clark, C. Inhaled fentanyl as a method of analgesia. Anaesthesia 1990, 45, 449–451. [Google Scholar] [CrossRef]
- Bever van, W.F.; Niemegeers, C.J.; Schellekens, K.H.; Jansen, P.A. N-4-Substituted 1-(2-arylethyl)-4-piperidinyl-N-phenylpropanamides, a novel series of extremely potent analgesics with unusually high safety margin. Arzneimittelforschung 1976, 26, 1548–1551. [Google Scholar]
- Davison, N. Marketing new chemical weapons. Bull. At. Sci. 2009. Available online: https://thebulletin.org/2009/06/marketing-new-chemical-weapons (accessed on 18 October 2022).
- Riches, J.R.; Read, R.W.; Black, R.M.; Cooper, N.J.; Timperley, C.M. Analysis of Clothing and Urine from Moscow Theatre Casualties Reveals Carfentanil and Remifentanil Use. J. Anal. Toxicol. 2012, 36, 647–656. [Google Scholar] [CrossRef]
- Jones, C.M.; Einstein, E.B.; Compton, W.M. Changes in Synthetic Opioid Involvement in Drug Overdose Deaths in the United States, 2010–2016. JAMA 2018, 319, 1819–1821. [Google Scholar] [CrossRef] [Green Version]
- Stark, M.M.; Knight, M. “Safety” of chemical batons. Lancet 1998, 352, 159. [Google Scholar] [CrossRef]
- Neubert, J.K.; Karai, L.; Jun, J.H.; Kim, H.S.; Olah, Z.; Iadarola, M.J. Peripherally induced resiniferatoxin analgesia. Pain 2003, 104, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, S.J.C.; Griffiths, G.D.; Jenner, D.C.; Gwyther, R.J.; Stahl, F.M.; Cork, L.J.; Holley, J.L.; Green, A.C. Production, Characterisation and Testing of an Ovine Antitoxin against Ricin; Efficacy, Potency and Mechanisms of Action. Toxins 2017, 9, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Lin, C.; Wang, T. Effects of 4-aminopyridine on saxitoxin intoxication. Toxicol. Appl. Pharmacol. 1996, 141, 44–48. [Google Scholar] [CrossRef] [PubMed]
Compound | Source | Effect | LD50, μg/kg | Mr (Relative Molecular Mass) |
---|---|---|---|---|
Tubocurarine | Chondrodendron spp. | Myorelaxant | 130 (mouse, i.v.) [4] | 609.7 |
Ouabain | Strophanthus spp. | Cardioactive glycoside | 110 (cat, i.v.) [5] | 584.7 |
Antiarin | Antiaris toxicaria | Cardioactive glycoside | 120 (mouse, i.v.) [6] | 566.6 |
Aconitine | Aconitum spp. | Interaction with Na-channels | 110 (rat, i.v.) [7] | 645.7 |
Botulinum toxin | Clostridium botulinum | Acetylcholine blockade | 0.001 (mouse, i.v.) [8] | 150 000 |
Ricin | Ricinus communis | Inhibition of protein synthesis | 3 (mouse, i.p.) [9] | 62 000 |
Saxitoxin (STX) | Dinoflagellata | Blockade of Na-channels | 10 (mouse, i.p.) [10] | 299.1 |
CWA | Mr (Relative Molecular Mass) | LCt50 Inhal. mg·min/m3 | LD50 p.c. (Liquid) mg·min/m3 | LCt50 p.c. (Vapour) mg·min/m3 |
---|---|---|---|---|
Sulphur mustard/yperite (HD) | 159.1 | 1000 | 1400 | 10,000 |
Nitrogen mustard (HN-3) | 204.5 | 1000 | 1400 | 10,000 |
Lewisite (L, L-1) | 207.3 | 1000 | 1400 | 5000 |
Tabun (GA) | 162.1 | 70 | 1500 | 15,000 |
Sarin (GB) | 140.1 | 35 | 1700 | 12,000 |
Soman (GD) | 182.2 | 35 | 350 | 3000 |
VX | 267.4 | 15 | 5 | 150 |
RVX (R-33) | 267.4 | 15 (?) | 5 (?) | 150 (?) |
Agent | Onset of Effect, Seconds | Duration of Effect, Minutes | Relative Efficacy | ICt50 mg·min/m3 | LCt50 mg·min/m3 |
---|---|---|---|---|---|
CN | 3–10 | 10–20 | 1 | 20–50 | 8500–25,000 |
CS | 10–60 | 10–30 | 5 | 4–20 | 25,000–100,000 |
CR | Instant | 15–60 | 20–50 | 0.2–1 | >100,000 |
OC | Fast | 30–60 | Not known | Not known | >100,000 |
Compound | Relative Efficacy | Therapeutic Index | LD50 (Rat, i.v.), mg/kg |
---|---|---|---|
Morphine (standard) | 1 | 70 | <200 |
Methadone | 4 | 12 | Not known |
Alfentanil | 75 | 1100 | 47.5 |
Remifentanil | 220 | 33,000 | Not known |
Fentanyl | 300 | 300 | 3.5 |
Sufentanil | 4500 | 25,000 | 17.9 |
Carfentanil | Up to 10,000 | 10,600 | 3.4 |
CWA | Mechanism of Action of CWA | Antidote Type | Example, Note |
---|---|---|---|
Nerve agents | AChE inhibition | Functional | Atropine |
Causal, AChE reactivator | Oximes (HI-6, pralidoxime) | ||
Sulphur mustard | Cytostatic agent, alkylating agent | Not available | Supportive drugs only (sodium thiosulfate) |
Lewisite | Alkylating agent, arsenic effect | Thiol groups | BAL (dimercaprol) |
Hydrogen cyanide | Blockage of cellular respiration | Methemoglobin formation | Sodium nitrite |
Conversion to thiocynates | Sodium thiosulfate | ||
Formation of cyano-complexes | Hydroxocobalamin | ||
Phosgene | Destruction of the pulmonary blood-brain barrier | Not available | Supportive drugs only |
BZ | Anticholinergic effect | AChE inhibition | Physostigmine |
Ricin | Inhibition of protein synthesis | Development in progress | Antitoxin (biotechnology) [71] |
Saxitoxin | Sodium-ion channel blocking | Development in progress | 4-aminopyridine tested on animals [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitschmann, V.; Hon, Z. Drugs as Chemical Weapons: Past and Perspectives. Toxics 2023, 11, 52. https://doi.org/10.3390/toxics11010052
Pitschmann V, Hon Z. Drugs as Chemical Weapons: Past and Perspectives. Toxics. 2023; 11(1):52. https://doi.org/10.3390/toxics11010052
Chicago/Turabian StylePitschmann, Vladimír, and Zdeněk Hon. 2023. "Drugs as Chemical Weapons: Past and Perspectives" Toxics 11, no. 1: 52. https://doi.org/10.3390/toxics11010052
APA StylePitschmann, V., & Hon, Z. (2023). Drugs as Chemical Weapons: Past and Perspectives. Toxics, 11(1), 52. https://doi.org/10.3390/toxics11010052