Vulnerability to Nitrate Occurrence in the Spring Waters of the Sila Massif (Calabria, Southern Italy)
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Laboratory Analysis
3.2. Facies Classification Analysis
- (a)
- TDS (mg/L):
- 0 < TDS < 50—very low mineral content water (or light mineral water);
- 50 < TDS < 500—low mineral content water;
- 500 < TDS < 1500—medium mineral content water;
- TDS > 1500—waters rich in mineral salts.
- (b)
- Hardness (H) due to the presence of calcium and magnesium ions expressed in French degrees (1° f = 10 mg/L = 10 mg/kg) or the equivalents of CaCO3:
- H < 15—light or soft water;
- 15 < H<30—average hard water;
- H > 30—hard water.
- IA < 10—aggressive water;
- 10 < IA<12—moderately aggressive water;
- IA > 12—nonaggressive water.
- Chloride–sulfate Ca-Mg waters;
- Chloride–sulfate alkaline waters;
- Bicarbonate alkaline waters;
- Bicarbonate Ca-Mg waters.
3.3. Atmospheric Depositions Input Analysis
3.4. Data Analysis
4. Results and Discussion
- Chloride–sulfate Ca-Mg waters (I quadrant). The waters belonging to these facies mainly spring from the slopes forming the crown of the Sila Massif (Figure 4b). These springs fall into geological units made up of acid rocks (acid granulites, biotic gneisses). They have a low alkalinity which is almost independent of altitude. For them, good correlations between conductivity EC (µS/cm) and alkalinity A in terms of HCO3 (mg/L) and between chloride and sodium ions were observed.
- Chloride–sulfate alkaline waters (II quadrant). A limited number of springs belong to these facies, falling in metamorphic geological units located at the extreme offshoots of the investigated area, arising from metamorphic rocks. An exception is a spring in another setting (the municipality of Acri) classifiable within these facies due to its high content of sodium, chlorides, etc., although the aquifer rocks are granite like those of the IV quadrant. The waters are rich in sodium and potassium ions and show a low calcium and magnesium content. Alkalinity does not differ from that described for the I quadrant.
- Bicarbonate Ca-Mg waters (IV quadrant). They are the springs arising in the central part of the Sila Massif, from acid rocks (acid granulites, biotic gneisses, granites, granodiorites, magmatites). Alkalinity A increases with decrease in altitude Z. For these waters, an excellent correlation between conductivity EC (µS/cm) and alkalinity A was found (Figure 5a).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalvāns, A.; Popovs, K.; Priede, A.; Koit, O.; Retiķe, I.; Bikše, J.; Dēliņa, A.; Babre, A. Nitrate vulnerability of karst aquifers and associated groundwater-dependent ecosystems in the Baltic region. Environ. Earth. Sci. 2021, 80, 628. [Google Scholar] [CrossRef]
- Zuzolo, D.; Cicchella, D.; Lima, A.; Guagliardi, I.; Cerino, P.; Pizzolante, A.; Thiombane, M.; de Vivo, B.; Albanese, S. Potentially toxic elements in soils of Campania region (Southern Italy): Combining raw and compositional data. J. Geochem. Explor. 2020, 213, 106524. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Guagliardi, I.; Tarvainen, T.; Jarva, J. A multivariate approach to study the geochemistry of urban topsoil in the city of Tampere, Finland. J. Geochem. Explor. 2017, 181, 191–204. [Google Scholar] [CrossRef]
- Cicchella, D.; Zuzolo, D.; Albanese, S.; Fedele, L.; di Tota, I.; Guagliardi, I.; Thiombane, M.; de Vivo, B.; Lima, A. Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. J. Geochem. Explor. 2020, 213, 106519. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Corbera, J.; Domene, X.; Sayol, F.; Sabater, F.; Preece, C. Nitrate pollution reduces bryophyte diversity in Mediterranean springs. Sci. Total Environ. 2020, 705, 135823. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazakis, N.; Matiatos, I.; Ntona, M.M.; Bannenberg, M.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Ioannidou, A.; Vargemezis, G.; Voudouris, K. Origin, implications and management strategies for nitrate pollution in surface and ground waters of Anthemountas basin based on a δ15N-NO3− and δ18O-NO3−isotope approach. Sci. Total Environ. 2020, 724, 138211. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Wu, K.; Shen, L. Nitrate fate and origin in epikarst springs in Jinfo Mountain area, Southwest China. Arab. J. Geosci. 2016, 9, 483. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Guagliardi, I.; Ricca, N. Drought assessment using the reconnaissance drought index (RDI) in a southern Italy region. In Proceedings of the 6th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements, Reggio Calabria, Italy, 24–25 June 2016; pp. 52–55. [Google Scholar]
- Caloiero, T.; Guagliardi, I. Climate change assessment: Seasonal and annual temperature analysis trends in the Sardinia region (Italy). Arab. J. Geosci. 2021, 14, 2149. [Google Scholar] [CrossRef]
- Mas-Pla, J.; Menció, A. Groundwater Nitrate Pollution and Climate Change: Learnings from a Water Balance-Based Analysis of Several Aquifers in a Western Mediterranean Region (Catalonia). Environ. Sci. Pollut. Res. 2019, 26, 2184–2202. [Google Scholar] [CrossRef] [Green Version]
- Pellicone, G.; Caloiero, T.; Guagliardi, I. The De Martonne aridity index in Calabria (Southern Italy). J. Maps 2019, 15, 788–796. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Europe’s Environment: State of the Environment Report No. 3/2003; EEA: Copenhagen, Denmark, 2003.
- Darvishmotevalli, M.; Moradnia, M.; Noorisepehr, M.; Fatehizadeh, A.; Fadaei, S.; Mohammadi, H.; Salari, M.; Jamali, H.A.; Daniali, S.S. Evaluation of carcinogenic risks related to nitrate exposure in drinking water in Iran. MethodsX 2019, 6, 1716–1727. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.H.; Alinejad, A.; Yousefi, M.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 2019, 6, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, H.; Jafari, A.; Kamarehie, B.; Fakhri, Y.; Ghaderpoury, A.; Karami, M.A.; Ghaderpoori, M.; Shams, M.; Bidarpoor, F.; Salimi, M. Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the Sanandaj, Kurdistan County, Iran. Hum. Ecol. Risk Assess. Int. J. 2018, 25, 1242–1250. [Google Scholar] [CrossRef]
- Rehman, J.U.; Ahmad, N.; Ullah, N.; Alam, I.; Ullah, H. Health Risks in Different Age Group of Nitrate in Spring Water Used for Drinking in Harnai, Balochistan, Pakistan. Ecol. Food. Nutr. 2020, 59, 462–471. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 94—Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Massoudinejad, M.; Ghaderpoori, M.; Jafari, A.; Nasehifar, J.; Malekzadeh, A.; Ghaderpoury, A. Data on nitrate and nitrate of Taham dam in Zanjan (Iran). Data Brief. 2018, 17, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 2000, 108, 675–678. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 2nd ed.; WHO: Geneva, Switzerland, 1993; Volume 1. [Google Scholar]
- Decreto Legislativo (D.Lgs.) 16 Marzo 2009, n. 30 (Pubblicato nella Gazz. Uff. 4 Aprile 2009, n. 79). Attuazione della direttiva 2006/118/CE, Relativa Alla Protezione Delle Acque Sotterranee Dall’inquinamento e dal Deterioramento. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2013-04-04&atto.codiceRedazionale=13G00075 (accessed on 7 February 2022).
- Decreto Legislativo (D.Lgs.) 2 Febbraio 2001, n. 31. (Pubblicato nella Gazz. Uff. 3 Marzo 2001, n. 52). Attuazione della Direttiva 98/83/CE, Relativa alla Qualità delle Acque Destinate al Consumo Umano. Available online: https://www.camera.it/parlam/leggi/deleghe/01031dl.htm (accessed on 7 February 2022).
- Gaglioti, S.; Infusino, E.; Caloiero, T.; Callegari, G.; Guagliardi, I. Geochemical Characterization of Spring Waters in the Crati River Basin, Calabria (Southern Italy). Geofluids 2019, 2019, 3850148. [Google Scholar] [CrossRef] [Green Version]
- Guagliardi, I.; Caloiero, T.; Infusino, E.; Callegari, G.; Ricca, N. Environmental Estimation of Radiation Equivalent Dose Rates in Soils and Waters of Northern Calabria (Italy). Geofluids 2021. [Google Scholar] [CrossRef]
- Balestrieri, A.; Remonti, L.; Smiroldo, G.; Prigioni, C.; Reggiani, G. Surveying otter Lutra Lutra distribution at the southern limit of its Italian range. Hystrix It. J. Mamm. 2008, 19, 165–173. [Google Scholar]
- Iovine, G.; Guagliardi, I.; Bruno, C.; Greco, R.; Tallarico, A.; Falcone, G.; Lucà, F.; Buttafuoco, G. Soil-gas radon anomalies in three study areas of Central-Northern Calabria (Southern Italy). Nat. Hazards 2017, 91, 193–219. [Google Scholar] [CrossRef]
- Bonardi, G.; Cavazza, W.; Perrone, V.; Rossi, S. Calabria-Peloritani terrane and northern Ionian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Vignaroli, G.; Minelli, L.; Rossetti, F.; Balestrieri, M.L.; Faccenna, C. Miocene thrusting in the eastern Sila Massif: Implication for the evolution of the Calabria-Peloritani orogenic wedge (southern Italy). Tectonophysics 2012, 538–540, 105–119. [Google Scholar] [CrossRef]
- Le Pera, E.; Arribas, J.; Critelli, S.; Tortosa, A. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): Implications for provenance studies. Sedimentology 2001, 48, 357–378. [Google Scholar] [CrossRef]
- Liotta, D.; Caggianelli, A.; Kruhl, J.H.; Festa, V.; Prosser, G.; Langone, A. Multiple injections of magmas along a Hercynian mid-crustal shear zone (Sila Massif, Calabria, Italy). J. Struct. Geol. 2008, 30, 1202–1217. [Google Scholar] [CrossRef]
- Critelli, S.; Muto, F.; Tripodi, V.; Perri, F. Relationships between lithospheric flexure, thrust tectonics and stratigraphic sequences in foreland setting: The Southern Apennines foreland basin system, Italy. In New Frontiers in Tectonic Research at the Midst of Plate Convergence; Schattner, U., Ed.; Intech Open: London, UK, 2011; pp. 121–170. [Google Scholar]
- Scarciglia, F.; Critelli, S.; Borrelli, L.; Coniglio, S.; Muto, F.; Perri, F. Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates. Sediment. Geol. 2016, 336, 46–67. [Google Scholar] [CrossRef]
- Guagliardi, I.; Cicchella, D.; Rosa, R. A Geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil Pollut. 2012, 223, 5983–5998. [Google Scholar] [CrossRef]
- Fabbricatore, D.; Robustelli, G.; Muto, F. Facies analysis and depositional architecture of shelf-type deltas in the Crati Basin (Calabrian Arc, south Italy). Ital. J. Geosci. 2014, 133, 131–148. [Google Scholar] [CrossRef]
- Gallo, M.; Iovino, F. A brief history of the forest changes in the Sila Greca mountains. In Forest History International Studies on Socioeconomic and Forest Ecosystem Change. Report No. 2 of the IUFRO Task Force on Environmental Change; Agnoletti, M., Anderson, S., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 289–305. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Coscarelli, R.; Gaudio, R.; Caloiero, T. Climatic trends: An investigation for a Calabrian basin (southern Italy). In Proceedings of the International Symposium The Basis of Civilization, Rome, Italy, 3–6 December 2003; Rodda, J.C., Ubertini, L., Eds.; IAHS: Wallingford, CT, USA; pp. 255–266. [Google Scholar]
- Buttafuoco, G.; Caloiero, T.; Ricca, N.; Guagliardi, I. Assessment of drought and its uncertainty in a southern Italy area (Calabria region). Measurement 2018, 113, 205–210. [Google Scholar] [CrossRef]
- Bianucci, G.; Ribaldone, E.; Bianucci, E. Composizione Chimica Delle Rocce, La Chimica Delle Acque Sotterranee; Ulrico, H., Ed.; Hoepli: Milan, Italy, 1985; pp. 76–83. [Google Scholar]
- Appelo, C.A.J.; Postma, D. Geochemistry. Groundwater and Pollution; AA Balkema: Rotterdam, The Netherlands, 2005. [Google Scholar]
- Ako, A.A.; Shimada, J.; Hosono, T.; Kagabu, M.; Ayuk, A.R.; Nkeng, G.E.; Takem, G.E.E.; Takounjou, A.L.F. Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environ. Geochem. Health 2012, 34, 615–639. [Google Scholar] [CrossRef] [PubMed]
- Callegari, G.; Cantasano, N.; Infusino, E.; Callegari, G.; Cipriani, M.G. Hydrogeological and geochemical assessment of some spring waters in the municipal area of Chiaravalle Centrale (Calabria, southern Italy). Rend. Online Soc. Geol. Ital. 2012, 21, 869–871. [Google Scholar]
- AWWA. AWWA standard for asbestos-cement transmission pipe, 18 in. through 42 in., for water and other liquids. J. Am. Water Works Assoc. 1975, 67, 462–467. [Google Scholar] [CrossRef]
- AWWA. AWWA Standard for Asbestos-Cement Distribution Pipe. 4 in. Through 16 in. (100 mm Through 16 in.) (100 mm Through 400 mm). 1980. Available online: https://engage.awwa.org/PersonifyEbusiness/Store/Product-Details/productId/18631 (accessed on 7 February 2022).
- Collins, W.D. Graphic representation of water analyses. Ind. Eng. Chem. 1923, 15, 394. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. AGU 1944, 25, 914. [Google Scholar] [CrossRef]
- Langelier, W.F.; Ludwig, F. Graphical methods for indicating the mineral character of natural waters. J. Am. Water Work. Assoc. 1942, 34, 335–352. [Google Scholar] [CrossRef]
- Cao, W.G.; Yang, H.F.; Liu, C.L.; Li, Y.J.; Bai, H. Hydrogeochemical characteristics and evolution of the aquifer systems of Gonghe Basin, Northern China. Geosci. Front. 2018, 9, 907–916. [Google Scholar] [CrossRef]
- Ravikumar, P.; Prakash, K.L.; Somashekar, R.K. Evaluation of water quality using geochemical modeling in the Bellary Nala Command area, Belgaum district, Karnataka State, India. Carbonates Evaporites 2013, 28, 365–381. [Google Scholar] [CrossRef]
- Rao, N.S.; Subrahmanyam, A.S.; Kumar, S.R.; Srinivasulu, N.; Rao, G.B.; Rao, P.S.; Reddy, G.V. Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India. Environ. Earth Sci. 2012, 67, 1451–1471. [Google Scholar]
- Rao, N.S.; Vidyasagar, G.; Rao, P.S.; Bhanumurthy, P. Chemistry and quality of groundwater in a coastal region of Andhra Pradesh, India. Appl. Water Sci. 2017, 7, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Waters, N.M. Expert Systems and Systems of Experts, Chapter 12. In Geographical Systems and Systems of Geography; Coffey, W.J., Ed.; University of Western Ontario: London, UK, 1988. [Google Scholar]
- Hutchinson, M.F.; Gessler, P.E. Splines—More than just a smooth interpolator. Geoderma 1994, 62, 45–67. [Google Scholar] [CrossRef]
- Apaydin, H.; Sonmez, F.K.; Yildirim, Y.E. Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim. Res. 2004, 28, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.K. Nutrients in Ground Water and Surface Water of the United States: An Analysis of Data through 1992; US Department of the Interior, US Geological Survey: Washington, DC, USA, 1995; Volume 95.
- Infusino, E.; Callegari, G.; Cantasano, N. Release of nutrients into a forested catchment of southern Italy. Rend. Fis. Acc. Lincei. 2016, 27, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Accardo, V.; Angeletti, V.; Cocozziello, B.; D’Arienzo, V.; Aquino De Gennaro, V.; De Angelis, C.; De Rosa, E.; Di Meo, T.; Imperatrice, M.I.; Mainolfi, P.; et al. Il monitoraggio dell’inquinamento idrico da nitrati degli acquiferi della Campania. In Proceedings of the Conference Accettabilità Delle Acque per usi Civili e Agricoli, Rome, Italy, 5 June 2002. [Google Scholar]
- Wilcox, J.C.; Holland, W.D.; McDougald, J.M. Relation of elevation of a mountain stream to reaction and salt content of water and soil. Can. J. Soil Sci. 1956, 37, 11–20. [Google Scholar] [CrossRef]
- Callegari, G.; Frega, G.; Infusino, E. Deposizioni atmosferiche nell’area urbana di Cosenza in Calabria. In Proceedings of the Conference Qualità Dell’aria Nelle Città Italiane, Rome, Italy, 6 June 2005. [Google Scholar]
- Guo, B.; Yang, F.; Wu, H.; Zhang, R.; Zang, W.; Wei, C.; Zhang, H. How the variations of terrain factors affect the optimal interpolation methods for multiple types of climatic elements? Earth Sci. Inform. 2021, 14, 1021–1032. [Google Scholar] [CrossRef]
- Kazemi, E.; Karyab, H.; Mohammad-Mehdi Emamjome, M. Optimization of interpolation method for nitrate pollution in groundwater and assessing vulnerability with IPNOA and IPNOC method in Qazvin plain. J. Environ. Health Sci. Engineer. 2017, 21, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75, 665. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Moradi, D.M. Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeol. J. 2017, 25, 169–189. [Google Scholar] [CrossRef]
Parameter | Min | Max | Mean | Median | Lower Quartile | Upper Quartile | Standard Deviation | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|---|---|---|
pH | 5.46 | 8.6 | 6.86 | 6.82 | 6.5 | 7.24 | 0.58 | 0.36 | 0.51 | 8.48 |
EC (µS/cm) | 51.3 | 710.61 | 179.37 | 152 | 102.9 | 236 | 110.7 | 2.2 | 8.13 | 61.72 |
H (°f) | 2.01 | 33.6 | 7.7 | 6 | 3.7 | 9.8 | 5.5 | 2.23 | 7.7 | 71.35 |
TDS (mg/L) | 0.12 | 533 | 132.73 | 113 | 78.11 | 175.9 | 83.97 | 2.1 | 7.92 | 63.27 |
Ca2+ (mg/L) | 3.61 | 110 | 16.42 | 14.4 | 8.61 | 20 | 14.53 | 4.77 | 29.92 | 88.48 |
Mg2+ (mg/L) | 0.97 | 20.47 | 7.92 | 6.8 | 3.1 | 12.07 | 5.5 | 0.6 | −0.81 | 69.7 |
K+ (mg/L) | 0.009 | 2.92 | 1.46 | 1.56 | 1.1 | 1.85 | 0.55 | −0.3 | 0.25 | 37.3 |
Na+ (mg/L) | 4.51 | 59 | 11.27 | 9.05 | 6.96 | 12.5 | 8.3 | 3.87 | 19.25 | 73.7 |
HCO3− (mg/L) | 8 | 209.82 | 63.08 | 35.12 | 17 | 98.94 | 56.99 | 0.97 | −0.11 | 90.34 |
Cl− (mg/L) | 7.80 | 85.12 | 18.07 | 14.9 | 10.72 | 21.14 | 11.97 | 3.62 | 17.41 | 66.26 |
SO42− (mg/L) | 0.07 | 25 | 2.08 | 0.6 | 0.31 | 0.9 | 4.52 | 3.67 | 14.66 | 216.62 |
NO3− (mg/L) | 0.06 | 24 | 4.38 | 2.8 | 0.7 | 5.65 | 5.38 | 2.14 | 5 | 124.11 |
EC | TDS | pH | H | Ca2+ | Mg2+ | Na+ | K+ | Cl− | SO42− | NO3− | A | Altitude | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EC | 1 | ||||||||||||
TDS | 0.99 | 1 | |||||||||||
pH | 0.11 | 0.08 | 1 | ||||||||||
H | 0.82 | 0.78 | 0.12 | 1 | |||||||||
Ca2+ | 0.85 | 0.85 | 0.17 | 0.83 | 1 | ||||||||
Mg2+ | 0.78 | 0.77 | 0.14 | 0.71 | 0.53 | 1 | |||||||
Na+ | 0.71 | 0.70 | 0.01 | 0.47 | 0.45 | 0.52 | 1 | ||||||
K+ | 0.51 | 0.51 | 0.05 | 0.37 | 0.39 | 0.36 | 0.23 | 1 | |||||
Cl− | 0.76 | 0.76 | −0.04 | 0.53 | 0.68 | 0.33 | 0.56 | 0.63 | 1 | ||||
SO42− | 0.32 | 0.32 | −0.08 | 0.18 | 0.19 | 0.18 | 0.60 | −0.03 | 0.22 | 1 | |||
NO3− | 0.57 | 0.57 | −0.10 | 0.31 | 0.38 | 0.29 | 0.52 | 0.33 | 0.65 | 0.26 | 1 | ||
A | 0.44 | 0.43 | 0.15 | 0.48 | 0.41 | 0.59 | 0.52 | −0.11 | −0.07 | 0.37 | 0.02 | 1 | |
Altitude | −0.67 | −0.68 | 0.05 | −0.53 | −0.48 | −0.66 | −0.43 | −0.56 | −0.50 | −0.15 | −0.43 | −0.16 | 1 |
Measurement Site | Coordinates | NH4+ (mg/L) | NO2− (mg/L) | NO3− (mg/L) |
---|---|---|---|---|
Sant’Antonello in Montalto Uffugo | 39°28′47″ N | 0.8296 | 0.0462 | 3.3287 |
16°14′28″ E | ||||
Settimo in Montalto Uffugo | 39°25′15″ N | 0.6304 | 0.0150 | 1.1121 |
16°12′38″ E | ||||
Bonis | 39°28′50″ N | 2.1325 | 0.0249 | 1.8664 |
16°30′12″ E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Infusino, E.; Guagliardi, I.; Gaglioti, S.; Caloiero, T. Vulnerability to Nitrate Occurrence in the Spring Waters of the Sila Massif (Calabria, Southern Italy). Toxics 2022, 10, 137. https://doi.org/10.3390/toxics10030137
Infusino E, Guagliardi I, Gaglioti S, Caloiero T. Vulnerability to Nitrate Occurrence in the Spring Waters of the Sila Massif (Calabria, Southern Italy). Toxics. 2022; 10(3):137. https://doi.org/10.3390/toxics10030137
Chicago/Turabian StyleInfusino, Ernesto, Ilaria Guagliardi, Simona Gaglioti, and Tommaso Caloiero. 2022. "Vulnerability to Nitrate Occurrence in the Spring Waters of the Sila Massif (Calabria, Southern Italy)" Toxics 10, no. 3: 137. https://doi.org/10.3390/toxics10030137
APA StyleInfusino, E., Guagliardi, I., Gaglioti, S., & Caloiero, T. (2022). Vulnerability to Nitrate Occurrence in the Spring Waters of the Sila Massif (Calabria, Southern Italy). Toxics, 10(3), 137. https://doi.org/10.3390/toxics10030137