Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.1.1. Sample Collection for Soil Analysis
2.1.2. Sample Collection for Foliar Analysis
2.1.3. Extracts’ Preparation
2.2. Phytochemical Analysis
2.2.1. Quantification of Total Phenolic Content (TPC)
2.2.2. Quantification of Total Flavonoid Content (TFC)
2.3. Antioxidant Analysis
2.3.1. FRAP Assay
2.3.2. ABTS Assay
2.3.3. DPPH Assay
2.4. Statistical Analysis
3. Results
3.1. Soil and Leaf Analysis
3.2. Phytochemical Analysis
3.3. Antioxidant Analysis
3.4. Calcium and Protein Content Analysis in Moringa Leaves
3.5. Multivariate Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paliwal, R.; Sharma, V.; Pracheta, J. A review on horse radish tree (Moringa oleifera): A multipurpose tree with high economic and commercial importance. Asian J. Biotechnol. 2011, 3, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Godino, M.; Arias, C.; Izquierdo, M.I. Moringa oleifera: Potential areas of cultivation on the Iberian Peninsula. Acta Hortic. 2017, 1158, 405–412. [Google Scholar] [CrossRef]
- Vélez-Gavilán, J. Moringa oleifera (horse radish tree). In Invasive Species Compendium; CABI: Wallingford, UK, 2017. [Google Scholar]
- Gopalakrishnan, L.; Kruthi, D.; Devarai, S.K. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 59, 49–56. [Google Scholar] [CrossRef] [Green Version]
- González-Burgos, E.; Ureña-Vacas, I.; Sánchez, M.; Gómez-Serranillos, M.P. Nutritional Value of Moringa oleifera Lam. Leaf Powder Extracts and Their Neuroprotective Effects via Antioxidative and Mitochondrial Regulation. Nutrients 2021, 13, 2203. [Google Scholar] [CrossRef]
- Oduro, I.; Ellis, W.O.; Owusu, D. Nutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves. Sci. Res. Essays 2008, 3, 57–60. [Google Scholar]
- Mpagi, K.H. Removal of Natural Organic Matter and Control of Trihalomethane Formation in Water Treatment. Ph.D. Thesis, KTH Royal Institute of Technology, Architecture and the Built Environment, Stockholm, Sweden, 2012. [Google Scholar]
- Abdalla, M. The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants. Int. J. Plant Physiol. Biochem. 2013, 5, 42–49. [Google Scholar]
- Peng, Z.; Hou, H.; Zhang, K.; Li, B. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats. Food Chem. 2017, 221, 373–378. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 11 July 2022).
- Available online: https://tradingeconomics.com/ecuador/child-malnutrition-wb-data.html (accessed on 11 July 2022).
- Christodoulou, C.; Cooper, C. What is osteoporosis? Postgrad Med. J. 2003, 79, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Black, D.; Cooper, C. Epidemiology of fractures and assessment of fracture risk. Clin. Lab. Med. 2000, 20, 439–453. [Google Scholar] [CrossRef]
- Latin American and Caribbean Demographic Centre. Demographic Bulletin no. 62. Latin America: Population Projections 1970–2050; CELADE: Santiago, Chile, 1988. [Google Scholar]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [Green Version]
- De Saint Sauveur, A.; Broin, M. Growing and Processing Moringa Leaves; Imprimerie Horizon: Châtillon, France, 2010. [Google Scholar]
- Djoko, S.W.; Kembauw, E.; Kapelle, I.B.D. Moringa oleifera milk powder as a supplementary food for malnutrition children (SUSUKE). IOP Conf. Series Earth Environ. Sci. 2021, 883, 012090. [Google Scholar] [CrossRef]
- Dhakar, R.C.; Maurya, S.D.; Pooniya, B.K.; Bairwa, N.; Gupta, M.S. Moringa: The herbal gold to combat malnutrition. Chron. Young Sci. 2011, 2, 119–125. [Google Scholar] [CrossRef]
- Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapy-induced toxicity–Exploring the armory of obscurity. Saudi. Pharm. J. 2018, 26, 177–190. [Google Scholar] [CrossRef]
- Block, K.I.; Koch, A.C.; Mead, M.N.; Tothy, P.K.; Newman, R.A.; Gyllenhaal, C. Impact of antioxidant supplementation on chemotherapeutic toxicity: A systematic review of the evidence from randomized controlled trials. Int. J. Cancer 2008, 123, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Sreelatha, S.; Padma, P.R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 2009, 64, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Morán-Tejeda, E.; Bazo, J.; López-Moreno, J.I.; Aguilar, E.; Azorín-Molina, C.; Sanchez-Lorenzo, A.; Martínez, R.; Nieto, J.J.; Mejía, R.; Martín-Hernández, N.; et al. Climate trends and variability in Ecuador (1966–2011). Int. J. Climatol. 2016, 36, 3839–3855. [Google Scholar] [CrossRef] [Green Version]
- Gobierno Autónomo Descentralizado de la Provincia de Esmeraldas [GADPE]. Available online: https://www.prefecturadeesmeraldas.gob.ec/web/assets/2017--pdot-gadpe-septiembre.pdf (accessed on 5 May 2022).
- GADP Guasaganda. Guasaganda: Actualización del plan de desarrollo y ordenamiento territorial 2020–2023. In Guasaganda; GADP: London, UK, 2019; Available online: https://guasaganda.gob.ec/cotopaxi/wp-content/uploads/2021/08/PDOT-GUASAGANDA-FINAL.pdf (accessed on 15 June 2022).
- Nieto, C.; Caicedo, C. Análisis reflexivo sobre el desarrollo agropecuario sostenible en la Amazonía Ecuatoriana, INIAP–EECA. INIAP 2012, 405, 118. [Google Scholar]
- Tiwari, B.K.; Brunton, N.P.; Brennan, C. Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction; John & Wiley Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Marrocos, P.C.L.; Loureiro, G.A.H.D.A.; De Araujo, Q.R.; Sodré, G.A.; Ahnert, D.; Baligar, V.C. Mineral nutrient ratios and cacao productivity. J. Plant Nutr. 2020, 43, 2368–2382. [Google Scholar] [CrossRef]
- Madaan, R.; Bansal, G.; Kumar, S.; Sharma, A. Estimation of total phenols and flavonoids in extracts of Actaea spicata roots and antioxidant activity studies. Indian J. Pharm. Sci. 2011, 73, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effect on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar]
- Benzie, I.F.F.; Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Pacetti, D.; Lucci, P.; Núñez, O.; Menichini, F.; Frega, N.G.; Tundis, R. Prunus persica var. platycarpa (Tabacchiera Peach): Bioactive compounds and antioxidant activity of pulp, peel and seed ethanolic extracts. Plant Foods Hum. Nutr. 2015, 70, 331–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010, 23, 545–553. [Google Scholar] [CrossRef]
- Allen, J.C.; Issa, J.Y.; Cai, W. Calcium content, in vitro digestibility, and bioaccessibility in leaves of spinach (Spinacia oleracea), sweet potato (Ipomea batatas), and drumstick tree (Moringa oleifera). F1000Research 2014, 3, 65. [Google Scholar] [CrossRef]
- Peñalver, R.; Martínez-Zamora, L.; Lorenzo, J.M.; Ros, G.; Nieto, G. Nutritional and Antioxidant Properties of Moringa oleifera Leaves in Functional Foods. Foods 2022, 11, 1107. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Valdez-Solana, M.A.; Mejía-García, V.Y.; Téllez-Valencia, A.; García-Arenas, G.; Salas-Pacheco, J.; Alba-Romero, J.J.; Sierra-Campos, E. Nutritional Content and Elemental and Phytochemical Analyses of Moringa oleifera Grown in Mexico. J. Chem. 2015, 2015, 860381. [Google Scholar] [CrossRef] [Green Version]
- Witt, K.A. The Nutrient Content of Moringa oleifera Leaves; Messiah College Department of Nutrition and Dietetics: Mechanicsburg, PA, USA, 2013. [Google Scholar]
- Aslam, M.; Anwar, F.; Nadeem, R.; Rashid Umer, R.; Tasneem, K.; Nadeem, M. Mineral Composition of Moringa oleifera Leaves and Pods from Different Regions of Punjab, Pakistan. Asian J. Plant Sci. 2005, 4, 417–421. [Google Scholar] [CrossRef] [Green Version]
- XLSTAT pro. Data Analysis and Statistical Solution for Microsoft Excel; Addinsoft: Paris, France, 2013. [Google Scholar]
- Murtadha, H.M.; Maranville, J.W.; Clark, R.B.; Clegg, M.D. Effects of temperature and relative humidity on growth and calcium uptake, translocation, and accumulation in sorghum. J. Plant Nutr. 1989, 12, 535–545. [Google Scholar] [CrossRef]
- Asghari, G.; Palizban, A.; Bakshaei, B. Quantitative analysis of the nutritional components in leaves and seeds of the Persian Moringa peregrine (RForssk.) Fiori. Pharm. Res. 2015, 7, 242–248. [Google Scholar]
- Sankhyan, N.; Sharma, A.; Seth, C.; Chauhan, A.; Kulshrestha, S. Determination and comparison of vitamin C content from Moringa oleifera by different methods. Int. J. Agric. Sci. Res. 2013, 3, 67–70. [Google Scholar]
- Sulastri, E.; Zubair, M.S.; Anas, N.I.; Abidin, S.; Hardani, R.; Yulianti, R.A. Total Phenolic, Total Flavonoid, Quercetin Content and Antioxidant Activity of Standardized Extract of Moringa oleifera Leaf from Regions with Different Elevation. Pharmacog. J. 2018, 10, s104–s108. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Maldonado, S.H.; López-Manzano, M.J.; Madera-Santana, T.J.; Núñez-Colín, C.A.; Grijalva-Verdugo, C.P.; Villa-Lerma, A.G.; Rodríguez-Núñez, J.R. Nutritional characterization of Moringa oleifera leaves, seeds, husks and flowers from two regions of Mexico. Agron. Colomb. 2020, 38, 287–297. [Google Scholar] [CrossRef]
- Leone, A.; Fiorillo, G.; Criscuoli, F.; Ravasenghi, S.; Santagostini, L.; Fico, G.; Spadafranca, A.; Battezzati, A.; Schiraldi, A.; Pozzi, F.; et al. Nutritional Characterization and Phenolic Profiling of Moringa oleifera Leaves Grown in Chad, Sahrawi Refugee Camps, and Haiti. Int. J. Mol. Sci. 2015, 16, 18923–18937. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-B.; Chen, G.-L.; Guo, M.-Q. Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Moringa oleifera from Kenya and Their Correlations with Flavonoids. Antioxidants 2019, 8, 296. [Google Scholar] [CrossRef]
- Thippeswamy, T.G.; Shreedhar, M.V.; Sreenivasa Murty, B.R.; Thejaswi, N. Ascorbic acid and mineral content in Moringa oleifera leaves: A study of ascorbic acid stability. J. Pharm. Sci. Res. 2020, 12, 978–986. [Google Scholar]
- Hruby, A.; Jacques, P.F. Protein Intake and Human Health: Implications of Units of Protein Intake. Adv. Nutr. 2021, 12, 71–88. [Google Scholar] [CrossRef]
- Zhi-Liang, Z. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal. Behav. 2009, 4, 584–591. [Google Scholar]
- Chowdhury, T.; Chowdhury, A.H.; Qingyue, W.; Enyoh, C.E.; Wang, W.; Khan, S.I. Nutrient uptake and pharmaceutical compounds of Aloe vera as influenced by integration of inorganic fertilizer and poultry manure in soil. Heliyon 2021, 7, e07464. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
Element/Unit | Coastal Region/Diagnosis | Andean Region/Diagnosis | Amazonian Region/Diagnosis |
---|---|---|---|
N (ppm) | 31 ± 0.756/Medium | 8 ± 0.266/Low | 58 ± 0.337/Medium |
P (ppm) | 12 ± 0.684/Medium | 8 ± 0.0603/Low | 12 ± 0.724/Medium |
K (meq/100 g) | 0.06 ± 0.0025/Low | 0.09 ± 0.005/Low | 0.84 ± 0.032/High |
S (ppm) | No determination/No determination | No determination/No determination | No determination/No determination |
Ca (meq/100 g) | 3.65 ± 0.056/High | 7.65 ± 0.695/High | 15.53 ± 0.557/High |
Mg (meq/100 g) | 0.57 ± 0.043/Medium | 0.55 ± 0.0642/Medium | 1.92 ± 0.080/High |
Fe (ppm) | 325.602 ± 8.409/High | No determination/No determination | 230.7 ± 22.03/High |
Mn (ppm) | 16.238 ± 1.856/High | No determination/No determination | 18.25 ± 0.854/High |
Zn (ppm) | 3.869 ± 0.269/High | No determination/No determination | 3.91 ± 0.229/High |
Cu (ppm) | 7.08 ± 0.703/High | No determination/No determination | 5.75 ± 1.071/High |
B (ppm) | <0.5 ± 0.038/No determination | No determination/No determination | 0.15 ± 0.038/Low |
Ecuadorian Regions | Comparison | |||||||
---|---|---|---|---|---|---|---|---|
Element/ Unit | Coastal | Andean | Amazonian | Average of the 3 Regions | Moyo et al. * [37] | Valdez-Solana et al. * [38] | Witt [39] | Aslam et al. [40] |
N (%) | 4.72 ± 0.121 | 4.39 ± 0.04 | 4.69 ± 0.045 | 4.60 ± 0.182 | 4.8 | 1.78 | ND | ND |
P (%) | 0.32 ± 0.021 | 0.32 ± 0.009 | 0.33 ± 0.004 | 0.32 ± 0.006 | 0.3 | ND | ND | 0.13 |
K (%) | 2.31 ± 0.045 | 2.17 ± 0.036 | 2.44 ± 0.04 | 2.31 ± 0.135 | 1.5 | 1.83 | 1.46 | 2.17 |
S (%) | 0.62 ± 0.043 | 0.5 ± 0.018 | 0.6 ± 0.026 | 0.57 ± 0.064 | 0.63 | ND | ND | ND |
Ca (%) | 2.50 ± 0.046 | 1.78 ± 0.026 | 2.40 ± 0.02 | 2.23 ± 0.39 | 3.65 | 2.32 | 1.9 | 2.27 |
Mg (%) | 0.2 ± 0.026 | 0.37 ± 0.01 | 0.2 ± 0.017 | 0.26 ± 0.098 | 0.5 | 0.33 | 0.47 | 0.1 |
Fe (mg/kg) | 99.98± 4.105 | 129.46 ± 5.066 | 96.96 ± 1.093 | 108.80 ± 17.955 | 490 | 130 | 325 | 391.67 |
Mn (mg/kg) | 34.99 ± 1.22 | 131.96 ± 1.505 | 35.49 ± 0.429 | 67.48 ± 55.842 | 86.8 | ND | ND | 95.8 |
Zn (mg/kg) | 18.5 ± 0.917 | 20.49 ± 1.767 | 19.49 ± 1.64 | 19.49 ± 0.995 | 31.03 | 13 | 24 | 21.73 |
Cu (mg/kg) | 9.5 ± 0.398 | 9 ± 0.0174 | 9 ± 0.217 | 9.17 ± 0.289 | 8.25 | 14.4 | 9 | 9.33 |
B (mg/kg) | ND | ND | ND | ND | 49.93 | ND | ND | ND |
Coastal Region | Analysis | Andean Region | Analysis | Amazonian Region | Analysis | |
---|---|---|---|---|---|---|
K/Mg | 0.11 ± 0.006 | Def K | 0.16 ± 0.013 | Def K | 0.44 ± 0.031 | Def Mg |
Ca/Mg | 6.40 ± 0.388 | Def Mg | 13.91 ± 0.783 | Def Mg | 8.09 ± 0.376 | Def Mg |
(Ca+Mg)/K | 70.33 ± 2.269 | Def K | 91.11 ± 3.498 | Def K | 20.77 ± 0.754 | optimum |
Ca/K | 60.83 ± 2.144 | Def K | 85.00 ± 3.096 | Def K | 18.49 ± 0.613 | optimum |
TPC (mg GAE/100 g DW) | TFC (mg QE/100 g DW) | |
---|---|---|
Coastal region | 152.6947 ± 4.01 | 74.133 ± 4.618 |
Andean region | 79.2014 ± 4.49 | 37.4667 ± 2.201 |
Amazonian region | 43.6796 ± 4.047 | 20.7 ± 0.917 |
FRAP (mg Ferric Sulfate/100 g DW) | ABTS (mg TEAC/100 g DW) | DPPH (mg TEAC/100 g DW) | |
---|---|---|---|
Coastal region | 821.4012 ± 19.883 | 41.866 ± 1.321 | 29.737 ± 1.303 |
Andean region | 575.0679 ± 0.993 | 32.247 ± 3.034 | 25.523 ± 3.034 |
Amazonian region | 409.7345 ± 5.138 | 17.588 ± 2.302 | 19.496 ± 2.302 |
Calcium Content % | Protein Content % | Vitamin C (mg/100 g Leaves) | |
---|---|---|---|
Coastal region | 2.50% ± 0.04% | 35.48% ± 0.86 % | 156.85 ± 1.652 |
Andean region | 1.78% ± 0.05% | 23.13% ± 0.20% | 113.28 ± 0.725 |
Amazonian region | 2.40% ± 0.01% | 32.79% ± 0.95% | 86.79 ± 1.285 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, R.A.; Acurio Criollo, O.S.; Quishpe Nasimba, J.P.; Melo Heras, E.J.; Galván Acaro, D.K.; Landazuri Abarca, P.A.; Florescu, L.I.; Catana, R.D. Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam. Toxics 2022, 10, 661. https://doi.org/10.3390/toxics10110661
Mihai RA, Acurio Criollo OS, Quishpe Nasimba JP, Melo Heras EJ, Galván Acaro DK, Landazuri Abarca PA, Florescu LI, Catana RD. Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam. Toxics. 2022; 10(11):661. https://doi.org/10.3390/toxics10110661
Chicago/Turabian StyleMihai, Raluca A., Osmar S. Acurio Criollo, Jean P. Quishpe Nasimba, Erly J. Melo Heras, Dayana K. Galván Acaro, Pablo A. Landazuri Abarca, Larisa I. Florescu, and Rodica D. Catana. 2022. "Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam." Toxics 10, no. 11: 661. https://doi.org/10.3390/toxics10110661
APA StyleMihai, R. A., Acurio Criollo, O. S., Quishpe Nasimba, J. P., Melo Heras, E. J., Galván Acaro, D. K., Landazuri Abarca, P. A., Florescu, L. I., & Catana, R. D. (2022). Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam. Toxics, 10(11), 661. https://doi.org/10.3390/toxics10110661