Fatty Acids and Stable Isotope Ratios in Shiitake Mushrooms (Lentinula edodes) Indicate the Origin of the Cultivation Substrate Used: A Preliminary Case Study in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shitake Mushroom Collection
2.2. Chemicals and Reagents
2.3. FA Extraction, Derivatization, and Analysis
2.4. Quantification of FAs
2.5. Analysis of C, N, O, and S SIRs
2.6. Statistical Analysis
3. Results and Discussion
3.1. Comparison of FAs in Shiitake Mushrooms Based on the Harvesting Cycle and Substrate Origin
3.2. Comparison of δ13C, δ15N, δ18O, and δ34S in Shiitake Mushrooms Based on the Harvesting Cycle and Substrate Origin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miles, P.G.; Chang, S.-T. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact, 2nd ed.; CRC Press: Washington, DC, USA, 2004. [Google Scholar]
- Fukushima, M.; Ohashi, T.; Fujiwara, Y.; Sonoyama, K.; Nakano, M. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp. Biol. Med. 2001, 226, 758–765. [Google Scholar] [CrossRef]
- Mattila, P.; Könkö, K.; Eurola, M.; Pihlava, J.-M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. [Google Scholar] [CrossRef]
- Turło, J.; Gutkowska, B.; Herold, F.; Krzyczkowski, W.; Błażewicz, A.; Kocjan, R. Optimizing vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl. Enzym. Microb. Technol. 2008, 43, 369–374. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J. Immune-enhancing effects of Maitake (Grifola frondosa) and Shiitake (Lentinula edodes) extracts. Ann. Transl. Med. 2014, 2, 2. [Google Scholar]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Chang, R. Functional properties of edible mushrooms. Nutr. Rev. 1996, 54, 91–93. [Google Scholar] [CrossRef]
- Crespo, H.; Guillén, H.; De Pablo-Maiso, L.; Gómez-Arrebola, C.; Rodríguez, G.; Glaria, I.; De Andrés, D.; Reina, R. Lentinula edodes β-glucan enriched diet induces pro- and anti-inflammatory macrophages in rabbit. Food Nutr. Res. 2017, 61, 1412791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royse, D.J. Specialty mushrooms and their cultivation. Hortic. Rev. 1996, 19, 59–97. [Google Scholar]
- Isikhuemhen, O.S.; Nerud, F.; Vilgalys, R. Cultivation studies on wild and hybrid strains of Pleurotus tuberregium (Fr.) Sing. on wheat straw substrate. World J. Microbiol. Biotechnol. 2000, 16, 431–435. [Google Scholar] [CrossRef]
- Okhuoya, J.A.; Akpaja, E.O.; Oghenekaro, A. Cultivation of Lentinus squarrosulus (Mont.) Singer on sawdust of selected tropical tree species. Int. J. Med. Mushrooms 2005, 7, 440–441. [Google Scholar] [CrossRef]
- Seyfferth, A.L.; McClatchy, C.; Paukett, M. Arsenic, Lead, and Cadmium in U.S. Mushrooms and Substrate in Relation to Dietary Exposure. Environ. Sci. Technol. 2016, 50, 9661–9670. [Google Scholar] [CrossRef]
- Li, M.-Y.; Wang, P.; Wang, J.-Y.; Chen, X.-Q.; Zhao, D.; Yin, D.-X.; Luo, J.; Juhasz, A.L.; Li, H.; Ma, L.Q. Arsenic Concentrations, Speciation, and Localization in 141 Cultivated Market Mushrooms: Implications for Arsenic Exposure to Humans. Environ. Sci. Technol. 2018, 53, 503–511. [Google Scholar] [CrossRef]
- Jang, M.J.; Lee, Y.H.; Lee, H.B.; Liu, J.J.; Ju, Y.C. Comparison in cultural characteristics on different nutritions in bag cultivation of Lentinula edodes. J. Mushroom. Sci. Prod. 2011, 9, 105–109. [Google Scholar]
- Kim, J.Y.; Kwon, H.W.; Ko, H.G.; Hyun, M.W.; Lee, C.J.; Kim, S.H. Investigation of heavy metals and residual pesticides from imported oak mushroom culture-inoculated sawdust media. J. Mushrooms 2017, 15, 202–205. [Google Scholar]
- Chung, I.; Kim, J.; Han, J.-G.; Kong, W.-S.; Kim, S.-Y.; Yang, Y.-J.; An, Y.; Kwon, C.; Chi, H.-Y.; Kim, J.; et al. Potential geo-discriminative tools to trace the origins of the dried slices of shiitake (Lentinula edodes) using stable isotope ratios and OPLS-DA. Food Chem. 2019, 295, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-K. Farm diary for shiitake bag cultivation. In Mushrooms Growers’ Handbook 2, Shiitake Cultivation; MushWorld: Seoul, Korea, 2005; pp. 132–151. [Google Scholar]
- Park, D.-M.; Kim, S.-C.; Noh, J.-H.; Lee, B.-S.; Ko, H.-K.; Kim, K.-J.; Choi, S.-K.; Park, K.-T.; Jeon, J.-S. Key Technologies by Case of Shiitake Mushroom Cultivation, Forestry Cooperative; Forest Mushroom Research Center: Yeoju, Korea, 2008; pp. 79–90. [Google Scholar]
- Fan, L.; Pan, H.; Wu, Y.; Choi, K.W. Shiitake Bag Cultivation in China. In Mushrooms Growers’ Handbook 2, Shiitake Cultivation; MushWorld: Seoul, Korea, 2005; pp. 121–131. [Google Scholar]
- Chung, I.; Oh, J.-Y.; Kim, S.-H. Comparative study of phenolic compounds, vitamin E, and fatty acids compositional profiles in black seed-coated soybeans (Glycine Max (L.) Merrill) depending on pickling period in brewed vinegar. Chem. Cent. J. 2017, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Garcés, R.; Mancha, M. One-Step Lipid Extraction and Fatty Acid Methyl Esters Preparation from Fresh Plant Tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar] [CrossRef]
- Chung, I.; Kim, J.-K.; Lee, K.-J.; Son, N.-Y.; An, M.-J.; Lee, J.-H.; An, Y.-J.; Kim, S.-H. Discrimination of organic milk by stable isotope ratio, vitamin E, and fatty acid profiling combined with multivariate analysis: A case study of monthly and seasonal variation in Korea for 2016–2017. Food Chem. 2018, 261, 112–123. [Google Scholar] [CrossRef]
- Chung, I.; Kim, J.-K.; Prabakaran, M.; Yang, J.-H.; Kim, S.-H. Authenticity of rice (Oryza sativaL.) geographical origin based on analysis of C, N, O and S stable isotope ratios: A preliminary case report in Korea, China and Philippine. J. Sci. Food Agric. 2015, 96, 2433–2439. [Google Scholar] [CrossRef]
- Chung, I.-M.; Han, J.-G.; Kong, W.-S.; Kim, J.; An, M.-J.; Lee, J.-H.; An, Y.-J.; Kim, J.; Kim, S.-H. Regional discrimination of Agaricus bisporus mushroom using the natural stable isotope ratios. Food Chem. 2018, 264, 92–100. [Google Scholar] [CrossRef]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 2nd ed.; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2017. [Google Scholar]
- Bates, P.D.; Stymne, S.; Ohlrogge, J. Biochemical pathways in seed oil synthesis. Curr. Opin. Plant Biol. 2013, 16, 358–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, H.; Kajiwara, S. Cloning and functional characterization of a Δ12 fatty acid desaturase gene from the basidiomycete Lentinula edodes. Mol. Genet. Genom. 2005, 273, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Cho, K.Y.; Nair, N.G. Effect of Low Temperature Shock Treatment on Sporophore Initiation, Lipid Profile and Nutrient Transport in Lentinula edodes. Mycologia 1991, 83, 24. [Google Scholar] [CrossRef]
- Takahashi, J.; Carvalho, S. Nutritional potential of biomass and metabolites from filamentous fungi. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Formatex Research Center: Badajoz, Spain, 2010; pp. 1126–1135. [Google Scholar]
- Ward, O.P.; Singh, A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 2005, 40, 3627–3652. [Google Scholar] [CrossRef]
- Zamaria, N. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod. Nutr. Dev. 2004, 44, 273–282. [Google Scholar] [CrossRef]
- Beelman, R.B.; Royse, D.J.; Chikthimmah, N. Bioactive Components in Button Mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae) of Nutritional, Medicinal, and Biological Importance (Review). Int. J. Med. Mushrooms 2003, 5, 318–338. [Google Scholar] [CrossRef]
- Kelly, S.; Brodie, C.; Hilkert, A. Isotopic-Spectroscopic Technique: Stable Isotope-Ratio Mass Spectrometry (IRMS). In Modern Techniques for Food Authentication; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 349–413. [Google Scholar]
- Kelly, S.D.; Heaton, K.; Hoogewerff, J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Trends Food Sci. Technol. 2005, 16, 555–567. [Google Scholar] [CrossRef]
- Kelly, S.; Baxter, M.; Chapman, S.; Rhodes, C.; Dennis, J.; Brereton, P. The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice. Eur. Food Res. Technol. 2002, 214, 72–78. [Google Scholar] [CrossRef]
- Chung, I.; Kim, J.; Yang, Y.-J.; An, Y.; Kim, S.-Y.; Kwon, C.; Kim, S.-H. A case study for geographical indication of organic milk in Korea using stable isotope ratios-based chemometric analysis. Food Control. 2020, 107, 106755. [Google Scholar] [CrossRef]
- Chung, I.; Kim, J.-K.; Lee, K.-J.; Park, S.K.; Lee, J.-H.; Son, N.-Y.; Jin, Y.-I.; Kim, S.-H. Geographic authentication of Asian rice (Oryza sativa L.) using multi-elemental and stable isotopic data combined with multivariate analysis. Food Chem. 2018, 240, 840–849. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, D.; Dong, H.; Wan, J.; Luo, H.; Xian, Y.; Guo, X.; Qin, F.; Han, W.; Wang, L.; et al. Geographical origin of cereal grains based on element analyser-stable isotope ratio mass spectrometry (EA-SIRMS). Food Chem. 2015, 174, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Longobardi, F.; Casiello, G.; Sacco, D.; Tedone, L.; Sacco, A. Characterisation of the geographical origin of Italian potatoes, based on stable isotope and volatile compound analyses. Food Chem. 2011, 124, 1708–1713. [Google Scholar] [CrossRef]
- Llarena-Hernández, R.C.; Largeteau, M.L.; Ferrer, N.; Regnault-Roger, C.; Savoie, J.-M. Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. J. Sci. Food Agric. 2013, 94, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nakashita, R.; Ishikawa, N.K.; Tabuchi, A.; Sakuno, E.; Tokimoto, K. A Comparison of Dried Shiitake Mushroom in Log Cultivation and Mycelial Cultivation from Different Geographical Origins Using Stable Carbon and Nitrogen Isotope Analysis. BUNSEKI KAGAKU 2015, 64, 859–866. [Google Scholar] [CrossRef] [Green Version]
Fatty Acid | Harvesting Cycle (H) | Substrate Origin (S) | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
First | Second | Third | Fourth | Chinese | Korean | Main Factor | Interaction | ||
n = 20 | n = 20 | n = 20 | n = 20 | n = 40 | n = 40 | H | S | H × S | |
Palmitic acid (C16:0) | 2.24 ± 0.26 a | 2.00 ± 0.14 b | 1.86 ± 0.45 bc | 1.71 ± 0.17 c | 1.96 ± 0.29 | 1.95 ± 0.38 | **** | ns | ns |
cis-10-Heptadecenoic acid (C17:1) | 0.17 ± 0.09 | 0.18 ± 0.11 | 0.16 ± 0.12 | 0.21 ± 0.12 | 0.19 ± 0.12 | 0.17 ± 0.10 | ns | ns | *** |
Stearic acid (C18:0) | 0.22 ± 0.03 a | 0.20 ± 0.03 a | 0.18 ± 0.02 b | 0.21 ± 0.04 a | 0.21 ± 0.03 a | 0.19 ± 0.03 b | *** | * | ns |
Oleic (cis) and elaidic (trans) acid (C18:1 n-9) | 0.38 ± 0.04 a | 0.30 ± 0.04 b | 0.27 ± 0.04 c | 0.24 ± 0.86 d | 0.31 ± 0.07 | 0.30 ± 0.06 | **** | ns | * |
Linoleic (cis) and linolelaidic (trans) acid (C18:2 n-6) | 13.46 ± 1.71 a | 12.08 ± 0.87 b | 10.84 ± 0.86 c | 8.69 ± 1.72 d | 10.82 ± 2.23 b | 11.72 ± 2.12 a | **** | ** | ns |
Lignoceric acid (C24:0) | 0.24 ± 0.07 a | 0.16 ± 0.03 b | 0.12 ± 0.03 c | 0.15 ± 0.02 b | 0.17 ± 0.05 | 0.17 ± 0.08 | **** | ns | ** |
Total (∑FAs detected) | 16.71 ± 1.94 a | 14.93 ± 1.06 b | 13.44 ± 0.96 c | 11.22 ± 1.97 d | 13.65 ± 2.62 b | 14.49 ± 2.41 a | **** | * | ns |
∑SFA | 2.70 ± 0.29 a | 2.37 ± 0.17 b | 2.16 ± 0.44 c | 2.07 ± 0.20 c | 2.34 ± 0.34 | 2.31 ± 0.42 | **** | ns | ns |
∑UFA | 14.00 ± 1.68 a | 12.57 ± 0.92 b | 11.28 ± 0.0.92 c | 9.14 ± 1.82 d | 11.31 ± 2.31 b | 12.19 ± 2.15 a | **** | ** | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, I.-M.; Kim, S.-Y.; Han, J.-G.; Kong, W.-S.; Jung, M.Y.; Kim, S.-H. Fatty Acids and Stable Isotope Ratios in Shiitake Mushrooms (Lentinula edodes) Indicate the Origin of the Cultivation Substrate Used: A Preliminary Case Study in Korea. Foods 2020, 9, 1210. https://doi.org/10.3390/foods9091210
Chung I-M, Kim S-Y, Han J-G, Kong W-S, Jung MY, Kim S-H. Fatty Acids and Stable Isotope Ratios in Shiitake Mushrooms (Lentinula edodes) Indicate the Origin of the Cultivation Substrate Used: A Preliminary Case Study in Korea. Foods. 2020; 9(9):1210. https://doi.org/10.3390/foods9091210
Chicago/Turabian StyleChung, Ill-Min, So-Yeon Kim, Jae-Gu Han, Won-Sik Kong, Mun Yhung Jung, and Seung-Hyun Kim. 2020. "Fatty Acids and Stable Isotope Ratios in Shiitake Mushrooms (Lentinula edodes) Indicate the Origin of the Cultivation Substrate Used: A Preliminary Case Study in Korea" Foods 9, no. 9: 1210. https://doi.org/10.3390/foods9091210
APA StyleChung, I.-M., Kim, S.-Y., Han, J.-G., Kong, W.-S., Jung, M. Y., & Kim, S.-H. (2020). Fatty Acids and Stable Isotope Ratios in Shiitake Mushrooms (Lentinula edodes) Indicate the Origin of the Cultivation Substrate Used: A Preliminary Case Study in Korea. Foods, 9(9), 1210. https://doi.org/10.3390/foods9091210