Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review
Abstract
:1. Introduction
2. Bioaccumulation of HBCDs in Marine Biotas
3. Biomagnification of HBCDs in Marine Food Web
4. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanabe, S. Temporal trends of brominated flame retardants in coastal waters of Japan and South China: Retrospective monitoring study using archived samples from es-Bank, Ehime University, Japan. Mar. Pollut. Bull. 2008, 57, 267–274. [Google Scholar] [CrossRef]
- Bjermo, H.; Aune, M.; Cantillana, T.; Glynn, A.; Lind, P.M.; Ridefelt, P.; Darnerud, P.O. Serum levels of brominated flame retardants (BFRs: PBDE, HBCD) and influence of dietary factors in a population-based study on Swedish adults. Chemosphere 2017, 167, 485–491. [Google Scholar] [CrossRef]
- Li, P.; Yang, C.Q.; Jin, J.; Wang, Y.; Liu, W.Z.; Ding, W.W. Correlations between HBCD and thyroid hormone concentrations in human serum from production source area. Huan Jing Ke Xue Huanjing Kexue 2014, 35, 3970–3976. [Google Scholar]
- Ryan, J.J.; Rawn, D.F. The brominated flame retardants, PBDEs and HBCD, in Canadian human milk samples collected from 1992 to 2005; concentrations and trends. Environ. Int. 2014, 70, 1–8. [Google Scholar] [CrossRef]
- Carignan, C.C.; Abdallah, M.A.; Wu, N.; Heiger-Bernays, W.; McClean, M.D.; Harrad, S.; Webster, T.F. Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environ. Sci. Technol. 2012, 46, 12146–12153. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Lu, Y.; Zhang, Y.; Khan, K.; Wang, C.; Baninla, Y. An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China. Environ. Pollut. 2018, 236, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Choi, Y.J.; Barghi, M.; Kim, J.H.; Jung, J.W.; Kim, K.; Kang, J.H.; Lammel, G.; Chang, Y.S. Occurrence, distribution, and bioaccumulation of new and legacy persistent organic pollutants in an ecosystem on King George Island, maritime Antarctica. J. Hazard. Mater. 2021, 405, 124141. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, X.; Zeng, Y.; Deng, M.; Tu, W.; Wu, Y.; Mai, B. Bioaccumulation and biomagni fi cation of hexabromocyclododecane (HBCDD) in insect-dominated food webs from a former e-waste recycling site in South China. Chemosphere 2020, 240, 124813. [Google Scholar] [CrossRef]
- Choo, G.; Lee, I.S.; Oh, J.E. Species and habitat-dependent accumulation and biomagnification of brominated flame retardants and PBDE metabolites. J. Hazard. Mater. 2019, 371, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Zhang, X.; Qiu, J.W.; Leung, K.M.Y.; Lam, J.C.W.; Lam, P.K.S. Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human Exposure. Environ. Sci. Technol. 2018, 52, 8183–8193. [Google Scholar] [CrossRef]
- Ema, M.; Fujii, S.; Hirata-Koizumi, M.; Matsumoto, M. Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reprod. Toxicol. 2008, 25, 335–351. [Google Scholar] [CrossRef]
- Saegusa, Y.; Fujimoto, H.; Woo, G.H.; Inoue, K.; Takahashi, M.; Mitsumori, K.; Hirose, M.; Nishikawa, A.; Shibutani, M. Developmental toxicity of brominated flame retardants, tetrabromobisphenol A and 1,2,5,6,9,10-hexabromocyclododecane, in rat offspring after maternal exposure from mid-gestation through lactation. Reprod. Toxicol. 2009, 28, 456–467. [Google Scholar] [CrossRef]
- Dong, L.; Zheng, L.; Yang, S.; Yan, Z.; Jin, W.; Yan, Y. Deriving freshwater safety thresholds for hexabromocyclododecane and comparison of toxicity of brominated flame retardants. Ecotoxicol. Environ. Saf. 2017, 139, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, K.; Berger, A. Long-term toxicity of hexabromocyclododecane (HBCDD) to the benthic clam Macoma balthica (L.) from the Baltic Sea. Aquat. Toxicol. 2009, 95, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Shen, R.; Liu, W.; Li, D.; Huang, L.; Shi, D. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma. Mar. Pollut. Bull. 2015, 101, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Zhang, D.; Yan, C.; Zhang, X. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos. Aquat. Toxicol. 2012, 112–113, 1–10. [Google Scholar] [CrossRef]
- Deng, J.; Yu, L.; Liu, C.; Yu, K.; Shi, X.; Yeung, L.W.; Lam, P.K.; Wu, R.S.; Zhou, B. Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat. Toxicol. 2009, 93, 29–36. [Google Scholar] [CrossRef]
- Zhu, N.; Li, A.; Wang, T.; Wang, P.; Qu, G.; Ruan, T.; Fu, J.; Yuan, B.; Zeng, L.; Wang, Y.; et al. Tris(2,3-dibromopropyl) isocyanurate, hexabromocyclododecanes, and polybrominated diphenyl ethers in mollusks from Chinese Bohai Sea. Environ. Sci. Technol. 2012, 46, 7174–7181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Y.; Wang, P.; Shi, Y. Biomagnification of Hexabromocyclododecane (HBCD) in a coastal ecosystem near a large producer in China: Human exposure implication through food web transfer. Sci. Total Environ. 2018, 624, 1213–1220. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Liu, F.; Dai, Y.; Qin, X.; Ruan, Y.; Zhao, L.; Gan, Z. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure. Chemosphere 2013, 93, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, K.; Sun, H.; Wang, F.; Yao, Y. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China. Environ. Pollut. 2017, 222, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Lam, J.C.; Wu, X.; Sun, L.; Xie, Z.; Lam, P.K. Hexabromocyclododecanes (HBCDs) in marine fishes along the Chinese coastline. Chemosphere 2011, 82, 1662–1668. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Sun, Y.; Wang, W.; Xie, J.; Xie, C.; Hu, Y.; Gao, Y.; Xu, X.; Luo, X.; et al. Tetrabromobisphenol A and hexabromocyclododecanes in sediments and biota from two typical mangrove wetlands of South China: Distribution, bioaccumulation and biomagnification. Sci. Total Environ. 2021, 750, 141695. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.C.; Lau, R.K.; Murphy, M.B.; Lam, P.K. Temporal trends of hexabromocyclododecanes (HBCDs) and polybrominated diphenyl ethers (PBDEs) and detection of two novel flame retardants in marine mammals from Hong Kong, South China. Environ. Sci. Technol. 2009, 43, 6944–6949. [Google Scholar] [CrossRef]
- Ruan, Y.; Lam, J.C.W.; Zhang, X.; Lam, P.K.S. Temporal Changes and Stereoisomeric Compositions of 1,2,5,6,9,10-Hexabromocyclododecane and 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Marine Mammals from the South China Sea. Environ. Sci. Technol. 2018, 52, 2517–2526. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Qin, Y.; Zheng, B.; Zhang, L. Heavy metal pollution in Tianjin Bohai Bay, China. J. Environ. Sci. 2008, 20, 814–819. [Google Scholar] [CrossRef]
- Gu, S.Y.; Ekpeghere, K.I.; Kim, H.Y.; Lee, I.S.; Kim, D.H.; Choo, G.; Oh, J.E. Brominated flame retardants in marine environment focused on aquaculture area: Occurrence, source and bioaccumulation. Sci. Total Environ. 2017, 601–602, 1182–1191. [Google Scholar] [CrossRef]
- Aznar-Alemany, O.; Trabaón, L.; Jacobs, S.; Barbosa, V.L.; Tejedor, M.F.; Granby, K.; Kwadijk, C.; Cunha, S.C.; Ferrari, F.; Vandermeersch, G.; et al. Occurrence of halogenated flame retardants in commercial seafood species available in European markets. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 104, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueno, D.; Isobe, T.; Ramu, K.; Tanabe, S.; Alaee, M.; Marvin, C.; Inoue, K.; Someya, T.; Miyajima, T.; Kodama, H.; et al. Spatial distribution of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs) and organochlorines in bivalves from Japanese coastal waters. Chemosphere 2010, 78, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Haukas, M.; Ruus, A.; Hylland, K.; Berge, J.A.; Mariussen, E. Bioavailability of hexabromocyclododecane to the polychaete Hediste diversicolor: Exposure through sediment and food from a contaminated fjord. Environ. Toxicol. Chem. 2010, 29, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Lin, L.; Yan, C.; Zhang, X. Diastereoisomer- and enantiomer-specific accumulation, depuration, and bioisomerization of hexabromocyclododecanes in zebrafish (Danio rerio). Environ. Sci. Technol. 2012, 46, 11040–11046. [Google Scholar] [CrossRef] [PubMed]
- Law, K.; Palace, V.P.; Halldorson, T.; Danell, R.; Wautier, K.; Evans, B.; Alaee, M.; Marvin, C.; Tomy, G.T. Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) I: Bioaccumulation parameters and evidence of bioisomerization. Environ. Toxicol. Chem. 2006, 25, 1757–1761. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, L.; Tao, Y.; Tian, S.; Hu, Y. Identification and expression of differentially expressed genes in clam Venerupis philippinarum in response to environmental pollutant hexabromocyclododecane (HBCD). J. Exp. Mar. Biol. Ecol. 2013, 445, 166–173. [Google Scholar] [CrossRef]
- Janák, K.; Covaci, A.; Voorspoels, S.; Becher, G. Hexabromocyclododecane in marine species from the Western Scheldt Estuary: Diastereoisomer- and enantiomer-specific accumulation. Environ. Sci. Technol. 2005, 39, 1987–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, R.; Murata, S.; Ashizuka, Y.; Shintani, Y.; Hori, T.; Tsutsumi, T. Hexabromocyclododecane determination in seafood samples collected from Japanese coastal areas. Chemosphere 2010, 81, 445–452. [Google Scholar] [CrossRef]
- Gong, W.; Zhu, L.; Hao, Y. Lethal and Sublethal Toxicity Comparison of BFRs to Three Marine Planktonic Copepods: Effects on Survival, Metabolism and Ingestion. PLoS ONE 2016, 11, e0147790. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Lv, D.; Liu, W.; Shen, R.; Li, D.; Hong, H. Accumulation and developmental toxicity of hexabromocyclododecanes (HBCDs) on the marine copepod Tigriopus japonicus. Chemosphere 2017, 167, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Seuront, L. Hydrocarbon contamination decreases mating success in a marine planktonic copepod. PLoS ONE 2011, 6, e26283. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Li, D.; Shen, R.; Wang, X.; Shi, D. Mechanisms of hexabromocyclododecanes induced developmental toxicity in marine medaka (Oryzias melastigma) embryos. Aquat. Toxicol. 2014, 152, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Aznar-Alemany, Ò.; Sala, B.; Jobst, K.J.; Reiner, E.J.; Borrell, A.; Aguilar, À.; Eljarrat, E. Temporal trends of halogenated and organophosphate contaminants in striped dolphins from the Mediterranean Sea. Sci. Total Environ. 2021, 753, 142205. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.; Chen, D.; Sun, J.; Greig, D.J.; Wu, Y. Characterization of brominated, chlorinated, and phosphate flame retardants in San Francisco Bay, an urban estuary. Sci. Total Environ. 2019, 652, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Aznar-Alemany, Ò.; Sala, B.; Plön, S.; Bouwman, H.; Barceló, D.; Eljarrat, E. Halogenated and organophosphorus flame retardants in cetaceans from the southwestern Indian Ocean. Chemosphere 2019, 226, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Barón, E.; Giménez, J.; Verborgh, P.; Gauffier, P.; De Stephanis, R.; Eljarrat, E.; Barcelo, D. Bioaccumulation and biomagnification of classical flame retardants, related halogenated natural compounds and alternative flame retardants in three delphinids from Southern European waters. Environ. Pollut. 2015, 203, 107–115. [Google Scholar] [CrossRef]
- Peck, A.M.; Pugh, R.S.; Moors, A.; Ellisor, M.B.; Porter, B.J.; Becker, P.R.; Kucklick, J.R. Hexabromocyclododecane in white-sided dolphins: Temporal trend and stereoisomer distribution in tissues. Environ. Sci. Technol. 2008, 42, 2650–2655. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Restrepo, B.; Adams, D.H.; Kannan, K. Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 2008, 70, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Law, R.J.; Bersuder, P.; Allchin, C.R.; Barry, J. Levels of the flame retardants hexabromocyclododecane and tetrabromobisphenol A in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the U.K., with evidence for an increase in HBCD concentrations in recent years. Environ. Sci. Technol. 2006, 40, 2177–2183. [Google Scholar] [CrossRef] [PubMed]
- Koch, C.; Schmidt-Kotters, T.; Rupp, R.; Sures, B. Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics. Environ. Pollut. 2015, 199, 26–34. [Google Scholar] [CrossRef]
- Barghi, M.; Shin, E.S.; Son, M.H.; Choi, S.D.; Pyo, H.; Chang, Y.S. Hexabromocyclododecane (HBCD) in the Korean food basket and estimation of dietary exposure. Environ. Pollut. 2016, 213, 268–277. [Google Scholar] [CrossRef]
- Goscinny, S.; Vandevijvere, S.; Maleki, M.; Van Overmeire, I.; Windal, I.; Hanot, V.; Blaude, M.N.; Vleminckx, C.; Van Loco, J. Dietary intake of hexabromocyclododecane diastereoisomers (alpha-, beta-, and gamma-HBCD) in the Belgian adult population. Chemosphere 2011, 84, 279–288. [Google Scholar] [CrossRef]
- Fery, Y.; Mueller, S.O.; Schrenk, D. Development of stably transfected human and rat hepatoma cell lines for the species-specific assessment of xenobiotic response enhancer module (XREM)-dependent induction of drug metabolism. Toxicology 2010, 277, 11–19. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Xu, C.; Liu, W.; Wen, S.; Xu, Y. Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2008, 22, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhang, L.; Zhao, Y.; Sun, Z.; Zhou, X.; Li, J.; Wu, Y. Dietary exposure assessment of Chinese population to tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether: Results of the 5th Chinese Total Diet Study. Environ. Pollut. 2017, 229, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, K.; Consonni, V.; Durjava, M.K.; Kolar, B.; Öberg, T.; Todeschini, R. Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling. Chemosphere 2012, 89, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Harrad, S.; Abdallah, M.A.; Rose, N.L.; Turner, S.D.; Davidson, T.A. Current-use brominated flame retardants in water, sediment, and fish from English lakes. Environ. Sci. Technol. 2009, 43, 9077–9083. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-P.; Guan, Y.-T.; Zhang, Y.; Luo, X.-J.; Zhi, H.; Chen, S.-J.; Mai, B.-X. Several current-use, non-PBDE brominated flame retardants are highly bioaccumulative: Evidence from field determined bioaccumulation factors. Environ. Int. 2011, 37, 210–215. [Google Scholar] [CrossRef]
- Wang, W.; Choo, G.; Cho, H.-S.; Park, K.; Shin, Y.-J.; Oh, J.-E. The occurrence and distribution of hexabromocyclododecanes in freshwater systems, focusing on tissue-specific bioaccumulation in crucian carp. Sci. Total Environ. 2018, 635, 470–478. [Google Scholar] [CrossRef]
- Mukai, Y.; Goto, A.; Tashiro, Y.; Tanabe, S.; Kunisue, T. Coastal biomonitoring survey on persistent organic pollutants using oysters (Saccostrea mordax) from Okinawa, Japan: Geographical distribution and polystyrene foam as a potential source of hexabromocyclododecanes. Sci. Total Environ. 2020, 739, 140049. [Google Scholar] [CrossRef] [PubMed]
- van Beusekom, O.C.; Eljarrat, E.; Barceló, D.; Koelmans, A.A. Dynamic modeling of food-chain accumulation of brominated flame retardants in fish from the Ebro River Basin, Spain. Environ. Toxicol. Chem. 2006, 25, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Veltman, K.; Hendriks, J.; Huijbregts, M.; Leonards, P.; van den Heuvel-Greve, M.; Vethaak, D. Accumulation of organochlorines and brominated flame retardants in estuarine and marine food chains: Field measurements and model calculations. Mar. Pollut. Bull. 2005, 50, 1085–1102. [Google Scholar] [CrossRef] [PubMed]
- Fisk, A.T.; Hobson, K.A.; Norstrom, R.J. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web. Environ. Sci. Technol. 2001, 35, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Reindl, A.R.; Falkowska, L. Flame retardants at the top of a simulated baltic marine food web—A case study concerning African penguins from the Gdansk Zoo. Arch. Environ. Contam. Toxicol. 2015, 68, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Haukås, M.; Hylland, K.; Nygard, T.; Berge, J.A.; Mariussen, E. Diastereomer-specific bioaccumulation of hexabromocyclododecane (HBCD) in a coastal food web, Western Norway. Sci. Total Environ. 2010, 408, 5910–5916. [Google Scholar] [CrossRef]
- Tomy, G.T.; Pleskach, K.; Ferguson, S.H.; Hare, J.; Stern, G.; Macinnis, G.; Marvin, C.H.; Loseto, L. Trophodynamics of some PFCs and BFRs in a western Canadian Arctic marine food web. Environ. Sci. Technol. 2009, 43, 4076–4081. [Google Scholar] [CrossRef]
- Tomy, G.T.; Pleskach, K.; Oswald, T.; Halldorson, T.; Helm, P.A.; MacInnis, G.; Marvin, C.H. Enantioselective bioaccumulation of hexabromocyclododecane and congener-specific accumulation of brominated diphenyl ethers in an eastern Canadian Arctic marine food web. Environ. Sci. Technol. 2008, 42, 3634–3639. [Google Scholar] [CrossRef]
- Zegers, B.N.; Mets, A.; Van Bommel, R.; Minkenberg, C.; Hamers, T.; Kamstra, J.H.; Pierce, G.J.; Boon, J.P. Levels of hexabromocyclododecane in harbor porpoises and common dolphins from western European seas, with evidence for stereoisomer-specific biotransformation by cytochrome p450. Environ. Sci. Technol. 2005, 39, 2095–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borga, K.; Fjeld, E.; Kierkegaard, A.; McLachlan, M.S. Food web accumulation of cyclic siloxanes in Lake Mjosa, Norway. Environ. Sci. Technol. 2012, 46, 6347–6354. [Google Scholar] [CrossRef] [PubMed]
Location | Sample Time | Species | Concentration Range | Mean | Reference |
---|---|---|---|---|---|
Mollusks | |||||
Bohai sea | 2009–2010 | Amusium | 7.69–59.2 | 34.2 | [18] |
Bohai sea | 2009–2010 | Chlamys farreri | 9.93–147 | 48.2 | [18] |
Bohai sea | 2009–2010 | Cyclina sinensis | 4.40–98.8 | 35.8 | [18] |
Bohai sea | 2009–2010 | Mactra veneriformis | nd–370 | 148 | [18] |
Bohai sea | 2009–2010 | Meretrix | nd–103 | 25.1 | [18] |
Bohai sea | 2009–2010 | Mya arenaria | 25.4–134 | 80.2 | [18] |
Bohai sea | 2009–2010 | Mytittus edulis | 23.37–166 | 78.9 | [18] |
Bohai sea | 2009–2010 | Neverita didyma | 6.62–151 | 47.8 | [18] |
Bohai sea | 2009–2010 | Oyster | 12.2–129 | 58.9 | [18] |
Bohai sea | 2009–2010 | Rapana Venosa | 4.20–162 | 49.2 | [18] |
Bohai sea | 2009–2010 | Scapharca subcrenata | 3.03–119 | 39 | [18] |
Tianjin | 2015 | Oyster | 517 | [19] | |
Tianjin | 2015 | Conch | 367 | [19] | |
Tianjin | 2015 | Clam | 44.3 | [19] | |
Tianjin | 2011 | Veinedrapa whelk | 184.7 | [20] | |
Hong Kong | 2012 | Anadara ferruginea | 14.95 ± 4.51 | [10] | |
Hong Kong | 2012 | Corbula crassa | 14.30 ± 4.01 | [10] | |
Hong Kong | 2012 | Turritella bacillum | 15.2 ± 1.00 | [10] | |
Hong Kong | 2012 | Murex trapa | 29.13 ± 6.33 | [10] | |
Hong Kong | 2012 | Bufonaria rana | 13.72 ± 3.70 | [10] | |
Crustaceans | |||||
Tianjin | 2011 | Mantis shrimp | 138.97 | [20] | |
Tianjin | 2011 | Helice crab | 85.46 | [20] | |
Tianjin | 2015 | Crab | 341 | [19] | |
Tianjin | 2015 | Mantis shrimp | 45.5 | [19] | |
Tianjin | 2015 | Shrimp | 42 | [19] | |
Tianjin | 2015 | Crab | 48.0–428 | [21] | |
Tianjin | 2015 | Shrimps | 39.5–250 | [21] | |
Hong Kong | 2012 | Portunus pelagicus | 5.10 ± 0.77 | [10] | |
Hong Kong | 2012 | Portunus sanguinolentus | 31.29 ± 5.45 | [10] | |
Hong Kong | 2012 | Metapenaeus ensis | 9.77 ± 1.06 | [10] | |
Hong Kong | 2012 | Parapenaeopsis tenella | 9.00 ± 1.87 | [10] | |
Hong Kong | 2012 | Harpiosquilla harpax | 58.58 ± 4.51 | [10] | |
Hong Kong | 2012 | Miyakea nepa | 4.83 ± 1.78 | [10] | |
Fishes | |||||
Dalian | 2008 | Large yellow croaker | 3.4–8.7 | 5.2 | [22] |
Dalian | 2008 | Sliver pomfret | 10.0–10.1 | 10.1 | [22] |
Tianjin | 2011 | Anchovy | 141.9 | [20] | |
Tianjin | 2011 | Octopus | 263.91 | [20] | |
Tianjin | 2011 | Weever | 312.9 | [20] | |
Tianjin | 2011 | Bartial flathead | 378.2 | [20] | |
Tianjin | 2011 | Sea catfish | 989 | [20] | |
Tianjin | 2011 | Haritail | 229.9 | [20] | |
Tianjin | 2015 | Mullet | 2970 | [19] | |
Tianjin | 2015 | Flathead | 536 | [19] | |
Tianjin | 2015 | Perch | 128 | [19] | |
Tianjin | 2015 | Tongue sole | 366 | [19] | |
Tianjin | 2015 | Porgy | 41.6 | [19] | |
Tianjin | 2015 | Goby | 156 | [19] | |
Tianjin | 2015 | Fish | 73.9–1241 | [21] | |
Tianjin | 2008 | Sliver pomfret | 4.7–5.8 | 5.2 | [22] |
Qingdao | 2008 | Large yellow croaer | 3.1–7.8 | 5.4 | [22] |
Qingdao | 2008 | Sliver pomfret | 4.3–7.3 | 5.3 | [22] |
Shanghai | 2008 | Large yellow croaer | 5.2–5.9 | 5.6 | [22] |
Shanghai | 2008 | Sliver pomfret | 1.0–2.1 | 1.6 | [22] |
Zhoushan | 2008 | Sliver pomfret | 1.4–1.5 | 1.4 | [22] |
Wenzhou | 2008 | Large yellow croaer | 0.62–5.4 | 2.2 | [22] |
Wenzhou | 2008 | Sliver pomfret | 0.57–0.69 | 0.64 | [22] |
Fuzhou | 2008 | Large yellow croaer | 3.4–4.9 | 4.3 | [22] |
Fuzhou | 2008 | Sliver pomfret | 0.85–1.4 | 1 | [22] |
Quanzhou | 2008 | Large yellow croaer | 2.2–8.0 | 5.3 | [22] |
Quanzhou | 2008 | Sliver pomfret | 0.85–2.0 | 1.5 | [22] |
Xiamen | 2008 | Large yellow croaer | 4.6–5.9 | 5.3 | [22] |
Xiamen | 2008 | Sliver pomfret | 0.78–1.7 | 1.1 | [22] |
Zhangzhou | 2013 | Striped mullet | 0.27–17.9 | 9.45 | [23] |
Zhangzhou | 2013 | Red eelgoby | nd–10.3 | nd | [23] |
Zhangzhou | 2013 | Blue-spotted mudskipper | nd–15.4 | nd | [23] |
Hong Kong | 2012 | Clupanodon thrissa | 7.84 ± 0.36 | [10] | |
Hong Kong | 2012 | Thryssa kammalensis | 55.66 ± 14.13 | [10] | |
Hong Kong | 2012 | Ostorhinchus fasciatus | 16.31 ± 2.87 | [10] | |
Hong Kong | 2012 | Callionymus curvicornis | 3.01 ± 1.26 | [10] | |
Hong Kong | 2012 | Trypauchen vagina | 21.84 ± 5.13 | [10] | |
Hong Kong | 2012 | Leiognathus brevirostris | 52.59 ± 8.98 | [10] | |
Hong Kong | 2012 | Polydactylus sextarius | 10.26 ± 1.50 | [10] | |
Hong Kong | 2012 | Priacanthus macracanthus | 6.01 ± 0.46 | [10] | |
Hong Kong | 2012 | Pennahia argentata | 19.24 ± 7.00 | [10] | |
Hong Kong | 2012 | Johnius heterolepis | 11.78 ± 0.73 | [10] | |
Hong Kong | 2012 | Dendrophysa russelii | 4.43 ± 1.67 | [10] | |
Hong Kong | 2012 | Siganus canaliculatus | 13.89 ± 3.86 | [10] | |
Hong Kong | 2012 | Evynnis cardinalis | 6.57 ± 2.87 | [10] | |
Hong Kong | 2012 | Collichthys lucidus | 43.02 ± 3.64 | [10] | |
Hong Kong | 2012 | Trichiurus lepturus | 15.88 ± 0.91 | [10] | |
Hong Kong | 2012 | Cynoglossus arel | 12.89 ± 2.07 | [10] | |
Hong Kong | 2012 | Solea ovata | 93.23 ± 10.73 | [10] | |
Hong Kong | 2012 | Platycephalus indicus | 29.12 ± 8.62 | [10] | |
Hong Kong | 2012 | Inegocia japonica | 12.22 ± 0.57 | [10] | |
Zhuhai | 2012 | Striped mullet | nd–56.3 | nd | [23] |
Mammals | |||||
Hong Kong | 1997–2007 | Porpoises | 4.1–501 | 55 ± 93 | [24] |
Hong Kong | 1997–2007 | Dolphin | 32–519 | 168 ± 131 | [24] |
Hong Kong | 2005–2015 | Porpoises | 97.2–6260 | [25] | |
Hong Kong | 2005–2015 | Dolphin | 447–45880 | [25] |
Location | BMFs | TMFs | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|
ƩHBCDs | α-HBCD | β-HBCD | γ-HBCD | ƩHBCDs | α-HBCD | β-HBCD | γ-HBCD | ||
China | |||||||||
Tianjin | 1.68 | 1.74 | [20] | ||||||
Tianjin | 1.72 | 1.75 | 1.83 | 1.64 | [21] | ||||
Tianjin | 0.9–28.1 | 5.6 | 10.8 | [19] | |||||
Zhangzhou | 0.17 * | [23] | |||||||
Hong Kong | 15.0–4160 | 16.8–7223 | 3.06–524 | 1.56–45.9 | 7.9 | 10.3 | [10] | ||
Other Countries | |||||||||
The southern part of Korea | 2.62 | 2–3 | <1 | 2–3 | [9] | ||||
Gdansk Zoo, Poland | 5.6–8.3 | [61] | |||||||
Western Norway | 0.5–7.9 | 2.8–26 | 0.03–2 | 2.6 | 0.3 | [62] | |||
Western Canadian Arctic | 0.1–1.7 | [63] | |||||||
Eastern Canadian Arctic | <1–4 | <1–17 | 2.1 | 0.5 | [64] | ||||
King George Island, Antarctica | 4.06 | 3.44 | 1.74 | 4.06 | [7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, S.; Zhang, Y.; Chen, Y.; Wang, X.; Sun, Y. Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review. Toxics 2022, 10, 620. https://doi.org/10.3390/toxics10100620
Zhang Y, Li S, Zhang Y, Chen Y, Wang X, Sun Y. Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review. Toxics. 2022; 10(10):620. https://doi.org/10.3390/toxics10100620
Chicago/Turabian StyleZhang, Ying, Sijia Li, Yafeng Zhang, Yezi Chen, Xutao Wang, and Yuxin Sun. 2022. "Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review" Toxics 10, no. 10: 620. https://doi.org/10.3390/toxics10100620
APA StyleZhang, Y., Li, S., Zhang, Y., Chen, Y., Wang, X., & Sun, Y. (2022). Bioaccumulation and Biomagnification of Hexabromocyclododecane in Marine Biota from China: A Review. Toxics, 10(10), 620. https://doi.org/10.3390/toxics10100620