Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from Norwegian Fjords
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Chemical Analysis
2.2.1. Trace Elements
2.2.2. Inorganic Arsenic
2.2.3. Fluoride
2.2.4. Crude Fat
2.2.5. Determination of Dioxins, Furans, Polychlorinated Biphenyls, and Polybrominated Flame-Retardants
2.2.6. Wax Esters and Erucic Acid
2.2.7. Estimation of Contaminant Levels in Processed Mesopelagic Biomass
3. Results and Discussion
3.1. Trace Elements
3.1.1. Arsenic and Inorganic Arsenic
3.1.2. Cadmium
3.1.3. Mercury
3.1.4. Lead
3.1.5. Fluoride
3.1.6. Influence of Size, Location, and Sex on Trace Element Concentrations
3.2. Dioxins, Furans, PCBs, and Polybrominated Flame-retardants
3.3. Lipid Compounds
3.3.1. Wax Esters
3.3.2. Erucic Acid
3.4. Undesirables in Processed Mesopelagic Biomass
3.4.1. Estimates for Fish Meal and Protein Fraction
3.4.2. Estimates for Fish Oil
3.5. General Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costello, C.; Cao, L.; Gelcich, S.; Cisneros, M.A.; Free, C.M.; Froehlich, H.E. The Future of Food from the Sea. Available online: http://www.sureaqua.no/Sureaqua/library/The%20Future%20of%20Food%20from%20the%20Sea%20(High%20Level%20Panel).pdf (accessed on 30 July 2020).
- Food and Agriculture Organization. Sustainability in Action, in The State of World Fisheries and Aquaculture (SOFIA); Food and Agriculture Organization: Rome, Italy, 2020; p. 244. [Google Scholar]
- Aksnes, D.L.; Holm, P.; Bavinck, M.; Biermann, F.; Donovaro, R.; Harvey, P.; Hynes, S.; Ingram, J.; Kaiser, M.; Kaushik, S. Food from the Oceans-How Can More Food and Biomass Be Obtained from the Oceans in a Way That Does Not Deprive Future Generations of Their Benefits? Available online: https://gala.gre.ac.uk/id/eprint/20121/1/20121%20HARVEY_Food_From_the_Oceans_2017.pdf (accessed on 30 July 2020).
- Gjøsaeter, J.; Kawa guchi, K. A Review of the World Resources of Mesopelagic Fish; Food and Agriculture Organization: Rome, Italy, 1980. [Google Scholar]
- Irigoien, X.; Klevjer, T.A.; Røstad, A.; Martinez, U.; Boyra, G.; Acuña, J.L.; Bode, A.; Echevarría, F.; González-Gordillo, J.I.; Hernández-León, S.; et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proud, R.; Handegard, N.O.; Kloser, R.J.; Cox, M.J.; Brierley, A.S.; Demer, H.E.D. From siphonophores to deep scattering layers: Uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES J. Mar. Sci. 2018, 76, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Alvheim, A.R.; Kjellevold, M.; Strand, E.; Sanden, M.; Wiech, M. Mesopelagic Species and Their Potential Contribution to Food and Feed Security—A Case Study from Norway. Foods 2020, 9, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mowafi, A.; Nanton, D.; Berntssen, M. Evaluation of lantern fish (Benthosema Pterotum) as marine source in fish feeds: Nutrient composition and contaminants assessment. In Proceedings of the 3rd Global Fisheries Aquacult Research Conference Foreign Agricultural Relations (FAR), Cairo, Egypt, 29 November–1 December 2010. [Google Scholar]
- Wiech, M.; Duinker, A.; Sanden, M. Kartlegging av Fremmedstoffer i Mesopelagiske Arter fra Norske Farvann—Mesopelagisk Fisk fra Norskehavet og Sognefjorden. In Rapport fra Havforskningen; Institute of Marine Research: Bergen, Norway, 2018; p. 26. [Google Scholar]
- Adelung, D.; Buchholz, F.; Culik, B.; Keck, A. Fluoride in tissues of Krill Euphausia superba Dana and Meganyctiphanes norvegica M. Sars in relation to the moult cycle. Polar Biol. 1987, 7, 43–50. [Google Scholar] [CrossRef]
- Soevik, T.; Braekkan, O.R. Fluoride in Antarctic Krill (Euphausia superba) and Atlantic Krill (Meganyctiphanes norvegica). J. Fish. Res. Board Can. 1979, 36, 1414–1416. [Google Scholar] [CrossRef]
- Falk-Petersen, I.-B.; Falk-Petersen, S.; Sargent, J.R. Nature, origin and possible roles of lipid deposits in Maurolicus muelleri (Gmelin) and Benthosema glaciale (Reinhart) from Ullsfjorden, northern Norway. Polar Biol. 1986, 5, 235–240. [Google Scholar] [CrossRef]
- Martin, A.; Boyd, P.; Buesseler, K.; Cetinic, I.; Claustre, H.; Giering, S.; Henson, S.; Irigoien, X.; Kriest, I.; Memery, L.; et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 2020, 580, 26–28. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 49, 5–24. [Google Scholar]
- European Commission. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Union 2002, 45, 10–21. [Google Scholar]
- Everson, I. Krill: Biology, Ecology and Fisheries; Wiley-Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Vereshchaka, A.L.; Olesen, J.; Lunina, A.A. Global Diversity and Phylogeny of Pelagic Shrimps of the Former Genera Sergestes and Sergia (Crustacea, Dendrobranchiata, Sergestidae), with Definition of Eight New Genera. PLoS ONE 2014, 9, e112057. [Google Scholar] [CrossRef]
- Kaartvedt, S.; Staby, A.; Aksnes, D. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Mar. Ecol. Prog. Ser. 2012, 456, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Julshamn, K.; Maage, A.; Norli, H.S.; Grobecker, K.H.; Jorhem, L.; Fecher, P.; Hentschel, A.; De La Hinojosa, I.M.; Viehweger, L.; Mindak, W.R.; et al. Determination of Arsenic, Cadmium, Mercury, and Lead by Inductively Coupled Plasma/Mass Spectrometry in Foods after Pressure Digestion: NMKL Interlaboratory Study. J. AOAC Int. 2007, 90, 844–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloth, J.J.; Julshamn, K.; Lundebye, A.-K. Total arsenic and inorganic arsenic content in Norwegian fish feed products. Aquac. Nutr. 2005, 11, 61–66. [Google Scholar] [CrossRef]
- Julshamn, K.; Nilsen, B.M.; Frantzen, S.; Valdersnes, S.; Maage, A.; Nedreaas, K.; Sloth, J.J. Total and inorganic arsenic in fish samples from Norwegian waters. Food Addit. Contam. Part B 2012, 5, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malde, M.K.; Bjorvatn, K.; Julshamn, K.; Kjellevold, M. Determination of fluoride in food by the use of alkali fusion and fluoride ion-selective electrode. Food Chem. 2001, 73, 373–379. [Google Scholar] [CrossRef]
- Julshamn, K.; Duinker, A.; Nilsen, B.M.; Frantzen, S.; Maage, A.; Valdersnes, S.; Nedreaas, K. A baseline study of levels of mercury, arsenic, cadmium and lead in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. Mar. Pollut. Bull. 2013, 67, 187–195. [Google Scholar] [CrossRef]
- Berntssen, M.H.; Lundebye, A.-K.; Torstensen, B.E. Reducing the levels of dioxins and dioxin-like PCBs in farmed Atlantic salmon by substitution of fish oil with vegetable oil in the feed. Aquac. Nutr. 2005, 11, 219–231. [Google Scholar] [CrossRef]
- Berntssen, M.H.; Giskegjerde, T.A.; Rosenlund, G.; Torstensen, B.E.; Lundebye, A.-K. Predicting world health organization toxic equivalency factor dioxin and dioxin—Like polychlorinated biphenyl levels in farmed atlantic salmon (Salmo salar) based on known levels in feed. Environ. Toxicol. Chem. 2007, 26, 13–23. [Google Scholar] [CrossRef]
- Berntssen, M.H.; Julshamn, K.; Lundebye, A.-K. Chemical contaminants in aquafeeds and Atlantic salmon (Salmo salar) following the use of traditional—Versus alternative feed ingredients. Chemosphere 2010, 78, 637–646. [Google Scholar] [CrossRef]
- USEPA. Method 1613: Tetra-Through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS; USEPA: Washington, WA, USA, 1994.
- Meier, S.; Mjøs, S.A.; Joensen, H.; Grahl-Nielsen, O. Validation of a one-step extraction/methylation method for determination of fatty acids and cholesterol in marine tissues. J. Chromatogr. A 2006, 1104, 291–298. [Google Scholar] [CrossRef]
- Wasta, Z.; Mjøs, S.A. A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products. J. Chromatogr. A 2013, 1299, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Grimaldo, E.; Grimsmo, L.; Alvarez, A.; Herrmann, B.; Tveit, G.M.; Tiller, R.; Slizyte, R. Investigating the potential for a commercial fishery in the Northeast Atlantic utilizing mesopelagic species. ICES J. Mar. Sci. in press.
- Fowler, S.W. Trace metal monitoring of pelagic organisms from the open Mediterranean Sea. Environ. Monit. Assess. 1986, 7, 59–78. [Google Scholar] [CrossRef]
- Monteiro, L.; Costa, V.; Furness, R.; Santos, R.S. Mercury concentrations in prey fish indicate enhanced bioaccumulation in mesopelagic environments. Mar. Ecol. Prog. Ser. 1996, 141, 21–25. [Google Scholar] [CrossRef]
- Ridout, P.S.; Rainbow, P.S.; Roe, H.S.J.; Jones, H.R. Concentrations of V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As and Cd in mesopelagic crustaceans from the North East Atlantic Ocean. Mar. Biol. 1989, 100, 465–471. [Google Scholar] [CrossRef]
- Leatherland, T.; Burton, J.; Culkin, F.; McCartney, M.; Morris, R. Concentrations of some trace metals in pelagic organisms and of mercury in Northeast Atlantic Ocean water. Deep Sea Res. Oceanogr. Abstr. 1973, 20, 679–685. [Google Scholar] [CrossRef]
- Rainbow, P.S. Copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. Mar. Biol. 1989, 103, 513–518. [Google Scholar] [CrossRef]
- Zauke, G.-P.; Krause, M.; Weber, A. Trace Metals in Mesozooplankton of the North Sea: Concentrations in Different Taxa and Preliminary Results on Bioaccumulation in Copepod Collectives (Calanus finmarchicus/C. helgolandicus). Int. Rev. Hydrobiol. 1996, 81, 141–160. [Google Scholar] [CrossRef]
- Ritterhoff, J.; Zauke, G.-P. Trace metals in field samples of zooplankton from the Fram Strait and the Greenland Sea. Sci. Total Environ. 1997, 199, 255–270. [Google Scholar] [CrossRef]
- Fossi, M.; Borsani, J.; Di Mento, R.; Marsili, L.; Casini, S.; Neri, G.; Mori, G.; Ancora, S.; Leonzio, C.; Minutoli, R.; et al. Multi-trial biomarker approach in Meganyctiphanes norvegica: A potential early indicator of health status of the Mediterranean “whale sanctuary”. Mar. Environ. Res. 2002, 54, 761–767. [Google Scholar] [CrossRef]
- Belloni, S.; Cattaneo, R.; Orlando, P.; Pessani, D. Alcune considerazioni sul contenuto in metalli pesanti in Meganyctiphanes norvegica, (Sars, 1857) (Crustacea euphausiacea) del Mar Ligure. Boll. Musei. Ist. Biol. Univ. Genova 1976, 44, 113–133. [Google Scholar]
- Romeo, M.; Nicolas, E. Cadmium, copper, lead and zinc in three species of planktonic crustaceans from the east coast of Corsica. Mar. Chem. 1986, 18, 359–367. [Google Scholar] [CrossRef]
- Fowler, S.W. Trace elements in zooplankton particulate products. Nature 1977, 269, 51–53. [Google Scholar] [CrossRef]
- Martin, J.H.; Knauer, G.A. The elemental composition of plankton. Geochim. Cosmochim. Acta 1973, 37, 1639–1653. [Google Scholar] [CrossRef]
- Lavoie, R.A.; Hebert, C.E.; Rail, J.-F.; Braune, B.M.; Yumvihoze, E.; Hill, L.G.; Lean, D.R. Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Sci. Total Environ. 2010, 408, 5529–5539. [Google Scholar] [CrossRef]
- Harding, G.; Dalziel, J.; Vass, P. Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine. PLoS ONE 2018, 13, e0197220. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Chemistry and Analysis of Arsenic Species in Water, Food, Urine, Blood, Hair, and Nails, in Arsenic in Drinking Water; National Academies Press: Washington, WA, USA, 1999. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Food Additives and Contaminants: Sixty-Third [63rd] Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Olsen, R.E.; Strand, E.; Melle, W.; Nørstebø, J.T.; Lall, S.P.; Ringø, E.; Tocher, D.R.; Sprague, M. Can Mesopelagic Mixed Layers be Used as Feed Sources for Salmon Aquaculture? Available online: https://www.sciencedirect.com/science/article/pii/S0967064519300669 (accessed on 30 July 2020).
- Taylor, V.F.; Goodale, B.; Raab, A.; Schwerdtle, T.; Reimer, K.; Conklin, S.; Karagas, M.R.; Francesconi, K.A. Human exposure to organic arsenic species from seafood. Sci. Total Environ. 2017, 580, 266–282. [Google Scholar] [CrossRef]
- Sloth, J.J.; Julshamn, K. Survey of Total and Inorganic Arsenic Content in Blue Mussels (Mytilus edulis L.) from Norwegian Fiords: Revelation of Unusual High Levels of Inorganic Arsenic. J. Agric. Food Chem. 2008, 56, 1269–1273. [Google Scholar] [CrossRef]
- Grotti, M.; Soggia, F.; Goessler, W.; Findenig, S.; Francesconi, K.A. Arsenic species in certified reference material MURST-ISS-A2 (Antarctic krill). Talanta 2010, 80, 1441–1444. [Google Scholar] [CrossRef]
- Luvonga, C.; Rimmer, C.A.; Yu, L.L.; Lee, S.B. Organoarsenicals in Seafood: Occurrence, Dietary Exposure, Toxicity, and Risk Assessment Considerations—A Review. J. Agric. Food Chem. 2020, 68, 943–960. [Google Scholar] [CrossRef]
- Kolding, J.; van Zwieten, P.A.; Marttin, F.; Funge-Smith, S.; Poulain, F. Freshwater Small Pelagic Fish and Fisheries in the Main African Great Lakes and Reservoirs in Relation to Food Security and Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Longley, C.; Thilsted, S.H.; Beveridge, M.; Cole, S.; Nyirenda, D.B.; Heck, S.; Hother, A.-L. The Role of Fish in the First 1,000 Days in Zambia. Available online: https://www.worldfishcenter.org/content/role-fish-first-1000-days-zambia (accessed on 30 July 2020).
- Canli, M.; Atli, G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ. Pollut. 2003, 121, 129–136. [Google Scholar] [CrossRef]
- Kraal, M.; Kraak, M.; DeGroot, C.; Davids, C. Uptake and Tissue Distribution of Dietary and Aqueous Cadmium by Carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 1995, 31, 179–183. [Google Scholar] [CrossRef] [PubMed]
- De Baar, H.J.; Saager, P.M.; Nolting, R.F.; Van Der Meer, J. Cadmium versus phosphate in the world ocean. Mar. Chem. 1994, 46, 261–281. [Google Scholar] [CrossRef] [Green Version]
- Locarnini, S.P.; Presley, B. Trace element concentrations in Antarctic krill, Euphausia superba. Polar Biol. 1995, 15, 283–288. [Google Scholar] [CrossRef]
- Wiech, M.; Vik, E.; Duinker, A.; Frantzen, S.; Bakke, S.; Maage, A. Effects of cooking and freezing practices on the distribution of cadmium in different tissues of the brown crab (Cancer pagurus ). Food Control 2017, 75, 14–20. [Google Scholar] [CrossRef]
- Cadmium in food -- Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [CrossRef]
- Azad, A.M.; Frantzen, S.; Bank, M.S.; Nilsen, B.M.; Duinker, A.; Madsen, L.; Maage, A. Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Sci. Total Environ. 2019, 652, 1482–1496. [Google Scholar] [CrossRef]
- European Food Safety Authority. Mercury in food—Updates advice on risks for public health. EFSA J. 2012, 10, 2985. [Google Scholar]
- Wu, Y.-S.; Huang, S.-L.; Chung, H.-C.; Nan, F.-H. Bioaccumulation of lead and non-specific immune responses in white shrimp (Litopenaeus vannamei) to Pb exposure. Fish Shellfish. Immunol. 2017, 62, 116–123. [Google Scholar] [CrossRef]
- Carvalho, F.P.; Fowler, S.W. An Experimental Study on the Bioaccumulation and Turnover of Polonium-210 and Lead-210 in Marine Shrimp. Mar. Ecol. Prog. Ser. 1993, 102, 125–133. [Google Scholar] [CrossRef]
- Boisson, F.; Cotret, O.; Teyssié, J.-L.; El-Baradeı, M.; Fowler, S. Relative importance of dissolved and food pathways for lead contamination in shrimp. Mar. Pollut. Bull. 2003, 46, 1549–1557. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Food Additives and Contaminants: Seventy-Third [73rd] Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- European Food Safety Authority. Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the Tolerable Upper Intake Level of Fluoride. EFSA J. 2005, 192, 1–65. [Google Scholar]
- Norwegian Scientific Committee for Food and Environment (VKM). Assessment of Dietary Intake of Fluoride and Maximum Limits of Fluoride in Food Supplements. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2618334 (accessed on 30 July 2020).
- Julshamn, K.; Kjellevold, M.; Bjorvatn, K.; Krogedal, P. Fluoride retention of Atlantic salmon (Salmo salar) fed krill meal. Aquac. Nutr. 2004, 10, 9–13. [Google Scholar] [CrossRef]
- Moren, M.; Malde, M.; Olsen, R.E.; Hemre, G.; Dahl, L.; Karlsen, Ø.; Julshamn, K. Fluorine accumulation in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), rainbow trout (Onchorhyncus mykiss) and Atlantic halibut (Hippoglossus hippoglossus) fed diets with krill or amphipod meals and fish meal based diets with sodium fluoride (NaF) inclusion. Aquaculture 2007, 269, 525–531. [Google Scholar] [CrossRef]
- Christians, O.; Leinemann, M. Untersuchungen über fluor im krill (Euphausia superba Dana). Inf. Fischwirtsch 1980, 27, 254–260. [Google Scholar]
- Tenuta-Filho, R.C.C.A.; Alvarenga, R.C. Reduction of the bioavailability of fluoride from Antarctic krill by calcium. Int. J. Food Sci. Nutr. 1999, 50, 297–302. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Cao, M.-X.; Fodjo, E.K.; Kong, C.; Cai, Y.-Q.; Shen, X.-S.; Chen, X.-Z. Safety of Antarctic krill (Euphausia superba) as food source: Its initial fluoride toxicity study. Food Sci. Technol. 2019, 39, 905–911. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EU) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. Off. J. Eur. Union 2011, 320, 18–23. [Google Scholar]
- Frantzen, S.; Maage, A.; Iversen, S.A.; Julshamn, K. Seasonal variation in the levels of organohalogen compounds in herring (Clupea harengus) from the Norwegian Sea. Chemosphere 2011, 85, 179–187. [Google Scholar] [CrossRef]
- Castro-Jiménez, J.; Rotllant, G.; Ábalos, M.; Parera, J.; Dachs, J.; Company, J.B.; Calafat, A.; Abad, E. Accumulation of dioxins in deep-sea crustaceans, fish and sediments from a submarine canyon (NW Mediterranean). Prog. Oceanogr. 2013, 118, 260–272. [Google Scholar] [CrossRef]
- Fisk, A.T.; Norstrom, R.J.; Cymbalisty, C.D.; Muir, D.C. Dietary accumulation and depuration of hydrophobic organochlorines: Bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ. Toxicol. Chem. 1998, 17, 951–961. [Google Scholar] [CrossRef]
- Halliday, R.G. Growth and Vertical Distribution of the Glacier Lanternfish, Benthosema glaciale, in the Northwestern Atlantic. J. Fish Res. Board Can. 1970, 27, 105–116. [Google Scholar] [CrossRef]
- García-Seoane, E.; Fabeiro, M.; Silva, A.; Meneses, I. Age-based demography of the glacier lanternfish (Benthosema glaciale) in the Flemish Cap. Mar. Freshw. Res. 2015, 66, 78–85. [Google Scholar] [CrossRef]
- Phleger, C.F.; Nelson, M.M.; Mooney, B.D.; Nichols, P.D. Wax esters versus triacylglycerols in myctophid fishes from the Southern Ocean. Antarct. Sci. 1999, 11, 436–444. [Google Scholar] [CrossRef]
- Nevenzel, J. Occurrence Function and Biosynthesis of Wax Esters in Marine Organisms. J. Am. Oil Chem. Soc. 1969, 46, A111. [Google Scholar]
- Place, A.R. Comparative aspects of lipid digestion and absorption: Physiological correlates of wax ester digestion. Am. J. Physiol. Integr. Comp. Physiol. 1992, 263, R464–R471. [Google Scholar] [CrossRef]
- Berman, P.; Harley, E.H.; Spark, A.A. Keriorrhoea—The passage of oil per rectum--after ingestion of marine wax esters. S. Afr. Med. J. 1981, 59, 791–792. [Google Scholar]
- Turchini, G.M.; Ng, W.-K.; Tocher, D.R. Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Ling, K.H.; Nichols, P.D.; But, P.P.H. Fish induced keriorrhea. Adv. Food Nutr. Res. 2009, 57, 1–52. [Google Scholar]
- Ling, K.H.; Cheung, C.W.; Cheng, S.W.; Cheng, L.; Li, S.-L.; Nichols, P.D.; Ward, R.D.; Graham, A.; But, P.P.-H. Rapid detection of oilfish and escolar in fish steaks: A tool to prevent keriorrhea episodes. Food Chem. 2008, 110, 538–546. [Google Scholar] [CrossRef]
- Cook, C.M.; Larsen, T.S.; Derrig, L.D.; Kelly, K.M.; Tande, K.S. Wax Ester Rich Oil From The Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption. Lipids 2016, 51, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Tande, K.S.; Vo, T.D.; Lynch, B.S. Clinical safety evaluation of marine oil derived from Calanus finmarchicus. Regul. Toxicol. Pharmacol. 2016, 80, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsson, S.T.; Gudjónsdóttir, M.; Jónasdóttir, S.H.; Arason, S. Review of the composition and current utilization of Calanus finmarchicus—Possibilities for human consumption. Trends Food Sci. Technol. 2018, 79, 10–18. [Google Scholar] [CrossRef]
- Gasmi, A.; Mujawdiya, P.K.; Shanaida, M.; Ongenae, A.; Lysiuk, R.; Doşa, M.D.; Tsal, O.; Piscopo, S.; Chirumbolo, S.; Geir, B. Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl. Microbiol. Biotechnol. 2019, 104, 967–979. [Google Scholar] [CrossRef] [PubMed]
- Bogevik, A. Marine wax ester digestion in salmonid fish: A review. Aquac. Res. 2011, 42, 1577–1593. [Google Scholar] [CrossRef]
- Bogevik, A.; Tocher, D.R.; Langmyhr, E.; Waagbø, R.; Olsen, R.E. Atlantic salmon (Salmo salar) postsmolts adapt lipid digestion according to elevated dietary wax esters fromCalanus finmarchicus. Aquac. Nutr. 2009, 15, 94–103. [Google Scholar] [CrossRef]
- Oxley, A.; Bogevik, A.S.; Henderson, R.J.; WAAGBø, R.; Tocher, D.R.; Olsen, R.E. Digestibility of Calanus finmarchicus wax esters in Atlantic salmon (Salmo salar) freshwater presmolts and seawater postsmolts maintained at constant water temperature. Aquacult. Nutr. 2009, 15, 459–469. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Erucic acid in feed and food. EFSA J. 2016, 14, 4593. [Google Scholar]
- Sissener, N.H.; Ørnsrud, R.; Sanden, M.; Frøyland, L.; Remø, S.; Lundebye, A.-K. Erucic Acid (22:1n-9) in Fish Feed, Farmed, and Wild Fish and Seafood Products. Nutrure 2018, 10, 1443. [Google Scholar] [CrossRef] [Green Version]
- Bremer, J.; Norum, K.R. Metabolism of very long-chain monounsaturated fatty acids (22:1) and the adaptation to their presence in the diet. J. Lipid Res. 1982, 23, 243–256. [Google Scholar]
- Østbye, T.-K.; Berge, G.M.; Nilsson, A.; Romarheim, O.H.; Bou, M.; Ruyter, B. The long-chain monounsaturated cetoleic acid improves the efficiency of the n-3 fatty acid metabolic pathway in Atlantic salmon and human HepG2 cells. Br. J. Nutr. 2019, 122, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.-H.; Emma-Okon, B.; Remaley, A.T. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: A mini review. Lipids Health Dis. 2016, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsen, B.M.; Wiech, M.; Sanden, M. Miljøgifter i fisk og fiskevarer 2019—Organiske miljøgifter, tungmetaller, 3-MCPD og glysidylestere i marine oljer til humant konsum. In Rapport fra Havforskningen. Unpublished; Inatitute of Marine Research: Bergen, Norway, 2019. [Google Scholar]
- Biancarosa, I.; Espe, M.; Bruckner, C.G.; Heesch, S.; Liland, N.; Waagbø, R.; Torstensen, B.; Lock, E.-J. Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. Environ. Biol. Fishes 2016, 29, 1001–1009. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Cabrol, J.; Trombetta, T.; Amaudrut, S.; Aulanier, F.; Sage, R.; Tremblay, R.; Nozais, C.; Starr, M.; Plourde, S.; Winkler, G. Trophic niche partitioning of dominant North-Atlantic krill species, Meganyctiphanes norvegica, Thysanoessa inermis, and T. raschii. Limnol. Oceanogr. 2018, 64, 165–181. [Google Scholar] [CrossRef]
- Kögel, T.; Bjorøy, Ø.; Toto, B.; Bienfait, A.M.; Sanden, M. Micro-and nanoplastic toxicity on aquatic life: Determining factors. Sci. Total Environ. 2020, 709, 136050. [Google Scholar] [CrossRef]
- Lusher, A.L.; O’Donnell, C.; Officer, R.A.; O’Connor, I. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci. 2015, 73, 1214–1225. [Google Scholar] [CrossRef]
- Buesseler, K.O.; Boyd, P.W.; Black, E.E.; Siegel, D.A. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl. Acad. Sci. USA 2020, 117, 9679–9687. [Google Scholar] [CrossRef] [Green Version]
Species | N | As | iAs | |||
(g/kg w.w.) | (mg/kg d.w.) | (mg/kg w.w.) | (mg/kg d.w.) | |||
Mean ± SD | N | Mean ± SD | ||||
Benthosema glaciale | 7 | 4.0 ± 1.2 (2.2–6.0) | 13 ± 4 (6.9–19) | 3 | <LOQ | <LOQ |
Maurolicus muelleri | 4 | 5.1 ± 0.5 (4.7–5.5) | 16 ± 1 (15–17) | 3 | <LOQ | <LOQ |
Meganyctiphanes norvegica | 4 | 28 ± 19 (12–52) | 89 ± 61 (38–160) | 3 | 0.061 ± 0.086 (0.011–0.160) | 0.244 ± 0.348 (0.042–0.646) |
Pasiphaea sp. | 3 | 22 ± 19 (10–43) | 68 ± 58 (32–136) | 3 | 0.014 ± 0.010 (0.007–0.025) | 0.061 ± 0.032 (0.042–0.098) |
Eusergestes arcticus | 4 | 9.5 ± 4.2 (5.0–14) | 30 ± 13 (16–44) | 3 | <LOQ | <LOQ |
Periphylla periphylla | 2 | 0.79 (0.59–1.0) | 2.5 (1.9–3.2) | 2 | 0.0022 (0.0021–0.0023) | 0.046 (0.044–0.048) |
Species | N | Cd | Hg | |||
(mg/kg w.w.) | (mg/kg d.w.) | (mg/kg w.w.) | (mg/kg d.w.) | |||
Mean ± SD | ||||||
Benthosema glaciale | 7 | 0.022 ± 0.014 (0.007–0.044) | 0.069 ± 0.043 (0.022–0.14) | 0.022 ± 0.012 (0.011–0.044) | 0.069 ± 0.037 (0.035–0.14) | |
Maurolicus muelleri | 4 | 0.033 ± 0.007 (0.026–0.041) | 0.1 ± 0.02 (0.082–0.13) | 0.026 ± 0.011 (0 011–0.035) | 0.080 ± 0.033 (0.035–0.11) | |
Meganyctiphanes norvegica | 4 | 0.016 ± 0.013 0.008–0.035) | 0.051 ± 0.04 (0.025–0.11) | 0.014 ± 0.007 (0 008–0.024) | 0.044 ± 0.022 (0.025–0.076) | |
Pasiphaea sp. | 3 | 0.26 ± 0.19 (0.14–0.47) | 0.81 ± 0.58 (0.44–1.5) | 0.038 ± 0.02 (0.022–0.060) | 0.12 ± 0.06 (0.069–0.19) | |
Eusergestes arcticus | 4 | 0.074 ± 0.042 (0.029–0.13) | 0.23 ± 0.13 (0.092–0.41) | 0.014 ± 0.007 (0.008–0.023) | 0.043 ± 0.021 (0.025–0.073) | |
Periphylla periphylla | 2 | 0.075 (0.064–0.085) | 0.24 (0.20–0.27) | <LOQ | <LOQ | |
Species | N | Pb | F | |||
(mg/kg w.w.) | (mg/kg d.w.) | (mg/kg w.w.) | (mg/kg d.w.) | |||
Mean ± SD | ||||||
Benthosema glaciale | 7 | 0.016 ± 0.017 * (<LOQ–0.054) | 0.049 ± 0.054 * (<LOQ–0.17) | - | - | |
Maurolicus muelleri | 4 | 0.009 ± 0.001 * (<LOQ–0.010) | 0.027 ± 0.004 * (<LOQ–0.032) | - | - | |
Meganyctiphanes norvegica | 4 | 0.086 ± 0.075 (0.021–0.16) | 0.27 ± 0.24 (0.066–0.51) | 720 ± 160 (570–940) | 3000 ± 500 (2700–3700) | |
Pasiphaea spp. | 3 | 0.005 ± 0.002 * (<LOQ–0.006) | 0.016 ± 0.005 * (<LOQ–0.019) | 63 ± 8 (57–72) | 300 ± 60 (240–360) | |
Eusergestes arcticus | 4 | 0.01 ± 0.006 * (<LOQ–0.019) | 0.032 ± 0.019 * (<LOQ–0.060) | 27 ± 11 (18–42) | 100 ± 60 (60–190) | |
Periphylla periphylla | 2 | <LOQ | <LOQ | 8 | 168 |
Species | Element | Location | N | Mean (mg/kg) | SD | Range | d.w./w.w. | Reference | |
---|---|---|---|---|---|---|---|---|---|
Benthosema glaciale | As | North Atlantic | 1 c | 0.58 | w.w. | [30] | Grimaldo et al. in press | ||
N Norwegian Sea | 25 c | 1.4 | 1.2–1.8 | w.w. | [9] | Wiech et al., 2018 | |||
Norwegian Coast | 4 c | 1.9 | 1.8–2.0 | w.w. | [9] | Wiech et al., 2018 | |||
Mediterranean Sea | 1 | 12.7 | d.w. | [31] | Fowler, 1986 | ||||
Cd | North Atlantic | 1 c | 0.090 | w.w. | [30] | Grimaldo et al. in press | |||
N Norwegian Sea | 25 c | 0.067 | 0.044–0.086 | w.w. | [9] | Wiech et al., 2018 | |||
Norwegian Coast | 4 c | 0.009 | 0.006–0.018 | w.w. | [9] | Wiech et al., 2018 | |||
Mediterranean Sea | 9 c | 0.71 | 0.15 | d.w. | [31] | Fowler, 1986 | |||
Mediterranean Sea | 4 c | 0.19 | 0.08 | d.w. | [31] | Fowler, 1986 | |||
Hg | North Atlantic | 1 c | 0.039 | w.w. | [30] | Grimaldo et al. in press | |||
N Norwegian Sea | 25 c | 0.019 | 0.014–0.024 | w.w. | [9] | Wiech et al., 2018 | |||
Norwegian Coast | 4 c | 0.016 | 0.013–0.020 | w.w. | [9] | Wiech et al., 2018 | |||
Mediterranean Sea | 9 c | 0.4 | 0.16 | d.w. | [31] | Fowler, 1986 | |||
Mediterranean Sea | 11 c | 0.21 | 0.2 | d.w. | [31] | Fowler, 1986 | |||
Pb | North Atlantic | 1 c | <0.01 | w.w. | [30] | Grimaldo et al., in press | |||
N Norwegian Sea | 25 c | 0.021 | 0.007–0.089 | w.w. | [9] | Wiech et al., 2018 | |||
Norwegian Coast | 4 c | 0.008 | 0.007–0.010 | w.w. | [9] | Wiech et al., 2018 | |||
Maurolicus muelleri | As | North Atlantic | 2 c | 1.6 | 1.2–1.9 | w.w. | [30] | Grimaldo et al. in press | |
Norwegian Fjord | 4 c | 3.8 | 2.5–4.6 | w.w. | [9] | Wiech et al., 2018 | |||
Cd | North Atlantic | 2 c | 0.38 | 0.31–0.44 | w.w. | [30] | Grimaldo et al., in press | ||
Norwegian Fjord | 4 c | 0.026 | 0.018–0.032 | w.w. | [9] | Wiech et al., 2018 | |||
Hg | North Atlantic | 2 c | 0.026 | 0.022–0.030 | w.w. | [30] | Grimaldo et al., in press | ||
Norwegian Fjord | 4 c | 0.034 | 0.024–0.049 | w.w. | [9] | Wiech et al., 2018 | |||
Azores | 11 | 0.34 | 0.051–0.446 | d.w. | [32] | Monteiro et al., 1996 | |||
Pb | North Atlantic | 2 c | <0.05 | w.w. | [30] | Grimaldo et al., in press | |||
Norwegian Fjord | 4 c | 0.009 | 0.006–0.014 | w.w. | [9] | Wiech et al., 2018 | |||
Meganyctiphanes norvegica | As | NE Atlantic | 5 | 59.3 | 11.0 | d.w. | [33] | Ridout et al., 1989 | |
NE Atlantic | 8 | 42 | d.w. | [34] | Leatherland et al., 1973 | ||||
Mediterranean Sea | 1 c | 55.8 | d.w. | [31] | Fowler, 1986 | ||||
Cd | NE Atlantic | 29 | 0.66 | 0.14–1.83 | w.w. | [35] | P. S. Rainbow, 1989 | ||
NE Atlantic | 5 | 0.39 | 0.03 | d.w. | [33] | Ridout et al., 1989 | |||
NE Atlantic | 29 | 1.6 | 1.2 | d.w. | [33] | Ridout et al., 1989 | |||
NE Atlantic | 8 | 0.25 | d.w. | [34] | Leatherland et al., 1973 | ||||
North Sea/Atlantic | 18 c | 0.54 | 0.10 | d.w. | [36] | Zauke et al., 1996 | |||
Greenland Sea | 19 c | 0.44 | 0.10 | d.w. | [37] | Ritterhoff and Zauke, 1997 | |||
Atlantic/Firth of Clyde | 30 | 1.06 | 0.54–6.06 | w.w. | [35] | P. S. Rainbow, 1989 | |||
Mediterranean Sea | 5 c | 1.3 | d.w. | [31] | Fowler, 1986 | ||||
Mediterranean Sea | 2 c | 0.12 | d.w. | [38] | Fossi et al., 2002 | ||||
Mediterranean Sea | 1 | 1.06 | d.w. | [39] | Belloni et al., 1976 | ||||
Mediterranean Sea/Corsica | 4 | 0.55 | 0.03 | d.w. | [40] | Roméo and Nicolas, 1986 | |||
Mediterranean Sea/Monaco | n.a. | 0.74 | d.w. | [41] | Fowler, 1977 | ||||
NE Pacific | 9 | 2.8 | 0.8–5.5 | d.w. | [42] | Martin and Knauer, 1973 | |||
Hg | NE Atlantic | 8 | 0.26 | d.w. | [34] | Leatherland et al., 1973 | |||
Mediterranean Sea | 2 c | 0.14 | d.w. | [38] | Fossi et al., 2002 | ||||
Mediterranean Sea/Monaco | n.a. | 0.35 | d.w. | [31] | Fowler, 1986 | ||||
Mediterranean Sea | 1 | 0.092 | d.w. | [31] | Fowler, 1986 | ||||
Gulf of St Lawrence | 6 c | 0.60 | 0.05 | d.w. | [43] | Lavoie et al., 2010 | |||
Mehg | Gulf of St Lawrence | 5 c | 0.065 | 0.03 | d.w. | [43] | Lavoie et al., 2010 | ||
Pb | Greenland Sea | 17 c | <0.3 | d.w. | [37] | Ritterhoff and Zauke, 1997 | |||
Mediterranean Sea/Corsica | 4 | 4.65 | 2.11 | d.w. | [40] | Roméo and Nicolas, 1986 | |||
Mediterranean Sea/Monaco | n.a. | 1.1 | d.w. | [41] | Fowler, 1977 | ||||
Mediterranean Sea | 2 c | 0.50 | d.w. | [38] | Fossi et al., 2002 | ||||
NE Pacific | 9 | 2.4 | 1.0–10.9 | d.w. | [42] | Martin and Knauer, 1973 | |||
F- | W-Sweden/N-Kattegat | 6 | 2153 | d.w. | [10] | Adelung et al., 1987 | |||
Norwegian Coast | 2 c | 1845 | 1330–2360 | d.w. f | [11] | Soevik and Braekkan, 1979 | |||
Pasiphaea spp. | Hg | Gulf of St Lawrence | 2 c | 0.11 | 0.02 | d.w. | [43] | Lavoie et al., 2010 | |
Gulf of Maine | 8 c | 0.27 | 0.07 | 0.166–0.347 | w.w. | [44] | Harding et al., 2018 | ||
Mehg | Gulf of Maine | 8 c | 0.15 | 0.11 | 0.03–0.351 | w.w. | [44] | Harding et al., 2018 | |
Eusergestes arcticus | Cd | Mediterranean Sea | 6 c | 0.90 | 0.4–1.5 | d.w. | [31] | Fowler, 1986 | |
Mediterranean Sea/Corsica | 5 | 0.33 | 0.17 | 0.12–0.52 | d.w. | [40] | Roméo and Nicolas, 1986 | ||
Hg | Mediterranean Sea | 1 | 0.31 | d.w. | [31] | Fowler, 1986 | |||
Pb | Mediterranean Sea/Corsica | 4 | 2.13 | 0.36 | 1.71–2.38 | d.w. | [40] | Roméo and Nicolas, 1986 |
Age (y) | UL (mg/day) | M. norvegica (g) | Pasiphaea spp. (g) | E. arcticus (g) |
---|---|---|---|---|
1 to 3 | 1.5 | 2.1 | 24 | 56 |
4 to 8 | 2.5 | 3.5 | 40 | 93 |
9 to 14 | 5 | 6.9 | 81 | 185 |
≥15 | 7 | 9.7 | 113 | 259 |
Species | N | Sum PCDD/F | Sum dl-PCBs | PCDD/F + dl-PCBs | PCB6 | PCB7 | PBDE7 |
---|---|---|---|---|---|---|---|
(ng 2005-TEQ/kg w.w.) | (μg/kg w.w.) | ||||||
Mean ± SD / (Min–Max) | |||||||
B. glaciale | 5 | 0.77 ± 0.21 (0.46–1.03) | 0.84 ± 0.44 (0.53–1.6) | 1.6 ± 0.6 (1.1–2.6) | 13 ± 11 (3.5–26) | 15 ± 12 (4.1–31) | 0.97 ± 0.68 (0.40–1.8) |
M. muelleri | 4 | 1.1 ± 0.6 (0.43–1.8) | 0.97 ± 0.54 (0.42–1.6) | 2.0 ± 1.0 (0.85–3.0) | 13 ± 8 (5.4–25) | 15 ± 10 (6.2–29) | 1.0 ± 0.4 (0.63–1.5) |
M. norvegica | 3 | 0.29 ± 0.06 (0.23–0.35) | 0.26 ± 0.17 (0.15–0.45) | 0.54 ± 0.22 (0.38–0.79 | 5.8 ± 6.3 (1.9–13) | 6.7 ± 7.2 (2.1–15) | 0.42 ± 0.26 (0.25–0.72) |
Pasiphaea spp. | 3 | 0.37 ± 0.16 (0.22–0.55) | 0.28 ± 0.13 (0.13–0.36) | 0.66 ± 0.28 (0.35–0.90) | 5.5 ± 5.6 (1.4–12) | 6.3 ± 6.4 (1.6–14) | 0.45 ± 0.27 (0.19–0.72) |
E. arcticus | 4 | 0.83 ± 0.32 (0.54–1.27 | 0.72 ± 0.35 (0.41–1.1) | 1.6 ± 0.6 (0.94–2.2) | 10 ± 8 (3.4–21) | 12 ± 9 (3.9–24) | 0.75 ± 0.39 (0.39–1.3) |
P. periphylla | 2 | 0.064 (0.038–0.089) | 0.011 (0.011–0.012) | 0.075 (0.048–0.10) | 0.049 (0.042–0.056) | 0.053 (0.046–0.061) | 0.010 (0.008–0.011) |
Maximum level | 3.5 | - | 6.5 | 75 | - | - |
Species | Fatty Acids | Fatty Alcohols | Wax Esters | Erucic Acid 22:1 (n-9) | Cetoleic Acid 22:1 (n-11) | Total Fat Content |
---|---|---|---|---|---|---|
(µg/100 µg w.w.) | % of fatty acids | (µg/100 µg w.w.) | ||||
Mean ± SD / (Min–Max) | ||||||
Benthosema glaciale | 6.8 ± 1.8 (3.1–7.8) | 4.2 ± 1.2 (1.8–5.1) | 76 | 0.05 ± 0.02 (0.02–0.07) | 0.78 ± 0.24 (0.26–1.07) | 13.7 ± 3.7 (6.1–16.0) |
Maurolicus muelleri | 14.5 ± 7.9 (5.3–21.1) | 0.03 ± 0.01 (0.02–0.05) | <0.5 | 0.12 ± 0.08 (0.03–0.20) | 3.1 ± 1.8 (0.7–4.6) | 17.8 ± 8.1 (7.1–24.7) |
Meganyctiphanes norvegica | 4.2 ± 0.8 (3.3–4.9) | 0.07 ± 0.02 (0.06–0.09) | <1.5 | 0.03 ± 0.02 (0.002–0.05) | 0.26 ± 0.22 (0.012–0.54) | 5.5 ± 0.6 (4.9–5.9) |
Pasiphaea spp. | 3.7 ± 1.8 (2.4–5.7) | 0.02 ± 0.01 (0.01–0.03) | <0.5 | 0.03 ± 0.02 (0.013–0.05) | 0.20 ± 0.15 (0.19–0.29) | 5.4 ± 2.7 (3.3–8.4) |
Eusergestes arcticus | 5.3 ± 2.1 (2.6–7.8) | 2.4 ± 1.0 (1.1–3.3) | 46 | 0.04 ± 0.02 (0.01–0.05) | 0.52 ± 0.23 (0.01–0.05) | 9.4 ± 3.1 (4.9–12.1) |
Periphylla periphylla | 0.19 (0.15–0.22) | 0.04 (0.01–0.08) | 22 | 0.003 ± 0.001 (0.001–0.003) | 0.027 ± 0.011 (0.011–0.035) | 0.45 (0.34–0.56) |
(A) Fish Meal with 10% Fat and 88% Dry Matter | (B) Protein Fraction with 88% Dry Matter | ||||||||||||||
As | iAs | Cd | Hg | Pb | F | As | iAs | Cd | Hg | Pb | F | ||||
Species | [mg/kg w.w.] | ||||||||||||||
B. glaciale | 12 | 0 | 0.065 | 0.065 | 0.046 | 0 | 82 | 0 | 0.45 | 0.44 | 0.003 | 0 | |||
M. muelleri | 15 | 0 | 0.094 | 0.074 | 0.025 | 0 | 110 | 0 | 0.75 | 0.55 | 0.002 | 0 | |||
M. norvegica | 99 | 0.21 | 0.057 | 0.049 | 0.30 | 2500 | 670 | 1.4 | 0.30 | 0.33 | 0.020 | 13000 | |||
Pasiphaea spp. | 84 | 0.054 | 0.99 | 0.15 | 0.019 | 240 | 620 | 0.40 | 5.2 | 1.1 | 0.001 | 1200 | |||
E. arcticus | 30 | 0 | 0.24 | 0.044 | 0.033 | 84 | 200 | 0 | 1.4 | 0.28 | 0.002 | 630 | |||
P. periphylla | 13 | 0.036 | 1.2 | 0.033 | 0.17 | 132 | 1500 | 4.2 | 22 | 3.8 | 0.19 | 3400 | |||
Average catch 1 wo jellyfish | 38 | 0.052 | 0.13 | 0.062 | 0.099 | 610 2 | 260 | 0.35 | 0.76 | 0.43 | 0.007 | 3200 2 | |||
Average catch 1 w jellyfish | 14 | 0.051 | 1.2 | 0.034 | 0.16 | 155 2 | 1500 | 4.0 | 21 | 3.7 | 0.18 | 3400 2 | |||
Maximum level 3 | 25 | - | 2 | 0.1 | 10 | 3000 4 | 500 5 | 25 | - | 2 | 0.1 | 10 | 3000 4 | 500 5 | |
Sum PCDD/F | Sum dl-PCB | PCDD/F + dl-PCB | PCB6 | PCB7 | PBDE7 | Eurucic acid | Wax esters | ||||||||
[ng 2005-TEQ/kg w.w.] | [μg/kg w.w.] | [µg/100 µg w.w.] | |||||||||||||
B. glaciale | 0.56 | 0.61 | 1.2 | 9.5 | 1.1 | 7.1 | 0.04 | 3.8 | |||||||
M. muelleri | 0.62 | 0.54 | 1.1 | 7.3 | 8.4 | 5.6 | 0.07 | 0.04 6 | |||||||
M. norvegica | 0.53 | 0.47 | 0.98 | 11 | 1.2 | 7.6 | 0.06 | 0.03 6 | |||||||
Pasiphaea spp. | 0.69 | 0.52 | 1.2 | 10 | 12 | 8.3 | 0.06 | 0.03 6 | |||||||
E. arcticus | 0.88 | 0.77 | 1.7 | 11 | 13 | 8.0 | 0.04 | 2.6 | |||||||
P. periphylla | 0.14 | 0.20 | 1.7 | 1.1 | 1.2 | 2.2 | 0.07 | 0.93 | |||||||
Average catch 1 wo jellyfish | 0.61 | 0.59 | 1.2 | 9.6 | 11 | 7.2 | 0.05 | 2.0 6 | |||||||
Average catch 1 w jellyfish | 1.4 | 0.26 | 1.6 | 1.5 | 1.7 | 2.5 | 0.07 | 9.8 6 | |||||||
Maximum level 3 | 5.0 | - | 20 | 175 | - | - |
Species | N | Sum PCDD/F | Sum dl-PCBs | PCDD/F + dl-PCB | PCB6 | PCB7 | PBDE7 | Erucic Acid | Wax Esters |
---|---|---|---|---|---|---|---|---|---|
(ng 2005-TEQ/kg w.w.) | (μg/kg w.w.) | (µg/100 µg w.w.) | |||||||
Benthosema glaciale | 5 | 5.6 | 6.1 | 12 | 95 | 110 | 7.1 | 0.36 | 38 |
Maurolicus muelleri | 4 | 6.2 | 5.4 | 11 | 73 | 84 | 5.6 | 0.67 | 0.41 4 |
Meganyctiphanes norvegica | 3 | 5.3 | 4.7 | 9.8 | 110 | 120 | 7.6 | 0.55 | 0.27 4 |
Pasiphaea spp. | 3 | 6.9 | 5.2 | 12 | 100 | 120 | 8.3 | 0.56 | 0.34 4 |
Eusergestes arcticus | 4 | 8.8 | 7.7 | 17 | 110 | 130 | 8.0 | 0.43 | 26 |
Periphylla periphylla | 2 | 14 | 2.0 | 17 | 11 | 12 | 2.2 | 0.67 | 9.3 |
Average catch 1 wo jellyfish | 6.1 | 5.9 | 12 | 96 | 110 | 7.2 | 0.47 | 20 4 | |
Average catch 1 w jellyfish | 14 | 2.6 | 16 | 15 | 17 | 2.5 | 0.66 | 9.8 4 | |
Maximum level 2 | NHC 2 | 5.0 | - | 20 | 175 | - | - | - | |
HC 3 | 1.75 | - | 6.0 | 200 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiech, M.; Silva, M.; Meier, S.; Tibon, J.; Berntssen, M.H.G.; Duinker, A.; Sanden, M. Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from Norwegian Fjords. Foods 2020, 9, 1162. https://doi.org/10.3390/foods9091162
Wiech M, Silva M, Meier S, Tibon J, Berntssen MHG, Duinker A, Sanden M. Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from Norwegian Fjords. Foods. 2020; 9(9):1162. https://doi.org/10.3390/foods9091162
Chicago/Turabian StyleWiech, Martin, Marta Silva, Sonnich Meier, Jojo Tibon, Marc H. G. Berntssen, Arne Duinker, and Monica Sanden. 2020. "Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from Norwegian Fjords" Foods 9, no. 9: 1162. https://doi.org/10.3390/foods9091162
APA StyleWiech, M., Silva, M., Meier, S., Tibon, J., Berntssen, M. H. G., Duinker, A., & Sanden, M. (2020). Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from Norwegian Fjords. Foods, 9(9), 1162. https://doi.org/10.3390/foods9091162