Characterization of the Key Aroma Constituents in Fry Breads by Means of the Sensomics Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fry Bread Production
2.2. Chemicals
2.3. Isolation of Volatiles from Pulverized Fry Bread for Aroma Extracts Dilution Analysis (AEDA)
2.4. Analysis of Volatiles
2.4.1. Gas Chromatography-Mass Spectrometry Analysis
2.4.2. Gas Chromatography-Olfactometry (GC-O)
2.4.3. Aroma Extracts Dilution Analysis (AEDA)
2.5. Aroma Constituents’ Quantification by Stable Isotope Dilution Assays (ACQSIDAs)
2.6. Aroma Profile Determination
2.7. Aroma Model Recombinants and Omission Tests of the Fry Breads (UFBs and FBs)
3. Results and Discussion
3.1. The Aroma-Active Constituents of Fry Breads
3.2. Aroma Quantitation in the Fry Breads
3.3. The Aroma-Active Constituents (FD ≥ 16) and Their Potencies
3.4. Aroma Profile Analysis and Aroma Simulation Models of the Fry Breads (UFBs and FBs)
3.5. Omission Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pico, J.; Bernal, M.; Gomez, M. Wheat bread aroma compounds in crumb and crust a review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef]
- Ying, S.; Lasekan, O.; Naidu, K.; Lasekan, A. Headspace solid-phase micro extraction gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis of volatile compounds in pineapple breads. Molecules 2012, 17, 13795–13812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevopoulos, A.; Chrysanthou, A.; Koutidou, M. Characterization of volatile compounds of lupin protein isolate-enriched wheat flour bread. Food Res. Int. 2012, 48, 568–577. [Google Scholar] [CrossRef]
- Birch, A.N.; Petersen, M.A.; Arnsberg, N.; Hansen, A.S. Influence of commercial Baker’s yeasts on bread aroma profiles. Food Res. Int. 2013, 52, 160–166. [Google Scholar] [CrossRef]
- Quilez, J.; Ruiz, J.A.; Romero, M.P. Relationships between sensory flavor Evaluatio and volatile and non-volatile compounds in commercial wheat bread type Baguette. J. Food Sci. 2006, 71, S423–S427. [Google Scholar] [CrossRef]
- Rohleder, A.R.; Scherf, K.A.; Schieberle, P.; Koehler, P. Quantitative analyses of key odorants and their precursors reveal differences in the aroma of gluten-free rice bread and wheat bread. J. Agric. Food Chem. 2019, 67, 11179–11188. [Google Scholar] [CrossRef]
- Hansen, A.; Schieberle, P. Generation of aroma compounds during sourdough fermentation: Applied and fundamental aspects. Trends Food Sci. Technol. 2005, 16, 85–94. [Google Scholar] [CrossRef]
- Moris, C.; Moris, G.A. The effect of insulin and fructo-oligosaccharide supplementation on the texture rheological and sensory properties of bread and their role in weight management: A review. Food Chem. 2012, 133, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Coffey, P.; Toohey, B. Improvement of odor intensity measurement using dynamic olfactrometry. J. Air Waste Manag. Assoc. 1995, 56, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Poinot, P.; Grua-Priol, J.; Arvisenet, G.; Rannou, C.; Semenou, M.; Le Bail, A.; Prost, C. Optimization of HS-SPME to study representativeness of partially baked bread odorant extracts. Food Res. Int. 2007, 40, 1170–1184. [Google Scholar] [CrossRef]
- Schieberle, P.; Grosch, W. Changes in the concentration of potent crust odorants during storage of white bread. Flavor Fragr. J. 1992, 7, 213–218. [Google Scholar] [CrossRef]
- Czerny, M.; Schieberle, P. Important aroma compounds in freshly ground whole meal and white wheat flour-identification and quantitative changes during sourdough fermentation. J. Agric. Food Chem. 2002, 50, 6835–6840. [Google Scholar] [CrossRef]
- Schoenauer, S.; Schieberle, P. Characterization of the key aroma compounds in the crust of soft pretzels by application of the sensomics concept. J. Agric. Food Chem. 2019, 67, 7110–7119. [Google Scholar] [CrossRef] [PubMed]
- Sahin, B.; Schieberle, P. Characterization of the key aroma compounds in yeast dumplings by means of the sensomics concept. J. Agric. Food Chem. 2019, 67, 2973–2979. [Google Scholar] [CrossRef] [PubMed]
- Census Bureau of Population. Population of American Indians. Available online: https://www.census.gov/topics/population (accessed on 17 July 2020).
- Lewis, C. Fry bread wars: Bio politics and the consequences of selective United States healthcare practices for American Indians. Food Cult. Soc. 2018, 21, 427–448. [Google Scholar] [CrossRef]
- Parker, J.K. Introduction to Aroma Compounds in Foods. In Flavor Development, Analysis and Perception in Food and Beverages—A Volume in Woodland Publishing Series in Food Science; Technology & Nutrition: Cambridge, UK, 2015; pp. 4–30. [Google Scholar] [CrossRef]
- Schieberle, H.T.; Schieberle, P.; Hofmann, T. Food Flavor; Henryk, J., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 413–438. [Google Scholar]
- Schieberle, P.; Grosch, W. Identification of flavor compounds from the crust of rye Bread. Z. Lebensm.-Unters. Forsch. 1983, 177, 173–180. [Google Scholar] [CrossRef]
- Schieberle, P.; Grosch, W. Evaluation of the flavor of wheat and rye bread crusts by aroma extracts dilution analysis. Z. Lebensm.-Unters. Forsch. 1987, 185, 111–113. [Google Scholar] [CrossRef]
- Schieberle, P.; Hofmann, T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. J. Agric. Food Chem. 1997, 45, 227–232. [Google Scholar] [CrossRef]
- Guth, H.; Grosch, W. Deterioration of soybean oil: Quantitation of primary flavor compounds using s stable isotope dilution assay. LWT-Food Sci. Technol. 1990, 23, 513–522. [Google Scholar]
- Guth, H.; Grosch, W. Identification of the character impact odorants of stewed beef juice by instrumental and sensory studies. J. Agric. Food Chem. 1994, 42, 2862–2866. [Google Scholar] [CrossRef]
- Czerny, M.; Grosch, W. Quantitation of character-impact odor compounds of roasted beef. Z. Lebensm.-Unters. Forsch. 1993, 196, 417–422. [Google Scholar] [CrossRef]
- Poisson, L.; Schieberle, P. Characterization of the key aroma compounds in an American bourbon whisky by quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2008, 56, 5820–5826. [Google Scholar] [CrossRef] [PubMed]
- Blank, I.; Sen, A.; Grosch, W. Potent odorants of the roasted powder and brew of Arabica coffee. Z. Lebensm.-Unters. Forsch. 1992, 195, 239–245. [Google Scholar] [CrossRef]
- Schieberle, P.; Gassenmeir, K.; Guth, H.; Sen, A.; Grosch, W. Character impact odor compounds of different kinds of butter. LWT-Food Sci. Technol. 1993, 26, 347–356. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavor evaporation (SAFE) a new and versatile technique for the careful and direct isolation of aroma compounds from complex matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Lasekan, O.; Ng, S.S. Key volatile aroma compounds of three black velvet tamarinds (Dialium) fruit species. Food Chem. 2015, 168, 561–565. [Google Scholar] [CrossRef]
- Lasekan, O.; Yap, S.P. Characterization of the aroma compounds in fresh and dried sapodilla (Manikara zapota, L.) by the application of aroma extracts dilution analysis. CyTA-J. Food 2018, 16, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Lasekan, O.; Buettner, A.; Christlbauer, M. Investigation of important odorants of Palm wine (Elaeis guineensis). Food Chem. 2007, 105, 15–23. [Google Scholar] [CrossRef]
- Guth, H.; Grosch, W. Aroma compounds in extruded oat flour. Changes during processing. Z. Lebensm.-Unters. Forsch. 1993, 196, 22–28. [Google Scholar] [CrossRef]
- ISO 8589: 2007. Sensory Analysis, General Guidance for the Design of Test Rooms; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- Steinhaus, M.; Sinuco, D.; Polster, J.; Osorio, C.; Schieberle, P. Characterization of the key aroma compounds in pink guava (Psidium guajava, L.) by means of aroma re-engineering experiments and omission tests. J. Agric. Food Chem. 2009, 57, 2882–2888. [Google Scholar] [CrossRef]
- Lasekan, O.; Khatib, A.; Juhari, H.; Patiram, P.; Lasekan, A. Headspace solid phase micro-extraction gas chromatography-mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum). Food Chem. 2013, 141, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Callejo, M.N.; Vargas-Kostiuk, M.E.; Rodriguez-Quijand, M. Selection, training and validation process of a sensory panel for bread analysis: Influence of cultivar on quality of breads made from common wheat and spelt wheat. J. Cereal Sci. 2015, 61, 55–62. [Google Scholar] [CrossRef] [Green Version]
- ISO 4120: 2004. Sensory Analysis, Triangular Test; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- Boratyriski, F.; Dancewicz, K.; Paprocka, M.; Gabrys, B.; Wawrzericzyk, C. Chemo-enzymatic synthesis of optically active γ- and δ-decalactones and their effect on aphid probing, feeding and setting behavior. PLoS ONE 2016, 11, e0146160. [Google Scholar]
- Widder, S.; Sen, A.; Grosch, W. Changes in the flavor of butter oil during storage Identification of potent odorants. Z. Lebensm.-Unters. Forsch. 1991, 193, 32–35. [Google Scholar] [CrossRef]
- Gassenmeir, K.; Schieberle, P. Comparison of important odorants in puff-pastries prepared with butter or margarine. LWT-Food Sci. Technol. 1994, 27, 282–288. [Google Scholar] [CrossRef]
- Zounis, S.; Quail, K.J.; Wootton, M.; Dickson, M.R. Studying frozen dough structure using low-temperature scanning electron microscopy. J. Cereal Sci. 2002, 35, 135–147. [Google Scholar] [CrossRef]
- Arvisenet, G.; Le Bail, P.; Voilley, A.; Cayot, N. Influence of physicochemical interactions between amylose and aroma compounds on the reaction of aroma in food-like matrices. J. Agric. Food Chem. 2002, 50, 7088–7093. [Google Scholar] [CrossRef]
- Moskowitz, M.R.; Bin, Q.; Peterson, D.G.; Elias, R.J. Influence of endogenous ferulic acid in whole wheat flour on bread crust aroma. J. Agric. Food Chem. 2012, 60, 11245–11252. [Google Scholar] [CrossRef]
- Prost, C.; Poinot, P.; Rannou, C.; Arvisenet, G. Bread aroma. In Bread Making, Improving Quality; Cauvain, S.P., Ed.; Woodhead: Cambridge, UK, 2012; pp. 523–561. [Google Scholar]
- Birch, A.N.; Petersen, M.A.; Hansen, A.S. Aroma of wheat bread crumb. Cereal Chem. 2014, 91, 105–114. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Deutsche Forschungsanstalt fur Lebensmittelchemie: Garching, Germany, 1998; ISBN 3-9803426-5-4. [Google Scholar]
- Grosch, W. Evaluation of key odorants of foods by dilution experiments, aroma models and omission. Chem. Senses 2001, 26, 533–545. [Google Scholar] [CrossRef]
Number | Compounds a | Selected Ions (m/Z) | Internal Standards | Selected Ions (m/z) | Calibration Factor |
---|---|---|---|---|---|
1 | Acetic acid | 61 | [13C2]-acetic acid | 63 | 1.00 |
2 | 3-Methylbutanoic acid | 60 | [2H2]-3-methylbutanoic acid | 62 | 1.00 |
3 | 2,3-Butanedione | 87 | [2H2]-2,3-butanedione | 91 | 0.90 |
4 | 3-Methylbutanal | 87 | [2H2]-3-methylbutanal | 89 | 1.00 |
5 | Butanoic acid | 89 | [2H2]-butanoic acid | 91 | 0.95 |
6 | Methional | 105 | [2H2]-methional | 108 | 1.00 |
7 | 2-Acetyl-1-pyrroline | 112 | [2H2]-2-acetyl-1-pyrroline | 114 | 1.00 |
8 | Hexanoic acid | 117 | [2H2]-hexanoic acid | 120 | 0.95 |
9 | Phenyl acetaldehyde | 121 | [2H2]-2-phenyl acetaldehyde | 123 | 0.85 |
10 | 4-Hydroxy-2,5- dimethyl-3(2H)- furanone | 129 | [13C2]-4-hydroxy-2,5- dimethyl-3(2H)-furanone | 131 | 1.00 |
11 | 2-Methoxy-4-vinylphenol | 150 | [13C6]-2-methoxy-4-vinylphenol | 156 | 0.85 |
12 | (E,E)-2,4-decadienal | 153 | [2H2]-(E,E)-2,4-decadienal | 156 | 0.97 |
13 | δ-Decalactone | 171 | [2H2]-δ-decalactone | 173 | 1.00 |
No | Compound a | Odor Note | Retention Index on DB-Wax | Fraction | Flavor Dilution * (UFB) | Flavor Dilution * (FB) |
---|---|---|---|---|---|---|
1 | 3-Methylbutanal | Malty | 900 | NB | 64 | 64 |
2 | 2,3-Butanedione (diacetyl) | Buttery | 976 | NB | 32 | 32 |
3 | 1-Octen-3-one | Mushroom | 1316 | NB | 4 | 4 |
4 | 2-Acetyl-1-pyrroline | Roasty | 1325 | NB | 16 | 16 |
5 | 2-Nonanone | Soapy/fruity | 1388 | NB | 8 | 8 |
6 | Nonanal | Fatty | 1391 | NB | 8 | 8 |
7 | Acetic acid | Vinegar | 1453 | A | 512 | 256 |
8 | Methional | Baked potato | 1478 | NB | 64 | 64 |
9 | (Z)-2-Nonenal | Fatty/green | 1511 | NB | 2 | 2 |
10 | 2-Methypropanoic acid | Sweaty | 1514 | A | 8 | 8 |
11 | (E)-2-Nonenal | Cucumber | 1542 | NB | 4 | 4 |
12 | Butanoic acid | Sweaty | 1638 | A | 64 | 32 |
13 | Phenyl acetaldehyde | Flowery | 1650 | NB | 16 | 16 |
14 | 3-Methylbutanoic acid | Sweaty | 1674 | A | 64 | 64 |
15 | Pentanoic acid | Sweaty | 1698 | A | 8 | 8 |
16 | (E,E)-2,4-Decadienal | Deep-fried | 1710 | NB | 32 | 32 |
17 | Hexanoic acid | Sweaty | 1795 | A | 16 | 16 |
18 | 4,5-Epoxy-(E)-2-decanal | Metallic | 2010 | NB | 4 | 4 |
19 | 4-Hydroxy-2,5-dimethyl3(2H)-furanone | Caramel | 2030 | A | 32 | 32 |
20 | Octanoic acid | Soapy/fatty | 2064 | A | 8 | 8 |
21 | δ-Decalactone | Oily/peach | 2112 | NB | 256 | 256 |
22 | 2-Methoxy-4-vinylphenol | Smoky | 2203 | NB | 64 | 64 |
No | Compound | Concentration (μg kg−1 wet wt.) | Threshold in Starch * (μg kg−1) | (OAVs) | ||
---|---|---|---|---|---|---|
UFB | FB | UFB | FB | |||
1 | 3-Methylbutanal | 240 ± 9.0 a | 228 ± 12.0 b | 32 | 7.5 | 7.0 |
2 | 2,3-Butanedione | 925 ± 20.0 a | 924 ± 15.0 a | 6.5 | 142 | 142 |
3 | 2-Acetyl-1-pyrroline | 2.5 ± 0.1 a | 2.4 ± 0.1 a | 0.0073 | 343 | 329 |
4 | Acetic acid | 716 ± 16.5 a | 668 ± 12.0 b | 31,140 | <1 | <1 |
5 | Methional | 75 ± 9.2 a | 72 ± 11.5 b | 0.27 | 278 | 267 |
6 | Butanoic acid | 350 ± 8.8 a | 348 ± 5.5 a | 100 | 3.5 | 3.5 |
7 | Phenyl acetaldehyde | 107 ± 5.0 a | 102 ± 7.1 b | ND | ND | ND |
8 | 3-Methylbutanoic acid | 621 ± 13.0 a | 618 ± 10.0 b | 6 | 104 | 103 |
9 | (E,E)-2,4-Decadienal | 147 ± 7.6 a | 144 ± 4.6 b | 2.7 | 54 | 53 |
10 | Hexanoic acid | 265 ± 9.0 a | 259 ± 6.5 b | 11,000 | <1 | <1 |
11 | 4-Hydroxy-2,5-dimethyl3(2H)-furanone | 265 ± 8.0 a | 263 ± 7.1 b | 13 | 20 | 20 |
12 | δ-Decalactone | 1916 ± 31.0 a | 1908 ± 23.0 b | ND | ND | ND |
13 | 2-Methoxy-4-vinylphenol | 113 ± 5.0 a | 113 ± 3.0 a | 18.3 | 6 | 6 |
Sensory Attributes | Fry Breads | Mean Scores of Fry Breads and Their Models | |||||
---|---|---|---|---|---|---|---|
UFB | FB | p-Value | UFB | UFB Model | FB | FB Model | |
Roasty/Popcorn | 3.0 ± 0.32 | 3.0 ± 0.51 | 0.01 | 3.0 ± 0.4 a | 3.0 ± 0.3 a | 3.0 ± 0.2 A | 3.0 ± 0.4 A |
Malty | 1.5 ± 0.06 | 1.0 ± 0.10 | 0.00 | 1.5 ± 0.1 a | 1.5 ± 0.4 a | 1.0 ± 0.0 A | 1.0 ± 0.1 A |
Buttery | 2.5 ± 0.40 | 1.5 ± 0.03 | 0.07 | 2.5 ± 0.4 a | 2.5 ± 0.8 a | 1.5 ± 0.1 A | 1.5 ± 0.3 A |
Baked potato | 1.5 ± 0.17 | 1.5 ± 0.10 | 0.00 | 1.5 ± 0.2 a | 1.5 ± 0.1 a | 1.5 ± 0.1 A | 1.5 ± 0.3 A |
Smoky | 0.5 ± 0.00 | 0.5 ± 0.00 | 0.00 | 0.5 ± 0.0 a | 0.5 ± 0.1 a | 0.5 ± 0.0 A | 0.5 ± 0.1 A |
Sweaty | 0.5 ± 0.01 | 0.5 ± 0.00 | 0.00 | 0.5 ± 0.0 b | 1.0 ± 0.3 a | 0.5 ± 0.1 A | 0.5 ± 0.0 A |
Deep-fried | 1.0 ± 0.02 | 1.0 ± 0.00 | 0.00 | 1.0 ± 0.1 a | 1.0 ± 0.1 a | 1.0 ± 0.1 A | 1.0 ± 0.0 A |
Oily/peach | 1.5 ± 0.12 | 1.5 ± 0.04 | 0.00 | 1.5 ± 0.2 a | 1.5 ± 0.3 a | 1.5 ± 0.1 A | 1.5 ± 0.4 A |
No | Compounds | Odor Notes | Concentration (μg L−1) * | |
---|---|---|---|---|
UFB | FB | |||
1 | 3-Methylbutanal | Malty | 240 | 228 |
2 | 2,3-Butanedione | Buttery | 925 | 924 |
3 | 2-Acetyl-1-pyrroline | Popcorn/roast | 2.5 | 2.4 |
4 | Methional | Baked potato | 75 | 72 |
5 | Butanoic acid | Sweaty | 350 | 348 |
6 | Phenyl acetaldehyde | Flowery/honey | 107 | 102 |
7 | 3-Methylbutanoic acid | Sweaty | 621 | 618 |
8 | (E,E)-2,4-Decadienal | Deep-fried | 147 | 144 |
9 | 4-Hydroxy-2,5-dimethyl-3(2H)- furanone | Caramel-like | 265 | 263 |
10 | 2-Methoxy-4-vinylphenol | Smoky | 113 | 113 |
11 | δ-Decalactone a | Oily/peach | 1916 | 1908 |
Odorant Groups | Aroma Notes | Compounds Omitted | No of Correct Judgments a UFB FB | Significance b | |
---|---|---|---|---|---|
Aldehydes (M1) | Malty, baked potato-like, flowery, deep-fried | 3-Methylbutanal, Methional, Phenyl acetaldehyde, (E,E)-2,4-Decadienal, | 9/10 | 9/10 | *** |
Acids (M2) | Sweaty | Butanoic acid, 3-Methylbutanoic acid | 8/10 | 8/10 | ** |
Ketones (M3) | Buttery, Caramel-like | 2,3-Butanedione, 4-Hydroxy-2,5-dimethyl-3(2H)-furanone | 8/10 | 8/10 | ** |
Phenols (M4) | Smoky | 2-Methoxy-4-vinylphenol | 7/10 | 7/10 | * |
(M5) | Popcorn/roast | 2-Acetyl-pyrroline | 10/10 | 10/10 | *** |
M6 | Caramel-like | 4-Hydroxy-2,5-dimethyl-3(2H)-furanone | 7/10 | 7/10 | * |
M7 | Oily/peach | δ-Decalactone | 8/10 | 8/10 | ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasekan, O.; Dabaj, F. Characterization of the Key Aroma Constituents in Fry Breads by Means of the Sensomics Concept. Foods 2020, 9, 1129. https://doi.org/10.3390/foods9081129
Lasekan O, Dabaj F. Characterization of the Key Aroma Constituents in Fry Breads by Means of the Sensomics Concept. Foods. 2020; 9(8):1129. https://doi.org/10.3390/foods9081129
Chicago/Turabian StyleLasekan, Ola, and Fatma Dabaj. 2020. "Characterization of the Key Aroma Constituents in Fry Breads by Means of the Sensomics Concept" Foods 9, no. 8: 1129. https://doi.org/10.3390/foods9081129
APA StyleLasekan, O., & Dabaj, F. (2020). Characterization of the Key Aroma Constituents in Fry Breads by Means of the Sensomics Concept. Foods, 9(8), 1129. https://doi.org/10.3390/foods9081129