Essential and Non-Essential Elements in Razor Clams (Solen marginatus, Pulteney, 1799) from the Domitio Littoral in Campania (Southwestern Tyrrhenian Sea, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Location
2.3. Sample Collection and Preparation
2.4. Analysis of Trace Elements
2.5. Quality Assurance and Quality Control Tests
2.6. Statistical Analysis
3. Results and Discussion
Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chalghmi, H.; Zrafi, I.; Gourves, P.Y.; Bourdineaud, J.P.; Saidane-Mosbahi, D. Combined effects of metal contamination and abiotic parameters on biomarker responses in clam Ruditapes decussatus gills: An integrated approach in biomonitoring of Tunis lagoon. Env. Sci. Process Impacts 2016, 18, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.T.; Nguyen, P.D.; Strady, E. Bioaccumulation of trace elements in the hard clam, Meretrix lyrata, reared downstream of a developing megacity, the Saigon-Dongnai River Estuary, Vietnam. Environ. Monit. Assess 2020, 192, 566. [Google Scholar] [CrossRef]
- Ausili, A.; Bergamin, L.; Romano, E. Environmental Status of Italian Coastal Marine Areas Affected by Long History of Contamination. Front. Environ. Sci. 2020, 8, 34. [Google Scholar] [CrossRef]
- Ben-Khedher, S.; Jebali, J.; Houas, Z.; Nawéli, H.; Jrad, A.; Banni, M.; Boussetta, H. Metals bioaccumulation and histopathological biomarkers in Carcinus maenas crab from Bizerta lagoon, Tunisia. Environ. Sci. Pollut. Res. Int. 2014, 21, 4343–4357. [Google Scholar] [CrossRef] [PubMed]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. L 2000, 327, 1–73. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000L0060 (accessed on 7 January 2022).
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Freitas, R.; Costa, E.; Velez, C.; Santos, J.; Lima, A.; Oliveira, C.L.; Maria Rodrigues, A.; Quintino, V.; Figueira, E. Looking for suitable biomarkers in benthic macroinvertebrates inhabiting coastal areas with low metal contamination: Comparison between the bivalve Cerastoderma edule and the Polychaete Diopatra neapolitana. Ecotoxicol. Environ. Saf. 2012, 75, 109–118. [Google Scholar] [CrossRef]
- Griscom, S.B.; Fisher, N.S. Bioavailability of Sediment-Bound Metals to Marine Bivalve Molluscs: An Overview. Estuaries 2004, 5, 826–838. Available online: http://www.jstor.org/stable/3526894 (accessed on 7 January 2022). [CrossRef]
- Goldberg, E.D. The mussel watch a first step in global marine monitoring. Mar. Pollut. Bull 1975, 6, 111. [Google Scholar] [CrossRef]
- Bilgin, M.; Uluturhan-Suzer, E. Assessment of trace metal concentrations and human health risk in clam (Tapes decussatus) and mussel (Mytilus galloprovincialis) from the Homa Lagoon (Eastern Aegean Sea). Environ. Sci. Pollut. Res. Int. 2017, 24, 4174–4184. [Google Scholar] [CrossRef]
- Kamaruzzaman, B.Y.; Akbar John, B.; Aqilah Megat, M.H.; Zaleha, K. Bioaccumulation of heavy metals in horseshoe crabs (Tachypleus gigas) from Pekan, Pahang, Malaysia. Res. J. Environ. Toxicol. 2011, 5, 222–228. [Google Scholar] [CrossRef]
- Sfriso, A.A.; Chiesa, S.; Sfriso, A.; Buosi, A.; Gobbo, L.; Boscolo Gnolo, A.; Argese, E. Spatial distribution, bioaccumulation profiles and risk for consumption of edible bivalves: A comparison among razor clam, Manila clam and cockles in the Venice Lagoon. Sci. Total Environ. 2018, 643, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Taş, E.Ç.; Sunlu, U. Heavy Metal Concentrations in Razor Clam (Solen marginatus, Pulteney, 1799) and Sediments from Izmir Bay, Aegean Sea, Turkey. Turkish JAF Sci. Tech. 2019, 7, 306–313. [Google Scholar] [CrossRef]
- Velez, C.; Pires, A.; Sampaio, L.; Cardoso, P.; Moreira, A.; Leandro, S.M.; Figueira, E.; Soares, A.M.; Freitas, R. The use of Cerastoderma glaucum as a sentinel and bioindicator species: Take-home message. Ecol. Indic. 2016, 62, 228–241. [Google Scholar] [CrossRef]
- Ayache, N.; Hmida, L.; Cardoso, J.F.; Haouas, Z.; Costa, F.D.; Romdhane, M.S. Reproductive Cycle of the Razor Clam Solen marginatus (Pulteney, 1799) in the Southern Mediterranean Sea (Gulf of Gabes, South Tunisia). J. Shellfish Res. 2016, 35, 389–397. [Google Scholar] [CrossRef]
- Semeraro, A.; Geba, K.M.; Arias, A.; Anadon, N.; Garcıa-Vazquez, E.; Borrell, Y.J. Genetic diversity and connectivity patterns of harvested and aquacultured molluscs in estuaries from Asturias (northern Spain). Implications for management strategies. Aquac. Res. 2016, 47, 2937–2950. [Google Scholar] [CrossRef]
- Tajes, J.F.; Freire, R.; Méndez, J. A simple one-step PCR method for the identification between European and American razor clams species. Food Chem. 2010, 118, 995–998. [Google Scholar] [CrossRef]
- Saeedi, H.; Basher, Z.; Costello, M.J. Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgol. Mar. Res. 2016, 70, 23. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.D.; Martínez-Patiño, D. Culture potential of the razor clam Solen marginatus (Pennánt, 1777). Aquaculture 2009, 288, 57–64. [Google Scholar] [CrossRef]
- Fiorito, F.; Di Concilio, D.; Lambiase, S.; Amoroso, M.G.; Langellotti, A.L.; Martello, A.; Esposito, M.; Galiero, G.; Fusco, G. Oyster Crassostrea gigas, a good model for correlating viral and chemical contamination in the marine environment. Mar. Pollut. Bull 2021, 172, 112825. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Hu, Y.; Yang, H. Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ. Sci. Pollut. Res. 2013, 20, 2937–2947. [Google Scholar] [CrossRef] [PubMed]
- Szkoda, J.; Durkalec, M.; Nawrocka, A.; Michalski, M. Mercury concentration in bivalve molluscs. Bull Vet. Inst. Pulawy 2015, 59, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Won, E.J.; Hong, S.; Ra, K.; Kim, K.T.; Shin, K.H. Evaluation of the potential impact of polluted sediments using Manila clam Ruditapes philippinarum: Bioaccumulation and biomarker responses. Environ. Sci. Pollut Res. 2011, 19, 2570–2580. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Meloni, D.; Abete, M.C.; Colombero, G.; Mantia, M.; Pastorino, P.; Prearo, M.; Pais, A.; Antuofermo, E.; Squadrone, S. The bivalve Ruditapes decussatus: A biomonitor of trace elements pollution in Sardinian coastal lagoons (Italy). Environ. Pollut. 2018, 242, 1720–1728. [Google Scholar] [CrossRef]
- Commission Regulation (EC) 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 2006, 364, 5–24. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF. (accessed on 7 January 2022).
- FAO/WHO. Summary Report of the Seventy-Third Meeting of JECFA. Joint FAO/WHO Expert Committee on Food Additives; WHO: Geneva, Switzerland, 2010; Available online: https://apps.who.int/iris/handle/10665/44515 (accessed on 30 January 2022).
- Balassone, G.; Aiello, G.; Barra, D.; Cappelletti, P.; De Bonis, A.; Donadio, C.; Guida, M.; Melluso, L.; Morra, V.; Parisi, R.; et al. Effects of anthropogenic activities in a Mediterranean coastland: The case study of the Falerno-Domitio littoral in Campania, Tyrrhenian Sea (southern Italy). Mar. Pollut. Bull. 2016, 1–2, 271–290. [Google Scholar] [CrossRef]
- Burton, G., Jr. Sediment quality criteria in use around the world. Limnology 2002, 3, 65–76. [Google Scholar] [CrossRef]
- Verde, R.; Vigliotti, M.; Prevedello, L.; Sprovieri, M.; Ruberti, D. An integrated approach to environmental quality assessment in a coastal setting in Campania (Southern Italy). Environ. Earth Sci. 2013, 70, 407–424. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.G.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Cui, F.; Zhu, M.Y.; Shen, L.Q.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef]
- Legambiente. Monitoraggio Sull’illegalità e Sullo Stato di Salute dei Fiumi Italiani. Available online: https://www.legambiente.it/sites/default/files/docs/fiumi_e_legalita_2006_0000001112.pdf. (accessed on 26 January 2022).
- Triassi, M.; Nardone, A.; Giovinetti, M.C.; De Rosa, E.; Canzanella, S.; Sarnacchiaro, P.; Montuori, P. Ecological risk and estimates of organophosphate pesticides loads into the Central Mediterranean Sea from Volturno River, the river of the “Land of Fires” area, southern Italy. Sci. Total Environ. 2019, 678, 741–754. [Google Scholar] [CrossRef]
- Maresca, V.; Fusaro, L.; Sorbo, S.; Siciliano, A.; Loppi, S.; Paoli, L.; Monaci, F.; Asadi, E.K.; Piscopo, M.; Guida, M.; et al. Functional and structural biomarkers to monitor heavy metal pollution of one of the most contaminated freshwater sites in Southern Europe. Ecotoxicol. Environ. Saf. 2018, 163, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Parrella, A. Integrated environmental assessment of Volturno River in South Italy. Sci. Total Environ. 2004, 327, 123–134. [Google Scholar] [CrossRef] [PubMed]
- EC (European Commission). Commission Regulation (EC) 333/2007 of 28 March 2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Off. J. Eur. Union. L 2007, 88, 29–38. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:088:0029:0038:EN:PDF. (accessed on 7 January 2022).
- Bat, L.; Arıcı, E.; Sezgin, M.; Şahin, F. Heavy metal levels in the liver and muscle tissues of the four commercial fishes from Lake Balik, Kızılırmak Delta (Samsun, Turkey). J. Coast. Life Med. 2015, 3, 950–955. [Google Scholar] [CrossRef]
- Bille, L.; Binato, G.; Cappa, V.; Toson, M.; Dalla Pozza, M.; Arcangeli, G.; Ricci, A.; Angeletti, R.; Piro, R. Lead, mercury and cadmium levels in edible marine molluscs and echinoderms from the Veneto region (north-western Adriatic Sea—Italy). Food Control. 2015, 50, 362–370. [Google Scholar] [CrossRef]
- Tavoloni, T.; Miniero, R.; Bacchiocchi, S.; Brambilla, G.; Ciriaci, M.; Griffoni, F.; Palombo, P.; Stecconi, T.; Stramenga, A.; Piersanti, A. Heavy metal spatial and temporal trends (2008–2018) in clams and mussel from Adriatic Sea (Italy): Possible definition of forecasting models. Mar. Pollut. Bull. 2021, 163, 111865. [Google Scholar] [CrossRef]
- Visciano, P.; Scortichini, G.; Suzzi, G.; Diletti, G.; Schirone, M.; Martino, G. Concentrations of contaminants with regulatory limits in samples of clam (Chamelea gallina) collected along the Abruzzi region coast in Central Italy. J. Food Prot. 2015, 78, 1719–1728. [Google Scholar] [CrossRef]
- Losasso, C.; Bille, L.; Patuzzi, I.; Lorenzetto, M.; Binato, G.; Dalla, M.; Ferrè, N.; Ricci, A. Possible influence of natural events on heavy metals exposure from shellfish consumption: A case study in the north-east of Italy. Front. Public Health 2015, 3, 21. [Google Scholar] [CrossRef]
- Breda, S.; Chiesa, S.; Freitas, R.; Figueira, E.; Becherini, F.; Gobbo, L.; Soares, A.M.; Argese, E. Biogeochemical dynamics and bioaccumulation processes in Manila clam: Implications for biodiversity and ecosystem services in the Ria de Aveiro Lagoon. Estuar. Coast. Shelf. Sci. 2018, 209, 136–148. [Google Scholar] [CrossRef]
- Esposito, M.; Canzanella, S.; Lambiase, S.; Scaramuzzo, A.; La Nucara, R.; Bruno, T.; Picazio, G.; Colarusso, G.; Brunetti, R.; Gallo, P. Organic pollutants (PCBs, PCDD/Fs, PAHs) and toxic metals in farmed mussels from the Gulf of Naples (Italy): Monitoring and human exposure. Reg. Stud. Mar. Sci. 2020, 40, 101497. [Google Scholar] [CrossRef]
- Fiorito, F.; Amoroso, M.G.; Lambiase, S.; Serpe, F.P.; Bruno, T.; Scaramuzzo, A.; Maglio, P.; Fusco, G.; Esposito, M. A relationship between environmental pollutants and enteric viruses in mussels (Mytilus galloprovincialis). Environ. Res. 2019, 169, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Kato, L.S.; Ferrari, R.G.; Leite, J.V.M.; Conte-Junior, C.A. Arsenic in shellfish: A systematic review of its dynamics and potential health risks. Mar. Pollut. Bull. 2020, 161, 111693. [Google Scholar] [CrossRef]
- Taylor, V.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M.R.; Francesconi, K.A. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 2017, 580, 266–282. [Google Scholar] [CrossRef]
- Chiesa, S.; Chainho, P.; Almeida, Â.; Figueira, E.; Soares, A.M.V.M.; Freitas, R. Metals and As content in sediments and Manila clam Ruditapes philippinarum in the Tagus estuary (Portugal): Impacts and risk for human consumption. Mar. Pollut. Bull. 2018, 126, 281–292. [Google Scholar] [CrossRef]
- Velez, C.; Figueira, E.; Soares, A.; Freitas, R. Spatial distribution and bioaccumulation patterns in three clam populations from a low contaminated ecosystem. Estuar. Coast. Shelf. Sci. 2015, 155, 114–125. [Google Scholar] [CrossRef]
- Velez, C.; Leandro, S.; Figueira, E.; Soares, A.M.; Freitas, R. Biochemical performance of native and introduced clam species living in sympatry: The role of elements accumulation and partitioning. Mar. Environ. Res. 2015, 109, 81–94. [Google Scholar] [CrossRef]
- Argese, E.; Bettiol, C. Heavy metal partitioning in sediments from the Lagoon of Venice (Italy). Toxicol. Environ. Chem. 2001, 79, 157–170. [Google Scholar] [CrossRef]
- FAO/WHO. Evaluation of Certain Contaminants in Food: Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series, N. 959; WHO Press: Geneva, Switzerland; pp. 21–37. Available online: https://apps.who.int/iris/handle/10665/44514 (accessed on 30 January 2022).
- FAOSTAT (Food and Agriculture Organization of the United Nations FAOSTAT Database). Available online: https://www.fao.org/faostat/en/#data/FBS. (accessed on 30 January 2022).
Site 1 CI (1) | Site 2 CL (2) | Site 3 MO (3) | Site 4 CE (4) | Site 5 SA (5) | Total Mean ± SD | |
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
As | 1.6 ± 0.26 | 1.5 ± 0.22 | 1.6 ± 0.18 | 1.6 ± 0.20 | 1.8 ± 0.35 | 1.6 ± 0.23 |
Be | 0.024 ± 0.0040 | 0.019 ± 0.0068 | 0.022 ± 0.0059 | 0.019 ± 0.012 | 0.016 ± 0.0026 | 0.020 ± 0.0068 |
Bi | 0.0076 ± 0.0065 | 0.011 ± 0.010 | 0.0078 ± 0.0021 | 0.0045 ± 0.0040 | 0.011 ± 0.010 | 0.0084 ± 0.0072 |
Cd | 0.026 ± 0.0054 | 0.023 ± 0.0038 | 0.023 ± 0.0045 | 0.024 ± 0.0092 | 0.030 ± 0.013 | 0.025 ± 0.0066 |
Co | 0.12 ± 0.037 | 0.11 ± 0.027 | 0.13 ± 0.036 | 0.13 ± 0.039 | 0.088 ± 0.041 | 0.11 ± 0.034 |
Cr | 0.37 ± 0.25 | 0.43 ± 0.41 | 0.24 ± 0.14 | 0.46 ± 0.28 | 0.13 ± 0.10 | 0.34 ± 0.28 |
Cs | 0.025 ± 0.011 | 0.020 ± 0.0092 | 0.022 ± 0.0065 | 0.030 ± 0.019 | 0.014 ± 0.0035 | 0.022 ± 0.011 |
Cu | 1.4 ± 0.38 | 1.3 ± 0.32 | 1.2 ± 0.32 | 1.1 ± 0.27 | 1.0 ± 0.20 | 1.2 ± 0.35 |
Ga | 0.068 ± 0.034 | 0.053 ± 0.032 | 0.053 ± 0.013 | 0.059 ± 0.042 | 0.030 ± 0.0078 | 0.055 ± 0.029 |
Mn | 4.2 ± 2.3 | 3.1 ± 1.7 | 3.6 ± 1.5 | 3.0 ± 1.5 | 2.0 ± 0.88 | 3.3 ± 1.7 |
Ni | 0.25 ± 0.16 | 0.27 ± 0.23 | 0.17 ± 0.067 | 0.25 ± 0.070 | 0.14 ± 0.11 | 0.23 ± 0.015 |
Pb | 0.13 ± 0.052 | 0.078 ± 0.028 | 0.090 ± 0.024 | 0.12 ± 0.057 | 0.059 ± 0.030 | 0.095 ± 0.043 |
Se | 0.56 ± 0.13 | 0.50 ± 0.20 | 0.50 ± 0.20 | 0.53 ± 0.24 | 0.45 ± 0.12 | 0.51 ± 0.17 |
Sr | 9.6 ± 1.3 | 8.6 ± 1.4 | 9.5 ± 3.1 | 6.9 ± 1.3 | 7.8 ± 0.79 | 8.8 ± 1.9 |
Tl | 0.0047 ± 0.0027 | 0.0035 ± 0.0028 | 0.0036 ± 0.0031 | 0.0026 ± 0.0022 | 0.0040 ± 0.0026 | 0.0037 ± 0.0026 |
U | 0.018 ± 0.0089 | 0.014 ± 0.0067 | 0.017 ± 0.0041 | 0.015 ± 0.012 | 0.013 ± 0.0032 | 0.016 ± 0.0073 |
V | 0.38 ± 0.18 | 0.26 ± 0.17 | 0.31 ± 0.14 | 0.50 ± 0.23 | 0.14 ± 0.074 | 0.31 ± 0.18 |
Zn | 15.1 ± 1.3 | 13.2 ± 1.7 | 13.7 ± 3.8 | 12.4 ± 1.6 | 12.6 ± 2.6 | 13.6 ± 2.4 |
Location | As | Cd | Pb | Ni | Cr | Reference |
---|---|---|---|---|---|---|
Mean (Range) | Mean (Range) | Mean (Range) | Mean (Range) | Mean (Range) | ||
M. galloprovincialis | ||||||
Campania region (Italy) | 0.05 (0.02–0.13) | 0.15 (0.03–0.40) | [42] | |||
Campania region (Italy) | 0.022 (0.002–0.045) | [43] | ||||
C. gallina | ||||||
Veneto region (Italy) | 0.06 (0.01–0.48) | 0.10 (0.03–0.47) | [37] | |||
Abruzzi region (Italy) | (0.075–0.14) | (0.036–0.14) | [39] | |||
Marche region (Italy) | 2.41 (1.61–3.74) | 0.078 (0.023–0.18) | 0.096 (0.013–0.36) | 0.80 (0.35–6.14) | 0.68 (0.086–10.6) | [38] |
R. philippinarum | ||||||
Veneto region (Italy) | (0.052–0.099) | (0.16–0.24) | [40] | |||
Portugal | 6.38 (2.42–21.8) | 0.078 (0.06–0.10) | 1.26 (0.45–2.78) | 1.79 (1.25–2.58) | 3.63 (2.00–6.38) | [46] |
Portugal | 5.82 (4.80–6.84) | 0.17 (0.16–0.18) | 0.83 (0.78–0.90) | 0.04 (0.03–0.05) | 0.26 (0.23–0.29) | [41] |
Portugal | (1.3–1.53) | (0.21–0.29) | (0.45–1.53) | (1.05–1.26) | [48] | |
R. decussatus | ||||||
Sardinia region (Italy) | 5.4 (1.6–9.6) | 0.044 (0.010–0.079) | 0.17 (0.059–0.30) | 0.63 (0.40–0.95) | 0.15 (0.052–0.31) | [24] |
As | Cd | Pb | Ni | Cu | ||
---|---|---|---|---|---|---|
PTWI (mg Kg−1 week−1 WW) | JECFA (1) | 0.015 (3) | 0.007 | 0.025 | 0.035 | 3.5 |
FSANZ (2) | 0.015 (3) | 0.007 | 0.025 | |||
PTWI (mg week−1) for 70 Kg adult person | 1.05 | 0.49 | 1.75 | 2.45 | 245 | |
Amount of clams (Kg of WW) to be consumed to exceed PTWI | ||||||
Site 1 CI | 0.66 | 18.8 | 13.5 | 9.8 | 175 | |
Site 2 CL | 0.70 | 21.3 | 22.4 | 9.1 | 188 | |
Site 3 MO | 0.66 | 21.3 | 19.4 | 14.4 | 204 | |
Site 4 SA | 0.58 | 16.3 | 29.7 | 17.5 | 245 | |
Site 5 CE | 0.66 | 20.4 | 14.6 | 9.8 | 223 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, M.; Canzanella, S.; Danese, A.; Pepe, A.; Gallo, P. Essential and Non-Essential Elements in Razor Clams (Solen marginatus, Pulteney, 1799) from the Domitio Littoral in Campania (Southwestern Tyrrhenian Sea, Italy). Toxics 2022, 10, 452. https://doi.org/10.3390/toxics10080452
Esposito M, Canzanella S, Danese A, Pepe A, Gallo P. Essential and Non-Essential Elements in Razor Clams (Solen marginatus, Pulteney, 1799) from the Domitio Littoral in Campania (Southwestern Tyrrhenian Sea, Italy). Toxics. 2022; 10(8):452. https://doi.org/10.3390/toxics10080452
Chicago/Turabian StyleEsposito, Mauro, Silvia Canzanella, Amalia Danese, Angela Pepe, and Pasquale Gallo. 2022. "Essential and Non-Essential Elements in Razor Clams (Solen marginatus, Pulteney, 1799) from the Domitio Littoral in Campania (Southwestern Tyrrhenian Sea, Italy)" Toxics 10, no. 8: 452. https://doi.org/10.3390/toxics10080452
APA StyleEsposito, M., Canzanella, S., Danese, A., Pepe, A., & Gallo, P. (2022). Essential and Non-Essential Elements in Razor Clams (Solen marginatus, Pulteney, 1799) from the Domitio Littoral in Campania (Southwestern Tyrrhenian Sea, Italy). Toxics, 10(8), 452. https://doi.org/10.3390/toxics10080452