Energetic Compounds in the Trophic Chain—A Pilot Study Examining the Exposure Risk of Common Eiders (Somateria mollissima) to TNT, Its Metabolites, and By-Products
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Böttcher, C.; Knobloch, T.; Rühl, N.-P.; Sternheim, J.; Wichert, U.; Wöhler, J. Munitionsbelastung Der Deutschen Meeresgewässer—Bestandsaufnahme Und Empfehlungen; Bundesamt für Seeschifffahrt und Hydrographie (BSH), Sekretariat Bund/Länder-Messprogramm für die Meeresumwelt von Nord-und Ostsee (BMLP): Hamburg, Germany, 2011. [Google Scholar]
- ASCOBANS Resolution, No. 8: Addressing the Threats from Underwater Munitions. In Proceedings of the 8th Meeting of the Parties to ASCOBANS, Helsinki, Finland, 30 August–1 September 2016.
- Strehse, J.S.; Bünning, T.H.; Maser, E. Ocean Pollution—A Selection of Anthropogenic Implications. In Transitioning to Sustainable Life below Water; Ekau, W., Hornidge, A.-K., Eds.; MDPI: Basel, Switzerland, 2022; pp. 1–48. ISBN 978-3-03897-877-0. [Google Scholar]
- Carton, G.; Jagusiewicz, A. Historic Disposal of Munitions in US and European Coastal Waters, How Historic Information Can Be Used in Characterizing and Managing Risk. Mar. Technol. Soc. J. 2009, 43, 16–32. [Google Scholar] [CrossRef]
- Howard, B.; Aker, J.; Reid, M. Risk Management For Unexploded Ordinance (UXO) In The Marine Environment. Dalhousie J. Interdiscip. Manag. 2012, 8. [Google Scholar] [CrossRef]
- Appel, D.; Beck, A.; Eggert, A.; Gräwe, U.; Kampmeier, M.; Martin, H.-J.; Maser, E.; Schlosser, C.; Song, Y. Practical Guide for Environmental Monitoring of Conventional Munitions in the Seas—Results from the BMBF Funded Project UDEMM “Umweltmonitoring Für Die Delaboration von Munition Im Meer” Version 1.1; Greinert, J., Ed.; GEOMAR Helmholtz Centre for Ocean Research: Kiel, Germany, 2019; Volume 54. [Google Scholar]
- Beck, A.J.; Gledhill, M.; Schlosser, C.; Stamer, B.; Böttcher, C.; Sternheim, J.; Greinert, J.; Achterberg, E.P. Spread, Behavior, and Ecosystem Consequences of Conventional Munitions Compounds in Coastal Marine Waters. Front. Mar. Sci. 2018, 5, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Strehse, J.S.; Appel, D.; Geist, C.; Martin, H.J.; Maser, E. Biomonitoring of 2,4,6-Trinitrotoluene and Degradation Products in the Marine Environment with Transplanted Blue Mussels (M. Edulis). Toxicology 2017, 390, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Appel, D.; Strehse, J.S.; Martin, H.-J.; Maser, E. Bioaccumulation of 2,4,6-Trinitrotoluene (TNT) and It´s Metabolites Leaking from Corroded Munition in Transplanted Blue Mussels (M. Edulis). Mar. Pollut. Bull. 2018, 135, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Maser, E.; Strehse, J.S. Can Seafood from Marine Sites of Dumped World War Relicts Be Eaten? Arch. Toxicol. 2021, 95, 2255–2261. [Google Scholar] [CrossRef] [PubMed]
- Koch, M. Subaquatische Kampfmittelaltlasten in Der Ostsee—Neubewertung Des Status Quo, Risikopotenziale Und Resultierende Handlungsszenarien. Ph.D. Thesis, Leuphana Universität Lüneburg, Lüneburg, Germany, 2009. [Google Scholar]
- Scharsack, J.P.; Koske, D.; Straumer, K.; Kammann, U. Effects of Climate Change on Marine Dumped Munitions and Possible Consequence for Inhabiting Biota. Environ. Sci. Eur. 2021, 33, 1–10. [Google Scholar] [CrossRef]
- Darrach, M.R.; Chutjian, A.; Plett, G.A. Trace Explosives Signatures from World War II Unexploded Undersea Ordnance. Environ. Sci. Technol. 1998, 32, 1354–1358. [Google Scholar] [CrossRef]
- Gledhill, M.; Beck, A.J.; Stamer, B.; Schlosser, C.; Achterberg, E.P. Quantification of Munition Compounds in the Marine Environment by Solid Phase Extraction—Ultra High Performance Liquid Chromatography with Detection by Electrospray Ionisation—Mass Spectrometry. Talanta 2019, 200, 366–372. [Google Scholar] [CrossRef]
- Koske, D.; Straumer, K.; Goldenstein, N.I.; Hanel, R.; Lang, T.; Kammann, U. First Evidence of Explosives and Their Degradation Products in Dab (Limanda Limanda L.) from a Munition Dumpsite in the Baltic Sea. Mar. Pollut. Bull. 2020, 155, 111131. [Google Scholar] [CrossRef]
- Ownby, D.R.; Belden, J.B.; Lotufo, G.R.; Lydy, M.J. Accumulation of Trinitrotoluene (TNT) in Aquatic Organisms: Part 1—Bioconcentration and Distribution in Channel Catfish (Ictalurus Punctatus). Chemosphere 2005, 58, 1153–1159. [Google Scholar] [CrossRef]
- Belden, J.B.; Ownby, D.R.; Lotufo, G.R.; Lydy, M.J. Accumulation of Trinitrotoluene (TNT) in Aquatic Organisms: Part 2—Bioconcentration in Aquatic Invertebrates and Potential for Trophic Transfer to Channel Catfish (Ictalurus Punctatus). Chemosphere 2005, 58, 1161–1168. [Google Scholar] [CrossRef]
- Koske, D.; Goldenstein, N.I.; Kammann, U. Nitroaromatic Compounds Damage the DNA of Zebrafish Embryos (Danio Rerio). Aquat. Toxicol. 2019, 217, 105345. [Google Scholar] [CrossRef] [PubMed]
- Inouye, L.; Lachance, B.; Gong, P. Genotoxicity of Explosives. In Ecotoxicology of Explosives; CRC Press: Boca Raton, FL, USA, 2009; pp. 177–210. ISBN 9781420004342. [Google Scholar]
- Rosen, G.; Lotufo, G.R. Toxicity of Explosive Compounds to the Marine Mussel, Mytilus Galloprovincialis, in Aqueous Exposures. Ecotoxicol. Environ. Saf. 2007, 68, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.S.; Rust, J.H.; Barkley, J.J.; Furedi, E.M.; Lish, P.M. Six Month Oral Toxicity Study of Trinitrotoluene in Beagle Dogs. Toxicology 1990, 63, 233–244. [Google Scholar] [CrossRef]
- Johnson, M.S.; Ferguson, J.W.; Holladay, S.D. Immune Effects of Oral 2,4,6-Trinitrotoluene (TNT) Exposure to the White-Footed Mouse, Peromyscus Leucopus. Int. J. Toxicol. 2000, 19, 5–11. [Google Scholar] [CrossRef]
- Reddy, G.; Chandra, S.A.M.; Lish, J.W.; Qualls Jr, C.W. Toxicity of 2,4,6-Trinitrotoluene (TNT) in Hispid Cotton Rats (Sigmodum Hispidus): Hematological, Biochemical and Pathological Effects. Int. J. Toxicol. 2000, 19, 169–177. [Google Scholar] [CrossRef]
- Dilley, J.V.; Tyson, C.A.; Spanggord, R.J.; Sasmore, D.P.; Newell, G.W.; Dacre, J.C. Short-Term Oral Toxicity of 2,4,6-Trinitrotoluene in Mice, Rats and Dogs. J. Toxicol. Environ. Health 1982, 9, 565–585. [Google Scholar] [CrossRef]
- Gogal, R.M.; Johnson, M.S.; Larsen, C.T.; Prater, M.R.; Duncan, R.B.; Ward, D.L.; Holladay, S.D. Influence of Dietary 2, 4, 6-Trinitrotoluene Exposure in the Northern Bobwhite (Colinus Virginianus). Environ. Toxicol. Chem. 2002, 21, 81–86. [Google Scholar] [CrossRef]
- Johnson, M.S.; Michie, M.W.; Bazar, M.A.; Salice, C.J.; Gogal, R.M. Responses of Oral 2,4,6-Trinitrotoluene (TNT) Exposure to the Common Pigeon (Columba Livia): A Phylogenic and Methodological Comparison. Int. J. Toxicol. 2005, 24, 221–229. [Google Scholar] [CrossRef]
- Maser, E.; Strehse, J.S. “Don’t Blast”: Blast-in-Place (BiP) Operations of Dumped World War Munitions in the Oceans Significantly Increase Hazards to the Environment and the Human Seafood Consumer. Arch. Toxicol. 2020, 94, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Siebert, U.; Stürznickel, J.; Schaffeld, T.; Oheim, R.; Rolvien, T.; Prenger-Berninghoff, E.; Wohlsein, P.; Lakemeyer, J.; Rohner, S.; Aroha Schick, L.; et al. Blast Injury on Harbour Porpoises (Phocoena Phocoena) from the Baltic Sea after Explosions of Deposits of World War II Ammunition. Environ. Int. 2022, 159, 107014. [Google Scholar] [CrossRef]
- Slobodnik, J.; Gkotsis, G.; Nika, M.-C.; Vasilatos, K.; Thomaidis, N.S.; Alygizakis, N.; Oswald, P.; Rohner, S.; Siebert, U.; Reif, F.; et al. Screening Study on Hazardous Substances in Marine Mammals of the Baltic Sea—Wide-Scope Target and Suspect Screening; Texte 36/2022; German Environment Agency: Dessau-Roßlau, Germany, 2022; p. 122. [Google Scholar]
- Laursen, K.; Møller, A.P. Long-Term Changes in Nutrients and Mussel Stocks Are Related to Numbers of Breeding Eiders Somateria Mollissima at a Large Baltic Colony. PLoS ONE 2014, 9, e95851. [Google Scholar] [CrossRef]
- Lehikoinen, P.; Alhainen, M.; Frederiksen, M.; Jaatinen, K.; Juslin, R.; Kilpi, M.; Mikander, N.; Nagy, S. International Single Species Action Plan for the Conservation of the Common Eider Somateria m. Mollissima (Baltic, North & Celtic Seas, and Norway & Russia Populations) and S.m. Borealis (Svalbard & Franz Josef Land Population); AEWA Technical Series No. [XX]; AEWA: Bonn, Germany, 2020. [Google Scholar]
- Schick, L.A.; Wohlsein, P.; Rautenschlein, S.; Jung, A.; Boyi, J.O.; Glemarec, G.; Kroner, A.; Barth, S.A.; Siebert, U. Health Status of Bycaught Common Eiders (Somateria Mollissima) from the Western Baltic Sea. Animals 2022, 12, 2002. [Google Scholar] [CrossRef]
- van Franeker, J.A. Save the North Sea Fulmar-Litter-EcoQO Manual Part 1: Collection and Dissection Procedures; Alterra: Wageningen, The Netherlands, 2004. [Google Scholar]
- amucad.org Amucad.Org. Available online: https://amucad.org/ (accessed on 25 October 2022).
- Bünning, T.H.; Strehse, J.S.; Hollmann, A.C.; Bötticher, T.; Maser, E. A Toolbox for the Determination of Nitroaromatic Explosives in Marine Water, Sediment, and Biota Samples on Femtogram Levels by GC-MS/MS. Toxics 2021, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.W.; Barton, J.V.; Torres, C. Ecological, Radiological, and Toxicological Effects of Naval Bombardment on the Coral Reefs of Isla de Vieques, Puerto Rico. In Warfare Ecology; Machlis, G.E., Hanson, T., Špirić, Z., McKendry, J.E., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 65–122. ISBN 9789400712133. [Google Scholar]
- Beuth, J.M.; Mcwilliams, S.R.; Paton, P.W.C.; Osenkowski, J.E. Habitat Use and Movements of Common Eiders Wintering in Southern New England. J. Wildl. Manag. 2017, 81, 1276–1286. [Google Scholar] [CrossRef]
- Noer, H. Distribution and Movements of Eider Somateria Mollissima Populations Wintering in Danish Waters, Analysed from Ringing Recoveries. Danish Rev. Game Biol. 1991, 17, 1–28. [Google Scholar]
- Swennen, C. Dispersal and Migratory Movements of Eiders Somateria Mollissima Breeding in The Netherlands. Ornis Scand. 1990, 21, 17–27. [Google Scholar] [CrossRef]
- Desholm, M.; Christensen, T.K.; Scheiffarth, G.; Hario, M.; Andersson, Å.; Ens, B.; Camphuysen, C.J.; Nilsson, L.; Waltho, C.M.; Lorentsen, S.H.; et al. Status of the Baltic/Wadden Sea Population of the Common Eider Somateria m. Mollissima. Wildfowl 2002, 53, 167–203. [Google Scholar]
- Alerstam, T.; Bauer, C.-A.; Roos, G. Spring Migration of Eiders Somateria Mollissima in Southern Scandinavia. Ibis (Lond. 1859) 1974, 116, 194–210. [Google Scholar] [CrossRef]
- Brager, S.; Meissner, J.; Thiel, M. Temporal and Spatial Abundance of Wintering Common Eider Somateria Mollissima, Long-Tailed Duck Clangula Hyemalis, and Common Scoter Melanitta Nigra in Shallow Water Areas of the Southwestern Baltic Sea. Ornis Fenn. 1995, 72, 19–28. [Google Scholar]
- Skov, H.; Heinänen, S.; Žydelis, R.; Bellebaum, J.; Bzoma, S.; Dagys, M.; Durinck, J.; Garthe, S.; Grishanov, G.; Hario, M.; et al. Waterbird Populations and Pressures in the Baltic Sea; Nordic Council of Ministers: Copenhagen, Denmark, 2011; ISBN 9789289322492. [Google Scholar]
- Frey, T.; Greinert, J. Bomben Am Meeresgrund—Der Umgang Mit Den Kriegsaltlasten in Der Deutschen Ostsee. In Proceedings of the Altlasten 2021—Beiträge zum Seminar, Online Seminar, 18–19 May 2021; Egloffstein, T., Burkhard, G., Schumacher, K., Eds.; ICP Eigenverlag Bauen und Umwelt: Karlsruhe, Germany, 2021; pp. 87–96. [Google Scholar]
- Rigou, I.; Guillemette, M. Foraging Effort and Pre-Laying Strategy in Breeding Common Eiders. Waterbirds 2010, 33, 314–322. [Google Scholar] [CrossRef]
- Guillemette, M.; Himmelman, J.H.; Barette, C.; Reed, A. Habitat Selection by Common Eiders in Winter and Its Interaction with Flock Size. Can. J. Zool. 1993, 71, 1259–1266. [Google Scholar] [CrossRef]
- Guillemette, M.; Ydenberg, R.C.; Himmelman, J.H. The Role of Energy Intake Rate in Prey and Habitat Selection of Common Eiders Somateria Mollissima in Winter: A Risk-Sensitive Interpretation. J. Anim. Ecol. 1992, 61, 599. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the Scientific Committee on a Request from EFSA Related to A Harmonised Approach for Risk Assessment of Substances Which Are Both Genotoxic and Carcinogenic (Request No EFSA-Q-2004-010); European Food Safety Authority (EFSA): Parma, Italy, 2005. [Google Scholar]
- Beck, A.J.; Van Der Lee, E.M.; Eggert, A.; Stamer, B.; Gledhill, M.; Schlosser, C.; Achterberg, E.P. In Situ Measurements of Explosive Compound Dissolution Fluxes from Exposed Munition Material in the Baltic Sea. Environ. Sci. Technol. 2019, 53, 5652–5660. [Google Scholar] [CrossRef]
- Lotufo, G.R.; Chappel, M.A.; Price, C.L.; Ballentine, M.L.; Fuentes, A.A.; Bridges, T.S.; George, R.D.; Glisch, E.J.; Carton, G. Review and Synthesis of Evidence Regarding Environmental Risks Posed by Munitions Constituents (MC) in Aquatic Systems. ERDC/EL TR-17-17; Engineer Research and Development Center: Vicksburg, MS, USA, 2017. [Google Scholar]
- Lotufo, G.R.; Boyd, R.E.; Harmon, A.R.; Bednar, A.J.; Smith, J.C.; Simini, M.; Sunahara, G.I.; Hawari, J.; Kuperman, R.G. Accumulation of Insensitive Munition Compounds in the Earthworm Eisenia Andrei from Amended Soil: Methodological Considerations for Determination of Bioaccumulation Factors. Environ. Toxicol. Chem. 2021, 40, 1713–1725. [Google Scholar] [CrossRef]
- Beck, A.J.; Gledhill, M.; Kampmeier, M.; Feng, C.; Schlosser, C.; Greinert, J.; Achterberg, E.P. Explosives Compounds from Sea-Dumped Relic Munitions Accumulate in Marine Biota. Sci. Total Environ. 2021, 806, 151266. [Google Scholar] [CrossRef]
- Lotufo, G.R.; Rosen, G.; Wild, W.; Carton, G. Summary Review of the Aquatic Toxicology of Munitions Constituents Environmental Laboratory Summary Review of the Aquatic Toxicology of Munitions Constituents. ERDC/EL TR-13-8; Engineer Research and Development Center: Vicksburg, MS, USA, 2013. [Google Scholar]
- Rosen, G.; Lotufo, G.R. Bioaccumulation of Explosive Compounds in the Marine Mussel, Mytilus Galloprovincialis. Ecotoxicol. Environ. Saf. 2007, 68, 237–245. [Google Scholar] [CrossRef]
- Lotufo, G.R.; Belden, J.B.; Fisher, J.C.; Chen, S.F.; Mowery, R.A.; Chambliss, C.K.; Rosen, G. Accumulation and Depuration of Trinitrotoluene and Related Extractable and Nonextractable (Bound) Residues in Marine Fish and Mussels. Environ. Pollut. 2016, 210, 129–136. [Google Scholar] [CrossRef]
- Ballentine, M.; Tobias, C.; Vlahos, P.; Smith, R.; Cooper, C. Bioconcentration of TNT and RDX in Coastal Marine Biota. Arch. Environ. Contam. Toxicol. 2015, 68, 718–728. [Google Scholar] [CrossRef]
- Huber, P.; Mross, K.G. Zur Toxikologie Milätärspezifischer Explosivstoffe Und Deren Zersetzungsprodukten. 2001. Available online: https://dol.dl.uni-leipzig.de/servlets/MCRFileNodeServlet/PGSToxi_derivate_00000266/133_Huber_Philipp.pdf (accessed on 9 November 2022).
- Christensen, T.K.; Hounisen, J.P. Managing Hunted Populations through Sex-Specific Season Lengths: A Case of the Common Eider in the Baltic-Wadden Sea Flyway Population. Eur. J. Wildl. Res. 2014, 60, 717–726. [Google Scholar] [CrossRef]
- Lotufo, G.R.; Blackburn, W.; Marlborough, S.J.; Fleeger, J.W. Toxicity and Bioaccumulation of TNT in Marine Fish in Sediment Exposures. Ecotoxicol. Environ. Saf. 2010, 73, 1720–1727. [Google Scholar] [CrossRef] [Green Version]
- Korpinen, S.; Laamanen, M.; Andersen, J.H.; Asplund, L.; Berger, U.; Bignert, A.; Zahharov, A. HELCOM Hazardous Substances in the Baltic Sea—An Integrated Thematic Assessment of Hazardous Substances in the Baltic Sea. Balt. Sea Environ. Proc. 2010, 2010, 116. [Google Scholar]
- Tomza-Marciniak, A.; Pilarczyk, B.; Witczak, A.; Rzad, I.; Pilarczyk, R. PCB Residues in the Tissues of Sea Ducks Wintering on the South Coast of the Baltic Sea, Poland. Environ. Sci. Pollut. Res. 2019, 26, 11300–11313. [Google Scholar] [CrossRef] [PubMed]
- Sonne, C.; Lakemeyer, J.; Desforges, J.-P.; Eulaers, I.; Persson, S.; Stokholm, I.; Galatius, A.; Gross, S.; Gonnsen, K.; Lehnert, K.; et al. A Review of Pathogens in Selected Baltic Sea Indicator Species. Environ. Int. 2020, 137, 105565. [Google Scholar] [CrossRef] [PubMed]
- Frey, T.; Beldowski, J.; Maser, E. Explosive Ordnance in the Baltic Sea: New Tools for Decision Makers. J. Conv. Weapons Destr. 2020, 23, 3–11. [Google Scholar]
Animal Data | Sample Preparation | ||||||||
---|---|---|---|---|---|---|---|---|---|
Animal ID | Collection Date | Sex | Age | Nutritional State | Liver | Kidney | Muscle | Brain | Bile |
Sm1 | 24.01.2017 | male | juvenile | moderate | ❄ | ❄ | ❄ | ||
Sm2 | 24.01.2017 | female | subadult | moderate | ❄; β-PV | ❄; β-PV | ❄ | ❄ | β-PV; β-HP |
Sm3 | 05.04.2017 | male | immature | moderate | ❄ | ❄ | ❄ | ||
Sm4 | 05.04.2017 | female | adult | good | ❄ | ❄ | ❄ | ||
Sm5 | 05.04.2017 | male | subadult | moderate | ❄ | ❄ | ❄ | ||
Sm6 | 05.04.2017 | male | adult | good | ❄ | ❄ | ❄ | ||
Sm7 | 03.11.2017 | female | juvenile | bad | ❄ | ❄ | ❄ | ||
Sm8 | 10.01.2018 | male | adult | bad | ❄ | ❄ | ❄ | ||
Sm9 | 19.01.2018 | male | adult | bad | ❄; β-PV | ❄; β-PV | ❄ | ❄ | β-PV; β-HP |
Sm10 | 19.01.2018 | female | adult | bad | ❄ | ❄ | ❄ | ||
Sm11 | 19.01.2018 | female | adult | good | ❄ | ❄ | ❄ | ||
Sm12 | 19.01.2018 | male | subadult | moderate | ❄ | ❄ | ❄ | ||
Sm13 | 19.01.2018 | female | adult | good | ❄; β-PV | ❄; β-PV | ❄ | ❄ | β-PV; β-HP |
Sm14 | 23.03.2018 | female | subadult | good | ❄ | ❄ | ❄ | ||
Sm15 | 06.09.2018 | male | juvenile | good | ❄; β-PV | ❄; β-PV | ❄ | ❄ | β-PV; β-HP |
Sm16 | 27.11.2018 | male | adult | good | ❄; β-PV | ❄; β-PV | ❄ | ❄ | β-PV; β-HP |
Sm17 | 07.12.2018 | male | adult | very bad | ❄ | ❄ | ❄ | ||
Sm18 | 07.12.2018 | male | juvenile | bad | ❄ | ❄ | ❄ | ||
Sm19 | 18.01.2019 | male | adult | moderate | ❄ | ❄ | ❄ | ||
Sm20 | 06.02.2019 | male | adult | moderate | ❄ | ❄ | ❄ | ||
Sm21 | 13.02.2019 | male | adult | moderate | ❄ | ❄ | ❄ | ||
Sm22 | 27.02.2019 | male | adult | moderate | ❄ | ❄ | ❄ | ||
Sm23 | 27.02.2019 | female | adult | good | ❄; β-PV | ❄; β-PV | ❄ | ❄ | β-PV; β-HP |
Sm24 | 28.02.2019 | female | adult | good | ❄ | ❄ | ❄ | ||
Sm25 | nb | female | adult | good | ❄ | ❄ | ❄ |
Compound | |||||
---|---|---|---|---|---|
TNT | 1,3-DNB | 2,4-DNT | 2-ADNT | 4-ADNT | |
LoD (ng/g dw; ng/mL) | 0.5 | 0.3 | 0.1 | 0.1 | 0.1 |
LOQ (ng/g dw; ng/mL) | 1.6 | 1.1 | 0.4 | 0.3 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schick, L.A.; Strehse, J.S.; Bünning, T.H.; Maser, E.; Siebert, U. Energetic Compounds in the Trophic Chain—A Pilot Study Examining the Exposure Risk of Common Eiders (Somateria mollissima) to TNT, Its Metabolites, and By-Products. Toxics 2022, 10, 685. https://doi.org/10.3390/toxics10110685
Schick LA, Strehse JS, Bünning TH, Maser E, Siebert U. Energetic Compounds in the Trophic Chain—A Pilot Study Examining the Exposure Risk of Common Eiders (Somateria mollissima) to TNT, Its Metabolites, and By-Products. Toxics. 2022; 10(11):685. https://doi.org/10.3390/toxics10110685
Chicago/Turabian StyleSchick, Luca Aroha, Jennifer Susanne Strehse, Tobias Hartwig Bünning, Edmund Maser, and Ursula Siebert. 2022. "Energetic Compounds in the Trophic Chain—A Pilot Study Examining the Exposure Risk of Common Eiders (Somateria mollissima) to TNT, Its Metabolites, and By-Products" Toxics 10, no. 11: 685. https://doi.org/10.3390/toxics10110685