Reducing the High Iodine Content of Saccharina latissima and Improving the Profile of Other Valuable Compounds by Water Blanching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Raw Material
2.3. Water Blanching and Freezing
2.4. Sample Preparation for Chemical Analysis
2.5. Dry Matter and Ash
2.6. Iodine
2.7. Amino Acid Hydrolysis and Calculation of Protein Content
2.8. Determination of Total Lipid Content
2.9. Carbohydrates by Difference
2.10. Fatty Acids
2.11. Extraction for Antioxidant Analyses and Total Phenolic Content
2.12. Total Phenolic Content (TPC)
2.13. DPPH Radical Scavenging Activity
2.14. Mass Balances and True Retentions
2.15. Statistical Analysis
3. Results and Discussion
3.1. Iodine Content of Sugar Kelp
3.2. Proximate Composition
3.3. Retention of Nutrients
3.4. Amino Acid Composition
3.5. Fatty Acid Composition
3.6. Antioxidant Activity and Total Phenolic Content
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Bak, U.G.; Nielsen, C.W.; Marinho, G.S.; Gregersen, Ó.; Jónsdóttir, R.; Holdt, S.L. The seasonal variation in nitrogen, amino acid, protein and nitrogen-to-protein conversion factors of commercially cultivated Faroese Saccharina latissima. Algal Res. 2019, 42. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Manns, D.; D’Este, M.; Krause-Jensen, D.; Rasmussen, M.B.; Larsen, M.M.; Alvarado-Morales, M.; Angelidaki, I.; Bruhn, A. Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters. Algal Res. 2016, 13, 235–245. [Google Scholar] [CrossRef]
- Biancarosa, I.; Belghit, I.; Bruckner, C.G.; Liland, N.S.; Waagbø, R.; Amlund, H.; Heesch, S.; Lock, E.J. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: Benefits of and limitations to their potential use in food and feed. J. Sci. Food Agric. 2018, 98, 2035–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinho, G.S.; Sørensen, A.D.M.; Safafar, H.; Pedersen, A.H.; Holdt, S.L. Antioxidant content and activity of the seaweed Saccharina latissima: A seasonal perspective. J. Appl. Phycol. 2019, 31, 1343–1354. [Google Scholar] [CrossRef] [Green Version]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2014, 27, 363–373. [Google Scholar] [CrossRef]
- Stévant, P.; Marfaing, H.; Duinker, A.; Fleurence, J.; Rustad, T.; Sandbakken, I.; Chapman, A. Biomass soaking treatments to reduce potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta) and health risk estimation for human consumption. J. Appl. Phycol. 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Danish Food Data version 4. Available online: https://frida.fooddata.dk (accessed on Dec 31, 2019).
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012 - Integrating Nutrition and Physical Activity, 5th ed.; Nordic Council of Ministers: Copenhagen, Denmark, 2012; ISBN 9789289326704.
- Scientific Commitee on Food Tolerable Upper Intake Levels for Vitamins and Minerals; European Food Safety Authorities: Parma, Italy, 2006; ISBN 9291990140.
- EFSA Overview on Tolerable Upper Intake Levels as derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); European Food Safety Authorities: Parma, Italy, 2018.
- ANSES Opinion of the French Agency for Food, Environmental and Occupational Health and Safety: On the Risk of Excess Iodine Intake from the Consumption of Seaweed in Foodstuffs; Request No 2017-SA-0086; ANSES (French Agency for Food, Environmental and Occupational Health & Safety: Maisons-Alfort, France, 2018.
- Council directive (EC) 178/2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. 2002, L31, 1–24.
- Lüning, K.; Mortensen, L. European aquaculture of sugar kelp (Saccharina latissima) for food industries: Iodine content and epiphytic animals as major problems. Bot. Mar. 2015, 58, 449–455. [Google Scholar] [CrossRef]
- AOAC Method 950.46 Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990.
- AOAC Method 938.08 Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990.
- EN 17050:2017 Animal Feeding Stuffs: Methods of Sampling and Analysis—Determination of Iodine in Animal Feed by ICP-MS; European Commitee for Standardization (CEN): Brussels, Belgium, 2017.
- Angell, A.R.; Mata, L.; de Nys, R.; Paul, N.A. The protein content of seaweeds: A universal nitrogen-to-protein conversion factor of five. J. Appl. Phycol. 2016, 28, 511–524. [Google Scholar] [CrossRef]
- FAO Food Energy—Methods of Analysis and Conversion Factors; FAO: Rome, Italy, 2003.
- Diniz, G.S.; Barbarino, E.; Oiano-Neto, J.; Pacheco, S.; Lourenco, S.O. Gross Chemical Profile and Calculation of Nitrogen-to-Protein Conversion Factors for Five Tropical Seaweeds. Am. J. Plant Sci. 2011, 02, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safafar, H.; Ljubic, A.; Møller, P.; Jacobsen, C. Two-Step Direct Transesterification as a Rapid Method for the Analysis of Fatty Acids in Microalgae Biomass. Eur. J. Lipid Sci. Technol. 2019, 121, 1–8. [Google Scholar] [CrossRef]
- Firestone, D. Official Methods and Recommended Practices of the AOCS, 5th ed.; American Oil Chemists’ Society: Urbana, IL, USA, 1998. [Google Scholar]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farvin, K.H.S.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT - Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Murphy, E.W.; Criner, P.E.; Gray, B.C. Comparisons of Methods for Calculating Retentions of Nutrients in Cooked Foods. J. Agric. Food Chem. 1975, 23, 1153–1157. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Nitschke, U.; Stengel, D.B. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chem. 2015, 172, 326–334. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Skjermo, J.; Marfaing, H.; Jónsdóttir, R.; Rebours, C.; Gietl, A.; Stengel, D.B.; Nitschke, U. Iodine content in bulk biomass of wild-harvested and cultivated edible seaweeds: Inherent variations determine species-specific daily allowable consumption. Food Chem. 2018, 254, 333–339. [Google Scholar] [CrossRef]
- Adams, J.B. Blanching of Vegetables. Nutr. Food Sci. 1981, 81, 11–13. [Google Scholar] [CrossRef]
- Castro, S.M.; Saraiva, J.A.; Lopes-da-Silva, J.A.; Delgadillo, I.; Van Loey, A.; Smout, C.; Hendrickx, M. Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chem. 2008, 107, 1436–1449. [Google Scholar] [CrossRef]
- Circuncisão, A.R.; Catarino, M.D.; Cardoso, S.M.; Silva, A.M.S. Minerals from macroalgae origin: Health benefits and risks for consumers. Mar. Drugs 2018, 16, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinho, G.S.; Holdt, S.L.; Angelidaki, I. Seasonal variations in the amino acid profile and protein nutritional value of Saccharina latissima cultivated in a commercial IMTA system. J. Appl. Phycol. 2015, 27, 1991–2000. [Google Scholar] [CrossRef]
- Cho, S.H.; Kang, S.E.; Cho, J.Y.; Kim, A.R.; Park, S.M.; Hong, Y.K.; Ahn, D.H. The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food 2007, 10, 479–485. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Liu, H.; Gu, L.; Kristinsson, H.G.; Raghavan, S.; Ólafsdóttir, G. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J. Agric. Food Chem. 2012, 60, 5874–5883. [Google Scholar] [CrossRef]
- Hermund, D.B.; Yeşiltaş, B.; Honold, P.; Jónsdóttir, R.; Kristinsson, H.G.; Jacobsen, C. Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish-oil-enriched milk and mayonnaise. J. Funct. Foods 2015, 19, 828–841. [Google Scholar] [CrossRef]
Time | Temperature/Treatment | Iodine (mg·kg−1·dw−1) |
---|---|---|
N/A | Fresh | 4605 ± 274 ab |
N/A | Freeze-thawed | 4057 ± 419 b |
2 s | 30 °C | 5157 ± 201 a |
45 °C | 2873 ± 627 c | |
60 °C | 1198 ± 146 d | |
80 °C | 711 ± 151 de | |
30 s | 45 °C | 667 ± 120 de* |
60 °C | 472 ± 121 de | |
80 °C | 343 ± 41 e | |
120 s | 30 °C | 2973 ± 523 c |
45 °C | 346 ± 35 e | |
60 °C | 334 ± 55 e | |
80 °C | 293 ± 90 e | |
300 s | 30 °C | 1014 ± 349 de |
45 °C | 388 ± 23 de | |
60 °C | 321 ± 68 e |
Component | Fresh | 45 °C | 60 °C | 80 °C | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2 s | 30 s | 120 s | 2 s | 30 s | 120 s | 2 s | 30 s | 120 s | ||
Water | 90.68 ± 0.30 a | 93.42 ± 0.77 b | 94.79 ± 0.47 c | 95.70 ± 0.20 c | 94.49 ± 0.46 bc | 95.45 ± 0.20 c | 95.44 ± 0.28 c | 95.23 ± 0.20 c | 95.36 ± 0.03 *c | 95.64 ± 0.14 c |
Ash | 44.51 ± 0.86 a | 26.3 ± 1.5 b | 18.4 ± 1.7 cd | 10.8 ± 2.5 ef | 20.5 ± 3.2 bc | 12.3 ± 2.8 def | 9.1 ± 1.6 f | 17.2 ± 1.7 cde | 11.7 ± 1.2 *def | 11.2 ± 1.4 def |
Protein | 7.9 ± 2.5 a | 11.8 ± 2.4 a | 10.5 ± 1.4 *a | 12.3 ± 1.0 a | 10.2 ± 3.0a | 9.8 ± 3.0 a | 13.6 ± 1.8 a | 12.6 ± 2.3 a | 13.6 ± 2.3 a | 15.3 ± 2.6 a |
Fat | 5.8 ± 2.6 a | 6.9 ± 0.8 a | 7.9 ** | 10.2 ± 0.6 *a | 9.1 ± 1.5a | 8.6 ± 4.0 *a | 9.0 ± 1.7 a | 9.7 ± 0.7 *a | 9.1 ± 1.5 a | 8.7 ± 1.3 *a |
Carbohydrates | 41.8 ± 4.7 a | 55.0 ± 0.3 abc | 65.2 ** | 68.7 ± 3.9 cd | 60.1 ± 5.0bcd | 65.3 ± 4.6 *cd | 68.3 ± 1.4 cd | 60.2 ± 1.8 *cd | 64.9 ± 0.6 *cd | 63.7 ± 1.4 *cd |
Component | 45 °C | 60 °C | 80 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
2 s | 30 s | 120 s | 2 s | 30 s | 120 s | 2 s | 30 s | 120 s | |
Water | 0.87 ± 0.03 a | 0.99 ± 0.06 a | 0.93 ± 0.13 a | 0.83 ± 0.12 a | 0.83 ± 0.04 a | 0.87 ± 0.03 a | 0.74 ± 0.05 a | 0.81 ± 0.04 a | 0.86 ± 0.13 a |
Ash | 0.39 ± 0.07 b | 0.22 ± 0.02 c | 0.09 ± 0.02 d | 0.013 ± 0.005 d | 0.005 ± 0.001 d | 0.004 ± 0.000 d | 0.007 ± 0.001 d | 0.005 ± 0.001 d | 0.004 ± 0.001 d |
Protein | 0.89 ± 0.22 ab | 0.69 ± 0.05 ab | 0.63 ± 0.11 ab | 0.65 ± 0.28 ab | 0.48 ± 0.16 b | 0.70 ± 0.11 ab | 0.57 ± 0.07 ab | 0.67 ± 0.11 ab | 0.73 ± 0.09 ab |
Fat | 0.73 ± 0.11 a | 0.74 ± 0.06 a | 0.69 ± 0.07 a | 0.79 ± 0.23 a | 0.60 ± 0.26 a | 0.79 ± 0.23 a | 0.60 ± 0.26 a | 0.65 ± 0.14 a | 0.62 ± 0.03 a |
Carbohydrates | 0.72 ± 0.12 ab | 0.79 ± 0.10 ab | 0.65 ± 0.08 b | 0.89 ± 0.16 ab | 0.74 ± 0.01 ab | 0.74 ± 0.01 ab | 0.66 ± 0.08 b | 0.71 ± 0.04 ab | 0.69 ± 0.10 ab |
Fatty Acids | Fresh | 45 °C | 60 °C |
---|---|---|---|
30 s | 300 s | ||
18:2 (n-6) (LA) | 4.96 ± 0.12 ab | 5.50 ± 0.23 a | 4.87 ± 0.16 b |
18:3 (n-3) (ALA) | 15.2 ± 1.5 a | 18.1 ± 2.1 ab | 22.63 ± 0.45 b |
20:5 (n-3) (EPA) | 12.18 ± 0.82 a | 13.2 ± 1.0 a | 17.38 ± 0.16 b |
22:6 (n-3) (DHA) | 0.36 ± 0.02 a | 0.15 ± 0.08 b | 0.00 ± 0.00 c |
n-3 | 29.0 ± 2.4 a | 32.2 ± 3.0 a | 41.20 ± 0.71 b |
n-6 | 22.51 ± 0.91 a | 25.37 ± 0.61 b | 26.00 ± 0.03 b |
n-3/n-6 | 1.29 ± 0.08 a | 1.27 ± 0.09 a | 1.59 ± 0.03 b |
PUFA | 51.5 ± 3.1 a | 57.6 ± 3.6 a | 67.19 ± 0.67 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, C.W.; Holdt, S.L.; Sloth, J.J.; Marinho, G.S.; Sæther, M.; Funderud, J.; Rustad, T. Reducing the High Iodine Content of Saccharina latissima and Improving the Profile of Other Valuable Compounds by Water Blanching. Foods 2020, 9, 569. https://doi.org/10.3390/foods9050569
Nielsen CW, Holdt SL, Sloth JJ, Marinho GS, Sæther M, Funderud J, Rustad T. Reducing the High Iodine Content of Saccharina latissima and Improving the Profile of Other Valuable Compounds by Water Blanching. Foods. 2020; 9(5):569. https://doi.org/10.3390/foods9050569
Chicago/Turabian StyleNielsen, Cecilie Wirenfeldt, Susan Løvstad Holdt, Jens J. Sloth, Gonçalo Silva Marinho, Maren Sæther, Jon Funderud, and Turid Rustad. 2020. "Reducing the High Iodine Content of Saccharina latissima and Improving the Profile of Other Valuable Compounds by Water Blanching" Foods 9, no. 5: 569. https://doi.org/10.3390/foods9050569