Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Adulterated Samples Preparation
2.3. Acquisition of FT-MIR Spectra
2.4. Multivariate Analysis
2.4.1. Discrimination Model
2.4.2. Quantitative Model
3. Results and Discussion
3.1. Interpretation of Spectra FT-MIR
3.2. Multivariable Analysis
3.2.1. Discrimination Models
3.2.2. Quantitative Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ȿemen, S.; Mercan, S.; Yayla, M.; Açıkkol, M. Elemental composition of green coffee and its contribution to dietary intake. Food Chem. 2017, 215, 92–100. [Google Scholar]
- USDA (U.S. Department of Agriculture). Available online: https://www.usda.gov/ (accessed on 1 May 2020).
- Chu, Y. Coffee: Emerging Health Effects and Disease Prevention; Jonh Wiley & Sons: New Jersey, NJ, USA, 2012; 352p. [Google Scholar]
- Toci, A.T.; Farah, A.; Pezza, H.R.; Pezza, L. Coffee Adulteration: More than Two Decades of Research. Crit. Rev. Anal. Chem. 2016, 46, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.C.; Casal, S.; Alves, M.R.; Oliveira, M.B. Discrimination between arabica and robusta coffee species on the basis of their tocopherol profiles. Food Chem. 2009, 114, 295–299. [Google Scholar] [CrossRef]
- Duarte, A.; Suárez, M. Volátiles de maíz (Zea mays), cebada (Hordeum vulgare) y cafe (Coffea arabica) tostados. Influencia de la adición de estos cereales en el aroma del café. Rev. Colomb. Quim. 2010, 24, 13–23. [Google Scholar]
- Zambrozi, L.M.; Pauli, E.D.; Cristiano, V.; Paulinetti, C.A.; Spacino, I.; Nixdorf, S.L. Chemometric evaluation of adulteration profile in coffee due to corn and husk by determining carbohydrates using HPAEC-PAD. J. Chromatogr. Sci. 2009, 47, 825–832. [Google Scholar]
- Nogueira, T.; Claudimir, L. Detection of adulterations in processed coffee with cereals and coffee husks using capillary zone electrophoresis. J. Sep. Sci. 2009, 20, 3507–3511. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Najafabadi, H.; Leardi, R.; Oliveri, P.; Casolino, M.C.; Jalali-Heravi, M.; Lanteri, S. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta 2012, 9, 175–179. [Google Scholar] [CrossRef]
- Domingues, D.S.; Pauli, E.D.; Abreu, J.E.; Massura, F.W.; Cristiano, V.; Santos, M.J. Detection of roasted and ground coffee adulteration by HPLC by amperometric and by post-column derivatization UV-Vis detection. Food Chem. 2014, 146, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Souto, U.T.C.P.; Barbosa, M.F.; Dantas, H.V.; Pontes, A.S.; Lyra, W.S.; Diniz, P.H.G.D. Screening for coffee adulteration using digital images and SPA-LDA. Food Anal. Methods 2015, 8, 1515–1521. [Google Scholar] [CrossRef]
- Jing, M.; Cai, W.; Shao, X. Quantitative determination of the components in corn and tobacco samples by using near-infrared spectroscopy and multiblock partial least squares. Anal. Lett. 2010, 43, 1910–1921. [Google Scholar] [CrossRef]
- Alves de Oliveira, G.; de Castilhos, F.; Claire, C.M.-G.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships—A Review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef] [PubMed]
- Garrigues, J.M.; Bouhsain, Z.; Garrigues, S.; De la Guardia, M. Fourier transform infrared determination of caffeine in roasted coffee samples. J. Anal. Chem. 2000, 366, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Discrimination between defective and non-defective roasted coffees by diffuse reflectance infrared Fourier transform spectroscopy. Food Sci. Technol. 2012, 47, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.C.S.; Oliveira, L.S.; Franca, A.S.; Augusti, R. Evaluation of the potential of SPME-GC-MS and chemometrics to detect adulteration of ground roasted coffee with roasted barley. Food Comp. Anal. 2009, 22, 257–261. [Google Scholar] [CrossRef]
- Reis, A.S.; Franca, A.; Oliveira, L. Discrimination between roasted coffee, roasted corn and coffee husks by diffuse reflectance infrared Fourier transform spectroscopy. Food Sci. Technol. 2013, 50, 715–722. [Google Scholar] [CrossRef] [Green Version]
- ICO (International Coffee Organization). Available online: http://www.ico.org/news/icc-111-5-r1e-world-coffee-outlook (accessed on 23 May 2020).
- PerkinElmer. Assure ID User’s Guide. Version 4.0.2.0175; PerkinElmer, Inc.: Waltham, MA, USA, 2007; 215p. [Google Scholar]
- PerkinElmer. Spectrum Quant User’s Guide. Version 4.51.02; PerkinElmer, Inc.: Waltham, MA, USA, 2000; 148p. [Google Scholar]
- Jović, O.; Smolić, T.; Jurišić, Z.; Meić, Z.; Hrenara, T. Chemometric analysis of croatian extra virgin olive oils from central Dalmatia region. Croat. Chem. Acta 2013, 86, 335–344. [Google Scholar] [CrossRef]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 2006, 573–574, 459–465. [Google Scholar] [CrossRef]
- Moharam, M.A.; Abbas, L.M. A study on the effect of microwave heating on the properties of edible oils using FTIR spectroscopy. Microbiol. Res. 2010, 4, 1921–1927. [Google Scholar]
- Meza-Márquez, O.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Sci. 2010, 86, 511–519. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C.; Ismail, A.; Hashim, P. Monitoring the oxidative stability of virgin coconut oil during oven test using chemical indexes and FTIR spectroscopy. Int. Food Res. 2011, 18, 303–310. [Google Scholar]
- Quintero-Arenas, M.A.; Meza-Márquez, O.G.; Velázquez-Hernández, J.L.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Quantification of adulterants in mezcal by means of FT-MIR and FT-NIR spectroscopy coupled to multivariate analysis. CyTA J. Food 2020, 18, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Casarrubias-Torres, L.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Mid-infrared spectroscopy and multivariate analysis for determination of tetracycline residues in cow’s milk. Acta Vet. Brno. 2018, 87, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Sotelo, P.; Hernández-Martínez, M.; Osorio-Revilla, G.; Meza-Márquez, O.G.; García-Ochoa, F.; Gallardo-Velázquez, T. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils. Food Addit. Contam. A 2016, 33, 1105–1115. [Google Scholar] [CrossRef]
- Bureau, S.; Ruiz, D.; Reich, M.; Gouble, B.; Bertrand, D.; Audergon, J.-M.; Renard, C. Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem. 2009, 115, 1133–1140. [Google Scholar] [CrossRef]
Coffee-Coffee Husks | Coffee-Corn | Coffee-Barley | Coffee-Soy | Coffee-Oat | Coffee-Rice | |
---|---|---|---|---|---|---|
Pure coffee | 3.04 | 7.67 | 16.10 | 8.61 | 13.3 | 5.09 |
Coffee-coffee husks | - | 5.90 | 10.10 | 6.07 | 10.5 | 3.31 |
Coffee-corn | - | - | 11.30 | 5.89 | 10.7 | 6.16 |
Coffee-barley | - | - | - | 3.42 | 4.92 | 5.99 |
Coffee-soy | - | - | - | - | 3.15 | 4.60 |
Coffee-oat | - | - | - | - | - | 6.23 |
Class | Recognition (%) | Rejection (%) |
---|---|---|
Pure coffee | 100 (20/20) | 100 (120/120) |
Coffee-coffee husks | 100 (20/20) | 100 (120/120) |
Coffee-corn | 100 (20/20) | 100 (120/120) |
Coffee-barley | 100 (20/20) | 100 (120/120) |
Coffee-soy | 100 (20/20) | 100 (120/120) |
Coffee-oat | 100 (20/20) | 100 (120/120) |
Coffee-rice | 100 (20/20) | 100 (120/120) |
Specified Material a | Identified Material b | Result c | Total Distance d | Residual Distance e |
---|---|---|---|---|
Pure coffee | Pure coffee | Identified | 0.44–0.67 | 0.61–0.93 |
Coffee-coffee husks | Coffee-coffee husks | Identified | 0.52–0.76 | 0.72–0.96 |
Coffee-corn | Coffee-corn | Identified | 0.58–0.81 | 0.80–1.15 |
Coffee-barley | Coffee-barley | Identified | 0.72–0.92 | 0.98–1.26 |
Coffee-soy | Coffee-soy | Identified | 0.75–0.93 | 1.03–1.24 |
Coffee-oat | Coffee-oat | Identified | 0.34–0.91 | 0.67–1.25 |
Coffee-rice | Coffee-rice | Identified | 0.33–0.62 | 0.52–0.73 |
Calibration Set | Calibration (n = 30) | Validation (n = 10) | ||||||
---|---|---|---|---|---|---|---|---|
Algorithm | Factors a | R2c b | SEC c | R2v d | SEP e | Mahalanobis Distance f | Residual Ratio g | |
Coffee-coffee husks | PLS1 | 11 | 0.99 | 0.48 | 0.99 | 0.57 | 0.33–0.82 | 1.28–1.17 |
PLS2 | 14 | 0.96 | 2.25 | - | - | - | ||
PCR | 8 | 0.83 | 4.22 | - | - | - | ||
Coffee-corn | PLS1 | 8 | 0.99 | 0.45 | 0.99 | 0.51 | 0.49–0.81 | 1.11–1.87 |
PLS2 | 13 | 0.97 | 1.73 | - | - | - | ||
PCR | 8 | 0.97 | 1.73 | - | - | - | ||
Coffee-barley | PLS1 | 11 | 0.99 | 0.41 | 0.99 | 0.60 | 0.45–0.49 | 0.96–1.36 |
PLS2 | 14 | 0.83 | 4.77 | - | - | - | ||
PCR | 6 | 0.72 | 4.95 | - | - | - | ||
Coffee-soy | PLS1 | 10 | 0.99 | 0.82 | 0.99 | 0.94 | 0.21–0.56 | 0.96–1.48 |
PLS2 | 8 | 0.87 | 3.65 | - | - | - | ||
PCR | 9 | 0.88 | 3.60 | - | - | - | ||
Coffee-oat | PLS1 | 11 | 0.99 | 0.56 | 0.99 | 0.91 | 0.46–0.62 | 1.18–2.07 |
PLS2 | 8 | 0.69 | 5.50 | - | - | - | ||
PCR | 10 | 0.75 | 5.21 | - | - | - | ||
Coffee-rice | PLS1 | 9 | 0.99 | 0.39 | 0.99 | 0.45 | 0.37–0.72 | 1.67–1.85 |
PLS2 | 10 | 0.97 | 1.83 | - | - | - | ||
PCR | 8 | 0.93 | 1.78 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Valdez, M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics. Foods 2020, 9, 851. https://doi.org/10.3390/foods9070851
Flores-Valdez M, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velázquez T. Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics. Foods. 2020; 9(7):851. https://doi.org/10.3390/foods9070851
Chicago/Turabian StyleFlores-Valdez, Mauricio, Ofelia Gabriela Meza-Márquez, Guillermo Osorio-Revilla, and Tzayhri Gallardo-Velázquez. 2020. "Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics" Foods 9, no. 7: 851. https://doi.org/10.3390/foods9070851