Application of ATR-FT-MIR for Tracing the Geographical Origin of Honey Produced in the Maltese Islands
Abstract
1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. FTIR Method
2.3. Chemometric Analysis
2.3.1. Variable Selection
2.3.2. Statistical Analysis
3. Results and Discussion
3.1. Geographical Classification Using ATR-FT-MIR
3.1.1. PLS-DA and Variable Selection
3.1.2. Other Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Codex Alimentarius, Draft Revised Standard for Honey; Alinorm 01/25 19-26; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001.
- Siddiqui, I.R. The Sugars of Honey. Adv. Carbohydr. Chem. Biochem. 1971, 25, 285–309. [Google Scholar]
- Sanz, M.L.; Polemis, N.; Morales, V.; Corzo, N.; Drakoularakou, A.; Gibson, G.R. In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J. Agric. Food Chem. 2005, 53, 2914–2921. [Google Scholar] [CrossRef] [PubMed]
- Doner, L.W. The sugars of honey-a review. J. Sci. Food Agric. 1977, 28, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Matute, A.I.; Rodríguez-Sánchez, S.; Sanz, M.L.; Martínez-Castro, I. Detection of Adulterations of Honey with High Fructose Syrups from Inulin by GC Analysis. J. Food Compos. Anal. 2010, 23, 273–276. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Venskutonis, P.R.; Čeksterytė, V. Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. Food Sci. Technol. 2010, 43, 801–807. [Google Scholar] [CrossRef]
- Sheppard, W.S.; Arias, M.C.; Grech, A.; Meixner, M.D. Apis mellifera ruttneri, a new honey bee subspecies from Malta. Apidologie 1997, 28, 287–293. [Google Scholar] [CrossRef]
- Zammit-Mangion, M.; Meixner, M.; Mifsud, D.; Sammut, S.; Camilleri, L. Thorough morphological and genetic evidence confirm the existence of the endemic honey bee of the Maltese Islands Apis mellifera ruttneri: Recommendations for conservation. J. Apic. Res. 2017, 56, 514–522. [Google Scholar] [CrossRef]
- Attard, E.; Mizzi, J. Physicochemical characterization of Gozitan Honey. IJFS 2013, 2, 180–187. [Google Scholar] [CrossRef]
- Attard, E.; Bugeja Douglas, A.; Camilleri, C. Molecular characterization of Maltese honey: Diastase and proline levels changes in Maltese honey seasons. Farm Anim. Proteom. 2013, 2013, 266–269. [Google Scholar]
- Attard, E.; Bugeja Douglas, A. Physicochemical characterization of Maltese honey. In Honey Analysis; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for rapid authentication and detection of adulteration of food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef]
- Valand, R.; Tanna, S.; Lawson, G.; Bengtström, L. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food. Addit. Contam. Part A 2020, 37, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.M.; Griffiths, P.R. Handbook of Vibrational Spectroscopy; John Wiley and Sons: Chichester, UK, 2002; Volume 5. [Google Scholar]
- Li-Chan, E.; Chalmers, J.M.; Griffiths, P. Applications of Vibrational Spectroscopy in Food Science: Instrumentation and Fundamental Applications; John Wiley and Sons: Chichester, UK, 2010. [Google Scholar]
- Jha, S.N.; Gunasekaran, S. Authentications of sweetness of mango juice using Fourier transform infrared-attenuated total reflection spectroscopy. J. Food Eng. 2010, 101, 337–342. [Google Scholar] [CrossRef]
- Cocciardi, R.A.; Ismail, A.A.; Sedman, J. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines. J. Agric. Food Chem. 2005, 53, 2803–2809. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W. Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chem. 2007, 101, 825–832. [Google Scholar] [CrossRef]
- Moreira, J.L.; Marcos, A.M.; Barros, P. Analysis of Portuguese wine by Fourier transform infrared spectrometry. J. Viticul. Enol. 2002, 17, 27–33. [Google Scholar]
- Fernandez, K.; Agosin, E. Quantitative analysis of red wine tannins using Fourier-transform mid-infrared spectroscopy. J. Agric. Food Chem. 2007, 55, 7294–7300. [Google Scholar] [CrossRef]
- Villiers, A.; Alberts, P.; Tredoux, A.G.; Nieuwoudt, H.H. Analytical techniques for wine analysis: An African perspective; a review. Anal. Chim. Acta 2012, 730, 2–23. [Google Scholar] [CrossRef]
- Manthey, J.A. Fourier transform infrared spectroscopy analysis of the polymethoxylated flavones content of orange oil residues. J. Agric. Food Chem. 2006, 54, 3215–3218. [Google Scholar] [CrossRef]
- Bureau, S.; Ruizb, D.; Reich, M.; Gouble, B.; Bertrand, D.; Audergon, J.M. Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem. 2009, 115, 1133–1140. [Google Scholar] [CrossRef]
- Iñón, F.A.; Garrigues, J.M.; Garrigues, S.; Molina, A.; Guardiã, M. Selection of calibration set samples in determination of olive oil acidity by partial least squares-attenuated total reflectance–Fourier transform infrared spectroscopy. Anal. Chim. Acta 2003, 489, 59–75. [Google Scholar] [CrossRef]
- Mata, P.; Vidalb, A.D.; Sendra, J.M.B.; Medinab, A.R.; Rodrígueza, L.C.; Cañada, M.J.A. Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Cont. 2012, 23, 449–455. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Res. Int. 2011, 44, 1888–1896. [Google Scholar] [CrossRef]
- Sivakesava, S.; Irudayaraj, J. A rapid spectroscopic technique for deter- mining honey adulteration with corn syrup. J. Food Sci. 2001, 66, 787–792. [Google Scholar] [CrossRef]
- Sivakesava, S.; Irudayaraj, J. Classification of simple and complex sugar adulterants in honey by mid-infrared spectroscopy. Int. J. Food Sci. Technol. 2002, 37, 351–360. [Google Scholar] [CrossRef]
- Sivakesava, S.; Irudayaraj, J. Detection of inverted beet sugar adulteration of honey by FTIR spectroscopy. J. Sci. Food. Agric. 2001, 81, 683–690. [Google Scholar] [CrossRef]
- Kelly, J.D.; Petisco, C.; Downey, G. Application of Fourier transform mid-infrared spectroscopy to the discrimination between Irish artisanal Honey and such honey adulterated with various sugar syrups. J. Agric. Food Chem. 2006, 54, 6166–6171. [Google Scholar] [CrossRef]
- Kelly, J.D.; Petisco, C.; Downey, G. Potential of near infrared transflectance spectroscopy to detect adulteration of Irish honey by beet invert syrup and high fructose corn syrup. JNIRS 2006, 14, 139–146. [Google Scholar] [CrossRef]
- Gallardo-Velazquez, T.; Osorio-Revilla, G.; Loa, M.Z.; Rivera- Espinoza, Y. Application of FTIR–HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res. Int. 2009, 42, 313–318. [Google Scholar] [CrossRef]
- Rios-Corripio, M.A.; Rios-Leal, E.; Rojas-López, M.; Delgado-Macuil, R. FTIR characterization of Mexican honey and its adulteration with sugar syrups by using chemometric methods. J. Phys. Conf. Ser. 2011, 274, 012098. [Google Scholar] [CrossRef]
- Kelly, J.D.; Downey, G.; Fouratier, V. Initial study of honey adulteration by sugar solutions using midinfrared (MIR) spectroscopy and chemometrics. J. Agric. Food Chem. 2004, 52, 33–39. [Google Scholar] [CrossRef]
- Anjos, O.; Iglesias, C.; Peres, F.; Martínez, J.; García, Á.; Taboada, J. Neural Networks Applied to Discriminate Botanical Origin of Honeys. Food Chem. 2015, 175, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Tewari, J.; Irudayaraj, J. Quantification of saccharides in multiple floral honeys using transform infrared micro attenuated total reflectance spectroscopy. J. Agric. Food Chem. 2004, 52, 3237–3243. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Ku, M.S.; Lee, J.S. Comparison of near-infrared and mid-infrared spectroscopy for the determination of distillation property of kerosene. Vib. Spec. 1999, 20, 155–163. [Google Scholar] [CrossRef]
- Lichtenberg-Kraag, B.; Hedtke, C.; Bienefeld, K. Infrared spectroscopy in routine quality analysis of honey. Apidologie 2002, 33, 327–337. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbühl, W.; Künzli, R.; Iglesias, M.T.; Bogdanov, S.; Bosset, J.O.; Von Der Ohe, K.; Von Der Ohe, W.; Amadò, R. Authentication of the Botanical and Geographical Origin of Honey by Front-Face Fluorescence Spectroscopy. J. Agric. Food Chem. 2006, 54, 6873–6880. [Google Scholar] [CrossRef]
- Hennessy, S.; Downey, G.; O’Donnell, C. Multivariate Analysis of Attenuated Total Reflection-Fourier Transform Infrared Spectroscopic Data to Confirm the Origin of Honeys. Appl. Spectrosc. 2008, 62, 1115–1123. [Google Scholar] [CrossRef]
- Woodcock, T.; Downey, G.; O’Donnell, C.P. Near Infrared Spectral Fingerprinting for Confirmation of Claimed PDO Provenance of Honey. Food Chem. 2009, 114, 742–746. [Google Scholar] [CrossRef]
- De La Fuente, E.; Ruiz-Matute, A.I.; Valencia-Barrera, R.M.; Sanz, J.; Martínez Castro, I. Carbohydrate Composition of Spanish Unifloral Honeys. Food Chem. 2011, 129, 1483–1489. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Trygg, J.; Wikström, C.; Wold, S. Multi- and Megavariate Data Analysis (Part 2). Second ed. Vol. Advanced Applications and Method Extensions; Umetrics: Umea Sweden, 2006. [Google Scholar]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Movasaghi, Z.; Rehman, S.; Rehman, I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2008, 43, 134–179. [Google Scholar] [CrossRef]
- Cai, S.; Singh, R.B. A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods. Biochemistry 2004, 43, 2541–2549. [Google Scholar] [CrossRef] [PubMed]
- Philip, D. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 650–653. [Google Scholar] [CrossRef] [PubMed]
Whole Spectrum | Fingerprint Region | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable Selection | Pre-Treatment | #F | LOOCV | ERV | #F | LOOCV | ERV | ||||
Accuracy % | RMSE | Accuracy % | RMSE | Accuracy % | RMSE | Accuracy % | RMSE | ||||
None | MF | 14 | 100.0 | 0.096 | 95.7 | 0.201 | 10 | 100.0 | 0.157 | 98.6 | 0.177 |
1st DSG | 5 | 100.0 | 0.120 | 92.8 | 0.248 | 8 | 100.0 | 0.100 | 97.1 | 0.192 | |
2nd DSG | 4 | 98.6 | 0.166 | 95.7 | 0.261 | 6 | 100.0 | 0.184 | 97.1 | 0.257 | |
DR | 14 | 100.0 | 0.170 | 97.1 | 0.205 | 10 | 97.1 | 0.214 | 100.0 | 0.218 | |
DT | 9 | 100.0 | 0.199 | 92.8 | 0.258 | 10 | 100.0 | 0.123 | 98.6 | 0.123 | |
MSC | 12 | 100.0 | 0.101 | 95.7 | 0.211 | 11 | 100.0 | 0.101 | 98.6 | 0.170 | |
OSC | 13 | 100.0 | 0.110 | 95.7 | 0.197 | 9 | 100.0 | 0.186 | 100.0 | 0.193 | |
QN | 8 | 100.0 | 0.135 | 94.2 | 0.222 | 9 | 100.0 | 0.111 | 97.1 | 0.186 | |
SNV | 10 | 100.0 | 0.101 | 98.6 | 0.210 | 10 | 100.0 | 0.126 | 100.0 | 0.169 | |
SNVDT | 9 | 100.0 | 0.160 | 97.2 | 0.219 | 10 | 100.0 | 0.114 | 100.0 | 0.167 | |
VIP | MF | 15 | 100.0 | 0.047 | 100.0 | 0.111 | 12 | 100.0 | 0.106 | 97.1 | 0.171 |
1st DSG | 6 | 100.0 | 0.089 | 97.1 | 0.168 | 10 | 100.0 | 0.069 | 97.1 | 0.181 | |
2nd DSG | 4 | 98.6 | 0.166 | 95.7 | 0.215 | 8 | 100.0 | 0.148 | 97.1 | 0.224 | |
DR | 14 | 100.0 | 0.167 | 98.6 | 0.193 | 11 | 97.1 | 0.204 | 100.0 | 0.220 | |
DT | 14 | 100.0 | 0.034 | 94.2 | 0.259 | 13 | 100.0 | 0.072 | 100.0 | 0.163 | |
MSC | 14 | 100.0 | 0.095 | 97.1 | 0.181 | 14 | 100.0 | 0.060 | 100.0 | 0.170 | |
OSC | 13 | 100.0 | 0.104 | 95.7 | 0.178 | 12 | 100.0 | 0.111 | 95.7 | 0.174 | |
QN | 13 | 100.0 | 0.025 | 95.7 | 0.187 | 10 | 100.0 | 0.091 | 97.1 | 0.180 | |
SNV | 10 | 100.0 | 0.176 | 98.6 | 0.183 | 10 | 100.0 | 0.125 | 100.0 | 0.164 | |
SNVDT | 12 | 100.0 | 0.073 | 94.2 | 0.227 | 10 | 100.0 | 0.111 | 100.0 | 0.163 | |
SLCDA | MF | 15 | 100.0 | 0.089 | 100.0 | 0.133 | 15 | 100.0 | 0.094 | 100.0 | 0.149 |
1st DSG | 15 | 100.0 | 0.047 | 100.0 | 0.152 | 15 | 100.0 | 0.077 | 97.1 | 0.201 | |
2nd DSG | 14 | 100.0 | 0.048 | 97.1 | 0.163 | 15 | 100.0 | 0.100 | 98.6 | 0.155 | |
DR | 15 | 100.0 | 0.136 | 94.2 | 0.301 | 15 | 100.0 | 0.138 | 100.0 | 0.188 | |
DT | 15 | 100.0 | 0.041 | 98.6 | 0.122 | 15 | 100.0 | 0.064 | 100.0 | 0.148 | |
MSC | 15 | 100.0 | 0.089 | 100.0 | 0.128 | 15 | 100.0 | 0.076 | 100.0 | 0.139 | |
OSC | 15 | 100.0 | 0.102 | 100.0 | 0.144 | 15 | 100.0 | 0.109 | 98.6 | 0.141 | |
QN | 15 | 100.0 | 0.042 | 100.0 | 0.087 | 15 | 100.0 | 0.077 | 100.0 | 0.085 | |
SNV | 15 | 100.0 | 0.047 | 100.0 | 0.111 | 10 | 100.0 | 0.126 | 100.0 | 0.169 | |
SNVDT | 15 | 100.0 | 0.048 | 100.0 | 0.104 | 15 | 100.0 | 0.062 | 100.0 | 0.145 |
Data Pre-Treatment Method | Whole | Fingerprint | ||
---|---|---|---|---|
Accuracy (%) | RMSE | Accuracy (%) | RMSE | |
Median Filter | 97.1 | 0.1299 | 97.1 | 0.1761 |
First Derivative (SG) | 92.8 | 0.2429 | 95.7 | 0.1717 |
Second Derivative (SG) | 95.7 | 0.2186 | 95.7 | 0.1915 |
Deresolve | 100.0 | 0.0609 | 98.6 | 0.0791 |
Detrending | 95.6 | 0.1648 | 97.1 | 0.1713 |
MSC | 98.6 | 0.1019 | 98.6 | 0.1198 |
OSC | 97.1 | 0.1604 | 97.1 | 0.1636 |
Quantile Normalise | 95.7 | 0.1940 | 95.7 | 0.1958 |
SNV | 98.6 | 0.1142 | 98.6 | 0.1175 |
SNVDT | 98.6 | 0.0841 | 97.1 | 0.1427 |
Data Pre-Treatment Method | Whole | Fingerprint | ||||
---|---|---|---|---|---|---|
LDA | SVM | LDA | SVM | |||
Accuracy (%) | RMSE | Accuracy (%) | Accuracy (%) | RMSE | Accuracy (%) | |
Median Filter | 100.0 | 0.0003 | 100.0 | 98.6 | 0.0842 | 98.6 |
First Derivative (SG) | 100.0 | 0.0000 | 100.0 | 100.0 | 0.0128 | 97.1 |
Second Derivative (SG) | 100.0 | 0.0000 | 100.0 | 98.6 | 0.1095 | 92.8 |
Deresolve | 98.6 | 0.1205 | 95.7 | 100.0 | 0.0658 | 98.6 |
Detrending | 100.0 | 0.0000 | 100.0 | 100.0 | 0.0000 | 98.6 |
MSC | 100.0 | 0.0003 | 100.0 | 100.0 | 0.0000 | 98.6 |
OSC | 100.0 | 0.0125 | 100.0 | 100.0 | 0.0003 | 100.0 |
Quantile Normalise | 100.0 | 0.0000 | 100.0 | 100.0 | 0.0000 | 98.6 |
SNV | 100.0 | 0.0000 | 100.0 | 100.0 | 0.0000 | 100.0 |
SNVDT | 100.0 | 0.0000 | 100.0 | 100.0 | 0.0000 | 98.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formosa, J.P.; Lia, F.; Mifsud, D.; Farrugia, C. Application of ATR-FT-MIR for Tracing the Geographical Origin of Honey Produced in the Maltese Islands. Foods 2020, 9, 710. https://doi.org/10.3390/foods9060710
Formosa JP, Lia F, Mifsud D, Farrugia C. Application of ATR-FT-MIR for Tracing the Geographical Origin of Honey Produced in the Maltese Islands. Foods. 2020; 9(6):710. https://doi.org/10.3390/foods9060710
Chicago/Turabian StyleFormosa, Jean Paul, Frederick Lia, David Mifsud, and Claude Farrugia. 2020. "Application of ATR-FT-MIR for Tracing the Geographical Origin of Honey Produced in the Maltese Islands" Foods 9, no. 6: 710. https://doi.org/10.3390/foods9060710
APA StyleFormosa, J. P., Lia, F., Mifsud, D., & Farrugia, C. (2020). Application of ATR-FT-MIR for Tracing the Geographical Origin of Honey Produced in the Maltese Islands. Foods, 9(6), 710. https://doi.org/10.3390/foods9060710