Occurrence, Antimicrobial Resistance and Molecular Diversity of Enterococcus faecium in Processed Pork Meat Products in Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Isolation and Identification of Enterococcus spp.
2.3. Antimicrobial Resistance
2.4. Rep-PCR-Based Molecular Typing
3. Results and Discussion
3.1. Contamination of Enterococcus spp.
3.2. Antimicrobial Resistance
3.3. Analysis of Strain Relatedness by Rep-PCR
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tyson, G.H.; Nyirabahizi, E.; Crarey, E.; Kabera, C.; Lam, C.; Rice-Trujillo, C.; McDermott, P.F.; Tate, H. Prevalence and antimicrobial resistance of enterococci isolated from retail meats in the United States, 2002 to 2014. Appl. Environ. Microbiol. 2018, 84, 1–9. [Google Scholar] [CrossRef]
- Kelesidis, T.; Humphries, R.; Uslan, D.Z.; Pegues, D.A. Daptomycin nonsusceptible enterococci: An emerging challenge for clinicians. Clin. Infect. Dis. 2011, 52, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Cormican, M.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Temporal and geographic variation in antimicrobial susceptibility and resistance patterns of enterococci: Results from the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infect. Dis. 2019, 6, S54–S62. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M.A.P.; Holzapfel, W.H.; Stiles, M.E. Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 1999, 47, 1–24. [Google Scholar] [CrossRef]
- Franz, C.M.A.P.; Stiles, M.E.; Schleifer, K.H.; Holzapfel, W.H. Enterococci in foods—A conundrum for food safety. Int. J. Food Microbiol. 2003, 88, 105–122. [Google Scholar] [CrossRef]
- Woodford, N.; Livermore, D.M. Infections caused by gram-positive bacteria: A review of the global challenge. J. Infect. 2009, 59, S4–S16. [Google Scholar] [CrossRef]
- Billington, E.O.; Phang, S.H.; Gregson, D.B.; Pitout, J.D.D.; Ross, T.; Church, D.L.; Laupland, K.B.; Parkins, M.D. Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: A population-based study. Int. J. Infect. Dis. 2014, 26, 76–82. [Google Scholar] [CrossRef]
- Hasan, K.A.; Ali, S.A.; Rehman, M.; Bin-Asif, H.; Zahid, S. The unravelled Enterococcus faecalis zoonotic superbugs: Emerging multiple resistant and virulent lineages isolated from poultry environment. Zoonoses Public Health 2018, 65, 921–935. [Google Scholar] [CrossRef]
- Weiss, A.; Domig, K.J.; Kneifel, W. Comparison of selective media for the enumeration of probiotic enterococci from animal feed. Food Technol. Biotechnol. 2005, 43, 147–155. [Google Scholar]
- MuÈller, T.; Ulrich, A.; Ott, E.-M.; MuÈller, M. Identification of plant-associated enterococci. J. Appl. Microbiol. 2001, 91, 268–278. [Google Scholar]
- Golob, M.; Pate, M.; Kušar, D.; Dermota, U.; Avberšek, J.; Papić, B.; Zdovc, I.; Bondi, M. Antimicrobial Resistance and Virulence Genes in Enterococcus faecium and Enterococcus faecalis from Humans and Retail Red Meat. Biomed Res. Int. 2019, 2019, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.E.; Draghi, D.C.; Thornsberry, C.; Karlowsky, J.A.; Sahm, D.F.; Wenzel, R.P. Emerging resistance among bacterial pathogens in the intensive care unit—A European and North American surveillance study (2000–2002). Ann. Clin. Microbiol. Antimicrob. 2004, 3, 1–11. [Google Scholar] [CrossRef]
- Willems, R.J.; van Schaik, W. Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol. 2009, 4, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Espinosa-Gongora, C.; Guardabassi, L. Human health risks associated with antimicrobial-resistant enterococci and Staphylococcus aureus on poultry meat. Clin. Microbiol. Infect. 2016, 22, 130–140. [Google Scholar] [CrossRef]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Kim, H.J.; Griffiths, M.W.; Fazil, A.M.; Lammerding, A.M. Probabilistic risk model for staphylococcal intoxication from pork-based food dishes prepared in food service establishments in korea. J. Food Prot. 2009, 72, 1897–1908. [Google Scholar] [CrossRef]
- Kim, Y.B.; Seo, H.J.; Seo, K.W.; Jeon, H.Y.; Kim, D.K.; Kim, S.W.; Lim, S.K.; Lee, Y.J. Characteristics of high-Level ciprofloxacin-Resistant Enterococcus faecalis and Enterococcus faecium from retail chicken meat in Korea. J. Food Prot. 2018, 81, 1357–1363. [Google Scholar] [CrossRef]
- International Organization for Standardization (IOS). Water Quality-Detection and Enumeration of Intestinal Enterococci in Surface and Waste Water. Part I: Miniaturized Method (Most Probable Number) by Inoculation in Liquid Mediumitle; I1998, ISO 7899-1; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twentieth informational supplement; CLSI document M100-S20; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Kim, Y.J.; Park, J.H.; Seo, K.H. Comparison of the loads and antibiotic-resistance profiles of Enterococcus species from conventional and organic chicken carcasses in South Korea. Poult. Sci. 2018, 97, 271–278. [Google Scholar] [CrossRef]
- Fontana, C.; Gazzola, S.; Cocconcelli, P.S.; Vignolo, G. Population structure and safety aspects of Enterococcus strains isolated from artisanal dry fermented sausages produced in Argentina. Lett. Appl. Microbiol. 2009, 49, 411–414. [Google Scholar] [CrossRef]
- WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically Important Antimicrobials for Human Medicine, 3rd Revision; WHO: Geneva, Switzerland, 2011; pp. 1–38. [Google Scholar] [CrossRef]
- Koo, M.; Cho, A.-R.; Jeong, A.-R.; Kim, H.J.; Park, Y.-H.; Kwak, H.-S.; Hwang, I.-G. Antibiotic susceptibility and molecular typing of Enterococcus faecalis from retail pork meat products in Korea. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 295–299. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, 1–28. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Food and Drug Safety Evaluation (NIFDS). National Antimicrobial Resistance Surveillance on the Domestic and Imported Meat and Fishery Products; National Institute of Food and Drug Safety Evaluation: Chungcheongbuk-do, Korea, 2019; ISBN 1115430610. [Google Scholar]
- Liu, C.; Yoon, E.J.; Kim, D.K.; Shin, J.H.; Shin, J.H.; Shin, K.S.; Kim, Y.A.; Uh, Y.; Kim, H.S.; Kim, Y.R.; et al. Antimicrobial resistance in South Korea: A report from the Korean global antimicrobial resistance surveillance system (Kor-GLASS) for 2017. J. Infect. Chemother. 2019, 25, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.H.; Hwang, S.Y.; Moon, B.Y.; Park, Y.K.; Shin, S.; Hwang, C.Y.; Park, Y.H. Occurrence of antimicrobial resistance and virulence genes, and distribution of enterococcal clonal complex 17 from animals and human beings in Korea. J. Vet. Diagnostic Investig. 2012, 24, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Cha, M.H.; Ryu, J.G.; Woo, G.J. Characterization of Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium Isolated from Fresh Produces and Human Fecal Samples. Foodborne Pathog. Dis. 2017, 14, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Oh, T.; Baek, S.Y. Multidrug resistance, biofilm formation, and virulence of Escherichia coli isolates from commercial meat and vegetable products. Foodborne Pathog. Dis. 2018, 15, 782–789. [Google Scholar] [CrossRef]
- Yoon, Y.K.; Park, G.C.; An, H.; Chun, B.C.; Sohn, J.W.; Kim, M.J. Trends of antibiotic consumption in Korea according to national reimbursement data (2008–2012) a population-based epidemiologic study. Medicine 2015, 94, e2100. [Google Scholar] [CrossRef]
- Werner, G.; Fleige, C.; Neumann, B.; Bender, J.K.; Layer, F.; Klare, I. Evaluation of DiversiLab®, MLST and PFGE typing for discriminating clinical Enterococcus faecium isolates. J. Microbiol. Methods 2015, 118, 81–84. [Google Scholar] [CrossRef]
- Lüth, S.; Kleta, S.; Al Dahouk, S. Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes—The way towards global harmonisation and data exchange. Trends Food Sci. Technol. 2018, 73, 67–75. [Google Scholar] [CrossRef]
- Kim, H.J.; Koo, M.; Hwang, D.; Choi, J.H.; Kim, S.M.; Oh, S.-W. Contamination patterns and molecular typing of Bacillus cereus in fresh-cut vegetable salad processing. Appl. Biol. Chem. 2016, 59. [Google Scholar] [CrossRef]
- Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X.; et al. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob. Resist. Infect. Control 2019, 8, 1–13. [Google Scholar] [CrossRef]
Conditions at Retail Market | Type of Products | Isolated Enterococcus spp. | Number of Positive Samples/Number of Total Samples (%) | |
---|---|---|---|---|
E. faecium | E. faecalis | |||
Refrigerated | Minced | E. avium, E. faecalis, E. faecium, E. raffinosus | 1/40 (2.5%) | 12/40 (30.0%) |
Seasoned with red pepper paste | E. avium, E. casseliflavus, E. faecalis, E. faecium, E. gallinarum, E. raffinosus | 5/34 (14.7%) | 5/34 (14.7%) | |
Seasoned with soy sauce | E. avium, E. durans, E. faecalis, E. faecium, E. raffinosus | 2/34 (5.9%) | 3/34 (8.8%) | |
Subtotal | E. avium, E. casseliflavus, E. durans, E. faecalis, E. faecium, E. gallinarum, E. raffinosus | 8/108 (7.4%) | 20/108 (18.5%) | |
Frozen | Meatball-type products | E. casseliflavus, E. faecalis, E. faecium | 11/16 (68.8%) | 5/16 (31.3%) |
Total | E. avium, E. casseliflavus, E. durans, E. faecalis, E. faecium, E. gallinarum, E. raffinosus | 19/124 (15.3%) | 25/124 (20.2%) |
Antimicrobial Class | Antimicrobials | No. of E. faecium Isolates (%) | No. of E. faecalis Isolates (%) | ||||
---|---|---|---|---|---|---|---|
R a | I | S | R | I | S | ||
Quinolones | Ciprofloxacin | 0 (0.0) | 4 (13.3) | 26 (86.6) | 0 (0.0) b | 4 (11.1) | 32 (88.9) |
Macrolides and ketolides | Erythromycin | 24 (80.0) | 5(16.7) | 1 (3.3) | 4 (11.1) b | 14 (38.9) | 18 (50.0) |
Oxazolidinones | Linezolid | 0 (0.0) | 0 (0.0) | 30 (100.0) | 0 (0.0) b | 1 (2.8) | 35 (97.2) |
Nitrofurantoins | Nitrofurantoin | 6 (20.0) | 20 (66.6) | 4 (13.3) | 1 (2.8) b | 8 (22.2) | 27 (75.0) |
Glycopeptides | Teicoplanin | 0 (0.0) | 0 (0.0) | 30 (100.0) | 0 (0.0) b | 0 (0.0) | 36 (100.0) |
Glycopeptides | Vancomycin | 0 (0.0) | 0 (0.0) | 30 (100.0) | 0 (0.0) b | 0 (0.0) | 36 (100.0) |
Tetracyclines | Tetracycline | 3 (10.0) | 0 (0.0) | 27 (90.0) | 21 (58.3) b | 0 (0.0) | 15 (41.7) |
Glycylcyclines | Tigecycline | 0 (0.0) | 0 (0.0) | 30 (100.0) | 0 (0.0) b | 0 (0.0) | 36 (100.0) |
Penicillins | Amoxycillin/clavulanic acid | 0 (0.0) | 0 (0.0) | 30 (100.0) | 0 (0.0) b | 0 (0.0) | 36 (100.0) |
Penicillin | Aampicillin | 0 (0.0) | 0 (0.0) | 30 (100.0) | 0 (0.0) b | 0 (0.0) | 36 (100.0) |
Amphenicol | Chloramphenicol | 1 (3.3) | 1 (3.3) | 28 (93.3) | 0 (0.0) b | 0 (0.0) | 36 (100.0) |
Streptogramins | Quinupristin/dalfopristin | 0 (0.0) | 0 (0.0) | 30 (100.0) | 25 (69.4) | 6 (16.7) | 5 (13.9) |
Lincosamides | Clindamycin | 15 (50.0) | 8 (26.6) | 7 (23.3) | 32 (88.9) | 0 (0.0) | 4 (11.1) |
Aminoglycosides | Gentamicin | 1 (3.3) | 0 (0.0) | 29 (96.7) | 0 (0.0) | 0 (0.0) | 36 (100.0) |
Resistant Antimicrobials | Number of Strains (%) for Different Types of Pork Meat Products | ||||
---|---|---|---|---|---|
MP b | SRP | SSP | FP | Total | |
None | 0 (0.0) | 0 (0.0) | 2 (6.7) | 2 (6.7) | 4 (13.3) |
CHA a | 1 (3.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (3.3) |
GM | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
E | 0 (0.0) | 1 (3.3) | 0 (0.0) | 5 (16.7) | 6 (20.0) |
FT | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
GM, CM | 1 (3.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (3.3) |
E, CM | 0 (0.0) | 2 (6.7) | 0 (0.0) | 7 (23.3) | 9 (30.0) |
E, FT | 0 (0.0) | 0 (0.0) | 0 (0.0) | 4 (13.3) | 4 (13.3) |
CM, FT | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (3.3) | 1 (3.3) |
E, TE | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (00.0) |
E, TE, CM | 0 (0.0) | 3 (10.0) | 0 (0.0) | 0 (0.0) | 3 (10.0) |
E, CM, FT | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (3.3) | 1 (3.3) |
Key No. a | Product Code | Manufacturing Company | Main Ingredients |
---|---|---|---|
1 | SRP1 | A b | Pork |
2 | SRP2 | B | Pork |
3 | MP1 | C | Pork |
4 | FP5 | D | Pork (66.03%), Chicken (4.4%) |
5 | MP2 | E | Pork 100% |
6 | FP5 | D | Pork (66.03%), Chicken (4.4%) |
7 | SRP3 | A | Pork meat |
8 | SRP4 | F | Pork meat |
9 | FP11 | G | Pork (20.56%), chicken (38.16%) |
10 | FP9 | H | Pork (75.2%) |
11 | FP9 | H | Pork (75.2%) |
12 | FP10 | H | Pork (60.94%), chicken |
13 | FP10 | H | Pork (60.94%), chicken |
14 | FP15 | I | Pork (30.6%), chicken (22.95%), beef (7.65%) |
15 | FP14 | J | Pork (29.18%), chicken (20.84%) |
16 | FP12 | G | Pork (50.74%), Chicken (19.73%) |
17 | FP2 | G | Pork (62.22%), Chicken (6.89%) |
18 | FP16 | K | Pork (78.43%) |
19 | FP16 | K | Pork (78.43%) |
20 | FP7 | H | Pork (33.37%), chicken (12.05%) |
21 | FP3 | L | Pork (domestic 59.2%, imported 14.8%) |
22 | FP14 | J | Pork (29.18%), chicken (20.84%) |
23 | FP12 | G | Pork (50.74%), Chicken (19.73%) |
24 | FP3 | L | Pork (domestic 59.2%, imported 14.8%) |
25 | FP2 | G | Pork (62.22%), Chicken (6.89%) |
26 | FP7 | H | Pork (33.37%), chicken (12.05%) |
27 | SRP5 | F | Pork |
28 | SSP1 | M | Pork (70%) |
29 | SRP6 | N | Pork (70%) |
30 | SSP2 | N | Pork (70%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.J.; Koo, M. Occurrence, Antimicrobial Resistance and Molecular Diversity of Enterococcus faecium in Processed Pork Meat Products in Korea. Foods 2020, 9, 1283. https://doi.org/10.3390/foods9091283
Kim HJ, Koo M. Occurrence, Antimicrobial Resistance and Molecular Diversity of Enterococcus faecium in Processed Pork Meat Products in Korea. Foods. 2020; 9(9):1283. https://doi.org/10.3390/foods9091283
Chicago/Turabian StyleKim, Hyun Jung, and Minseon Koo. 2020. "Occurrence, Antimicrobial Resistance and Molecular Diversity of Enterococcus faecium in Processed Pork Meat Products in Korea" Foods 9, no. 9: 1283. https://doi.org/10.3390/foods9091283
APA StyleKim, H. J., & Koo, M. (2020). Occurrence, Antimicrobial Resistance and Molecular Diversity of Enterococcus faecium in Processed Pork Meat Products in Korea. Foods, 9(9), 1283. https://doi.org/10.3390/foods9091283