Oleamide, a Bioactive Compound, Unwittingly Introduced into the Human Body through Some Plastic Food/Beverages and Medicine Containers
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Extracts of Medicinal Plastic Materials
2.3. Preparation of Extracts of Baby Bottles and Plastic Food/Beverages Containers
2.4. LC-MS Analysis
2.5. Statistical Analysis
2.6. Identification of the Source of Migrated Oleamide
3. Results and Discussion
3.1. LC-MS Method
3.2. Medicinal Plastic Materials
3.3. Baby Bottles and Plastic Food/Beverages Containers
3.4. Identification of the Source of Migrated Oleamide
3.5. Screening of Other Extractables and Leachables
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jenke, D.; Odufu, A.; Couch, T.; Chacko, M.; Strathmann, S.; Edgcomb, E. Evaluation of the general solution compatibility of polymer materials used in medical devices such as syringes. PDA J. Pharm. Sci. Technol. 2012, 66, 286–306. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, M.A.; Ebrahimi, M.; Ranji, A.; Feyz, E.; Bejani, V.; Matin, A.A. HPLC and GC methods for determination of lubricants and their evaluation in analysis of real samples of polyethylene. Microchim. Acta 2005, 153, 73–78. [Google Scholar] [CrossRef]
- Lau, O.W.; Wong, S.K. Contamination in food from packaging material. J. Chromatogr. A 2000, 882, 255–270. [Google Scholar] [CrossRef]
- Jenke, D.R. Extractables and leachables considerations for prefilled syringes. Expert Opin. Drug Deliv. 2014, 11, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Kluwe, W.M.; Haseman, J.K.; Huff, J.E. The carcinogenicity of di (2-ethylhexyl) phthalate (dehp) in perspective. J. Toxicol. Environ. Health 1983, 12, 159–169. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Tan, T.; Lee, S.T.; Cheng, S.H.; Lee, F.W.F.; Xu, S.J.L.; Ho, K.C. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int. J. Environ. Res. Public Health 2014, 11, 3156–3168. [Google Scholar] [CrossRef]
- Halden, R.U. Plastics and Health Risks. Annu. Rev. Public Health 2010, 66, 286–306. [Google Scholar] [CrossRef]
- Cooper, I.; Tice, P.A. Migration studies on fatty acid amide slip additives from plastics into food simulants. Food Addit. Contam. 1995, 12, 235–244. [Google Scholar] [CrossRef]
- Simoneau, C.; Van den Eede, L.; Valzacchi, S. Identification and quantification of the migration of chemicals from plastic baby bottles used as substitutes for polycarbonate. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 469–480. [Google Scholar] [CrossRef]
- Bisogno, T.; Sepe, N.; De Petrocellis, L.; Mechoulam, R.; Di Marzo, V. The sleep inducing factor oleamide is produced by mouse neuroblastoma cells. Biochem. Biophys. Res. Commun. 1997, 239, 473–479. [Google Scholar] [CrossRef]
- Cravatt, B.F.; Prospero-Garcia, O.; Siuzdak, G.; Gilula, N.B.; Henriksen, S.J.; Boger, D.L.; Lerner, R.A. Chemical characterization of a family of brain lipids that induce sleep. Science 1995, 268, 1506–1509. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Orozco, P.E.; Montes-Rodriguez, C.J.; Ruiz-Contreras, A.E.; Mendez-Diaz, M.; Prospero-Garcia, O. The effects of anandamide and oleamide on cognition depend on diurnal variations. Brain Res. 2017, 1672, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, W.B.; Basile, A.S. The hypnotic actions of the fatty acid amide, oleamide. Neuropsychopharmacology 2001, 25, S36–S39. [Google Scholar] [CrossRef]
- McDonald, G.R.; Hudson, A.L.; Dunn, S.M.J.; You, H.; Baker, G.B.; Whittal, R.M.; Martin, J.W.; Jha, A.; Edmondson, D.E.; Holt, A. Bioactive contaminants leach from disposable laboratory plasticware. Science 2008, 322, 917. [Google Scholar] [CrossRef]
- Langstein, J.; Hofstädter, F.; Schwarz, H. Cis-9,10-octadecenoamide, an endogenous sleep-inducing CNS compound, inhibits lymphocyte proliferation. Res. Immunol. 1996, 147, 389–396. [Google Scholar] [CrossRef]
- Oh, Y.T.; Lee, J.Y.; Lee, J.; Lee, J.H.; Kim, J.E.; Ha, J.; Kang, I. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-κB activation in BV2 murine microglial cells. Neurosci. Lett. 2010, 474, 148–153. [Google Scholar] [CrossRef]
- Moon, S.M.; Lee, S.A.; Hong, J.H.; Kim, J.S.; Kim, D.K.; Kim, C.S. Oleamide suppresses inflammatory responses in LPS-induced RAW264.7 murine macrophages and alleviates paw edema in a carrageenan-induced inflammatory rat model. Int. Immunopharmacol. 2018, 56, 179–185. [Google Scholar] [CrossRef]
- Yang, W.S.; Lee, S.R.; Jeong, Y.J.; Park, D.W.; Cho, Y.M.; Joo, H.M.; Kim, I.; Seu, Y.B.; Sohn, E.H.; Kang, S.C. Antiallergic activity of ethanol extracts of Arctium lappa L. undried roots and its active compound, oleamide, in regulating FcϵRI-mediated and MAPK signaling in RBL-2H3 cells. J. Agric. Food Chem. 2016, 64, 3564–3573. [Google Scholar] [CrossRef]
- Dublin City University, Dublin 9 (IE). A Method of Treating Peripheral Inflammatory Disease. European Patent Application No. 15168496.6, 20 May 2015.
- Cani, P.D.; Plovier, H.; Van Hul, M.; Geurts, L.; Delzenne, N.M.; Druart, C.; Everard, A. Endocannabinoids—At the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 2016, 12, 133–143. [Google Scholar] [CrossRef]
- Olivieri, A.; Degenhardt, O.S.; Mcdonald, G.R.; Narang, D.; Paulsen, I.M.; Kozuska, J.L.; Holt, A. On the disruption of biochemical and biological assays by chemicals leaching from disposable laboratory plasticware. Can. J. Physiol. Pharmacol. 2012, 90, 697–703. [Google Scholar] [CrossRef]
- Hiley, C.R.; Hoi, P.M. Oleamide: A fatty acid amide signaling molecule in the cardiovascular system? Cardiovasc. Drug Rev. 2007, 25, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Jug, U.; Naumoska, K.; Metličar, V.; Schink, A.; Makuc, D.; Vovk, I.; Plavec, J.; Lucas, K. Interference of oleamide with analytical and bioassay results. Sci. Rep. 2020, 10, 2163. [Google Scholar] [CrossRef]
- Vera, P.; Canellas, E.; Nerín, C. Identification of non volatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF. Talanta 2018, 188, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Vera, P.; Canellas, E.; Barknowitz, G.; Goshawk, J.; Nerín, C. Ion-mobility quadrupole time-of-flight mass spectrometry: A novel technique applied to migration of nonintentionally added substances from polyethylene films intended for use as food packaging. Anal. Chem. 2019, 91, 12741–12751. [Google Scholar] [CrossRef]
- García Ibarra, V.; Rodríguez Bernaldo de Quirós, A.; Paseiro Losada, P.; Sendón, R. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag. Shelf Life 2019, 21, 100325. [Google Scholar] [CrossRef]
- Carrero-Carralero, C.; Escobar-Arnanz, J.; Ros, M.; Jiménez-Falcao, S.; Sanz, M.L.; Ramos, L. An untargeted evaluation of the volatile and semi-volatile compounds migrating into food simulants from polypropylene food containers by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Talanta 2019, 195, 800–806. [Google Scholar] [CrossRef]
- Zimmermann, L.; Dierkes, G.; Ternes, T.A.; Völker, C.; Wagner, M. Benchmarking the in Vitro Toxicity and Chemical Composition of Plastic Consumer Products. Environ. Sci. Technol. 2019, 53, 11467–11477. [Google Scholar] [CrossRef]
- Rajbux, C.; Pereira, J.; Selbourne, M.D.C.; Costa-Pinto, A.R.; Poças, F. Assessment of baby Bibs. GC-MS screening, migration into saliva and insight of toxicity with QSAR tools. Food Control 2020, 109, 106951. [Google Scholar] [CrossRef]
- Kuki, Á.; Zelei, G.; Nagy, L.; Nagy, T.; Zsuga, M.; Kéki, S. Rapid mapping of various chemicals in personal care and healthcare products by direct analysis in real time mass spectrometry. Talanta 2019, 192, 241–247. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food Text with EEA Relevance. Available online: https://publications.europa.eu/sl/publication-detail/-/publication/84665a0a-f9e5-4eae-aac5-af4fd4c8ac94/language-en (accessed on 15 April 2019).
- Divito, E.B.; Davic, A.P.; Johnson, M.E.; Cascio, M. Electrospray ionization and collision induced dissociation mass spectrometry of primary fatty acid amides. Anal. Chem. 2012, 84, 2388–2394. [Google Scholar] [CrossRef] [PubMed]
- Crozier Willi, G.; Berger, A.; Di Marzo, V.; Bisogno, T.; De Petrocellis, L.; Fride, E.; Mechoulam, R. Lipids in neural function: Modulation of behavior by oral administration of endocannabinoids found in foods. Nestle Nutr. Workshop Ser. Clin. Perform. Programme 2001, 5, 169–187. [Google Scholar] [PubMed]
- Bradley, E.; Coulier, L. An Investigation into the Reaction and Breakdown Products from Starting Substances Used to Produce Food Contact Plastics; Report FD 07/01; Central Science Laboratory: Sand Hutton, York, UK, 2007. [Google Scholar]
- Bach, C.; Dauchy, X.; Chagnon, M.; Etienne, S.; Bach, C.; Dauchy, X.; Chagnon, M.; Etienne, S. Chemical migration in drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy. Water Res. Elsevier 2012, 46, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, H.H.; Rule, M. Packaged Potable Liquid with UV Absorber for Reduced Off-Taste from Closure and Method. U.S. Patent Application Publication No.: US 2004/0185196 A1, 21 March 2003. [Google Scholar]
- Gorji, S.; Biparva, P.; Bahram, M.; Nematzadeh, G. Development of magnetic solid phase microextraction method for determination of the endocrine disrupting chemicals leached from reused plastic bottles. Talanta 2019, 194, 859–869. [Google Scholar] [CrossRef]
- Buiarelli, F. HPLC and GC-MS detection of compounds released to mineral waters stored inplastic bottles of PET and PVC. Ann. Di Chim. 1993, 83, 93–104. [Google Scholar]
- Cooper, I.; Lord, T.; Tice, P.A. Hydrolysis studies on oleamide in simulated gastrointestinal fluids. Food Addit. Contam 1995, 12, 769–777. [Google Scholar] [CrossRef]
- Osmundsen, P.E. Contact urticaria from nickel and plastic additives. Contact Dermat. 1980, 6, 452–454. [Google Scholar] [CrossRef]
- Aalto-Korte, K.; Pesonen, M.; Kuuliala, O.; Suuronen, K. Contact allergy from metalworking fluid traced to tall oil fatty acids monoethanolamide. Contact Dermat. 2013, 69, 316–317. [Google Scholar] [CrossRef]
- Barlow, S. Threshold of toxicological concern (TTC). In ILSI Eur. Concise Monogr. Ser.; ILSI Press: Washington DC, USA, 2005; ISBN 1-57881-188-0. [Google Scholar]
- Kroes, R.; Renwick, A.G.; Cheeseman, M.; Kleiner, J.; Mangelsdorf, I.; Piersma, A.; Schilter, B.; Schlatter, J.; van Schothorst, F.; Vos, J.G.; et al. Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food Chem. Toxicol. 2004, 42, 65–83. [Google Scholar] [CrossRef]
- Draft Screening Assessment Fatty Amides Group, Environment and Climate Change Canada, Health Canada. 2018. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/screening-assessment-fatty-amides.html (accessed on 9 April 2020).
- Bengström, L. Chemical Identification of Contaminants in Paper and Board Food Contact Materials. Ph.D. Thesis, Technical University of Lyngby, Denmark, Denmark, 2014. [Google Scholar]
- ESI Common Background Ions, UWPR. Advancing Proteomics. Available online: http://www.proteomicsresource.washington.edu/protocols05/esi_background_ions.php (accessed on 15 April 2019).
- Common LC/MS Contaminants, Agilent Technologies, September 2003. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.cigs.unimo.it%2Fcigsdownloads%2Flabs%2Flcmsit%2Fcontaminants%2520ion%2520trap.doc (accessed on 9 April 2020).
- Keller, B.O.; Sui, J.; Young, A.B.; Whittal, R.M. Interferences and contaminants encountered in modern mass spectrometry. Anal. Chim. Acta 2008, 627, 71–81. [Google Scholar] [CrossRef]
- BACKGROUND ION LIST, Rev. A, Waters. Available online: https://www.waters.com/webassets/cms/support/docs/bkgrnd_ion_mstr_list.pdf (accessed on 15 April 2019).
- Bertin, M.J.; Zimba, P.V.; Beauchesne, K.R.; Huncik, K.M.; Moeller, P.D.R. Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum carter. Harmful Algae 2012, 20, 111–116. [Google Scholar] [CrossRef]
- Beißmann, S.; Stiftinger, M.; Grabmayer, K.; Wallner, G.; Nitsche, D.; Buchberger, W. Monitoring the degradation of stabilization systems in polypropylene during accelerated aging tests by liquid chromatography combined with atmospheric pressure chemical ionization mass spectrometry. Polym. Degrad. Stab. 2013, 98, 1655–1661. [Google Scholar] [CrossRef]
Material Tested with LC-MS Method | Type of a Polymer | Extraction Media/Type of Simulant | Contact Conditions | Pre-treatment before Analysis | Presence of Oleamide Peak in SIM (m/z 282) | Concentration of Oleamide in Extraction Media (ng mL−1) | Estimated Intake of Oleamide (µg) Per Volume (mL) of the Tested Material |
---|---|---|---|---|---|---|---|
Medicinal plastic material | |||||||
Intravenous infusion bottle A | LDPE | S (EtOH10) | 10 days, 60 °C | conc. | + | 17 ± 1 *** | 4/250 |
Syringe 5mL B | PP + PE | MeOH | non conc. | + | 7351 ± 1963 * | / | |
Syringe 5mL B | PP + PE | S (H2O) | conc. | + | 12 ± 3 ** | 0.06/5 | |
Syringe 5mL C | PP + PE | MeOH | non conc. | - | <LOQ | / | |
Syringe 5mL C | PP + PE | MeOH | conc. | + | <LOQ | / | |
Syringe 5mL C | PP + PE | S (H2O) | conc. | - | <LOQ | / | |
Insulin syringe 1 mL D | PP | MeOH | non conc. | + | 21,984 ± 1155 *** | / | |
Insulin syringe 1 mL D | PP | S (H2O) | conc. | + | 152 ± 8 *** | 0.15/1 | |
Insulin syringe 1 mL B | LDPE | MeOH | non conc. | - | <LOQ | / | |
Insulin syringe 1 mL B | LDPE | MeOH | conc. | - | <LOQ | / | |
Insulin syringe 1 mL B | LDPE | S (H2O) | conc. | - | <LOQ | / | |
Enteral syringe E | PP | MeOH | non conc. | - | <LOQ | / | |
Enteral syringe E | PP | MeOH | conc. | + | <LOQ | / | |
Enteral syringe E | PP | FS (EtOH50) | conc. | - | <LOQ | / | |
Baby bottles | |||||||
Baby bottle F | PP | FS (EtOH50) | 2 h, 40 °C | conc. | + | 23 ± 3 ** | 3/125 |
Baby bottle G | PP | FS (EtOH50) | 2 h, 40 °C | conc. | + | 12 ± 2 ** | 3/250 |
Baby bottle H | PP | FS (EtOH50) | 2 h, 40 °C | conc. | + | 20 ± 2 ** | 6/300 |
Dummy F | silicon | MeOH | conc. | + | 33 ± 8 ** | / | |
Dummy G | silicon | MeOH | conc. | + | 30 ± 4 ** | / | |
Dummy H | silicon | MeOH | conc. | + | 39 ± 9 ** | / | |
Plastic food containers | |||||||
Carbonated soft drink I | PET | FS (AC3) | 10 days, 60 °C | conc. | + | 15 ± 3 ** | 8/500 |
Carbonated soft drink J | PET | FS (AC3) | 10 days, 60 °C | conc. | + | 6 ± 1 ** | 9/1500 |
Vitamin water K | PET | FS (AC3) | 10 days, 60 °C | conc. | + | 15 ± 3 ** | 8/500 |
Milk (3.5% fat) L | PET | FS (EtOH50) | 10 days, 20 °C | conc. | + | 3 ± 2 * | 3/1000 |
Milk (3.5% fat) M | PET | FS (EtOH50) | 10 days, 20 °C | conc. | + | 9 ± 5 * | 9/1000 |
Milk (1.5% fat) N | PET | FS (EtOH50) | 10 days, 20 °C | conc. | + | 8 ± 3 * | 8/1000 |
Liquid yogurt (4% fat) O | PET | FS (EtOH50) | 10 days, 20 °C | conc. | + | 17 ± 3 ** | 9/500 |
Liquid yogurt (1.3% fat) P | PET | FS (EtOH50) | 10 days, 20 °C | conc. | + | 17 ± 2 ** | 8/500 |
Oil N | PET | FS (oil = RS) | 10 days, 60 °C | LLE + conc. | + | 238 ± 21 ** | 238/1000 |
Milk (3.5% fat) M | PET | RS (milk) | LLE + conc. | + | 293 ± 47 * | 293/1000 | |
Oil N | PET | RS (oil) | LLE + conc. | + | 217 ± 9 *** | 217/1000 | |
Water Q | PET | RS (water) | 10 days, 60 °C | conc. | + | 16 ± 2 ** | 8/500 |
Water R | PET | RS (water) | 10 days, 60 °C | conc. | + | 11 ± 1 *** | 6/500 |
Water S | PET | RS (water) | 10 days, 60 °C | conc. | + | 12 ± 3 ** | 6/500 |
Water G | PET | RS (water) | 10 days, 60 °C | conc. | + | 12 ± 2 ** | 6/500 |
Water T | PET | RS (water) | 10 days, 60 °C | conc. | + | 18 ± 4 ** | 9/500 |
Water N | PET | RS (water) | 10 days, 60 °C | conc. | + | 14 ± 2 ** | 7/500 |
Material Tested | Tested Parts | |
---|---|---|
barrel | plunger | |
Syringe 5 mL B | + | + |
Insulin syringe 1 mL D | + | + |
container | dummy | |
Baby bottle and dummy F | + | + |
Baby bottle and dummy G | + | + |
Baby bottle and dummy H | + | + |
container | closure | |
Intravenous infusion bottle A | + | + |
Carbonated soft drink I | + | + |
Carbonated soft drink J | + | + |
Vitamin water K | + | + |
Milk (3.5% fat) L | + | + |
Milk (3.5% fat) M | + | + |
Milk (1.5% fat) N | + | + |
Liquid yogurt (4% fat) O | + | + |
Liquid yogurt (1.3% fat) P | + | + |
Oil N | + | + |
Water Q | + | + |
Water R | + | + |
Water S | + | + |
Water G | + | + |
Water T | + | + |
Water N | + | + |
m/z (ESI+) | Tentative Identification | tR (min) | Material | Reference |
---|---|---|---|---|
228 | N-butyl-p-toluenesulphonamide; unknown (present in oleamide standard); myristamide | 8.44 | Insulin syringe (1 mL), plastic syringe (5 mL) | [33,35,46] |
242 | Tetrabutylammonium cation | 11.03, 12.16 | Plastic syringe (5 mL) | [47] |
245 | Oxotris(propan-2-olato)vanadium; 2,2’-dihydroxy-4-methoxybenzophenone; 1,1’-azobis(cyclohexanecarbonitrile); 2,2’-dimethoxy-4,4’-benzidine; | 8.45 | Insulin syringe (1 mL), plastic syringe (5 mL) | [46] |
250 | Triallyl (iso)cyanurate | 9.04 | Dummy | [46] |
254 | Unsaturated amine (present in oleamide standard) | 10.37 | Insulin syringe (1 mL), plastic syringe (5 mL) | [35] |
256 | C14 Unsaturated mono alcohol derivative (present in oleamide standard); palmitamide | 18.41 | Insulin syringe (1 mL), plastic syringe (5 mL) | [33,35] |
268 | ? | 14.89 | Insulin syringe (1 mL), plastic syringe (5 mL) | [48] |
273 | Tetrapropylene glycol [M+Na]+; monomethoxytrityl cation | 18.41 | Insulin syringe (1 mL), plastic syringe (5 mL) | [47,49,50] |
278 | 2-Ethylhexyl-4-(dimethyl amino) benzoate; ethyl 2-cyano-3,3-diphenylacrylate | 8.97 | Plastic syringe (5 mL) | [46] |
280 | Unknown (present in oleamide standard) - oxidation product? | 13.49, 14.89 | Insulin syringe (1 mL), plastic syringe (5 mL) | [35] |
282 | Trans-oleamide (elaidamide) | 23.77 | Insulin syringe (1 mL), plastic syringe (5 mL) | [51] |
284 | Oleamide contaminant; stearamide; | 6.05, 21.07 | Plastic syringe (5 mL) | [33,35,47,48] |
284 | Oleamide contaminant; stearamide; | 6.05 | Food container | [33,35,47,48] |
301 | Oleoyl chloride; dibutylphthalate [M+Na]+; sodium (C10-C18) alkyl sulfonate; (nonylphenyl)phosphate | 6.05, 21.07 | Plastic syringe (5 mL) | [35,47,49,51] |
310 | ? | 11.03 | Plastic syringe (5 mL) | |
314 | Ethyl stearate; styrene trimer | 5.54 | Food container, baby bottle, dummy | [35] |
331 | Pentadecyl sodium sulfate; pentapropylene glycol [M+Na]+; dicyclohexyl phthalate | 23.19 | Baby bottle, food container | [35,47,49] |
341 | Glycerol monostearate [M+H-H2O]+; unknown | 18.54 | Baby bottle | [35] |
348 | ? | 23.19 | Baby bottle | |
359 | Heptadecyl sodium sulfate | 18.54 | Baby bottle | [35] |
362 | 2-Ethylhexyl 2-cyano-3,3-diphenylacrylate; 2-(4-dodecylphenyl)indole; didecyldimethylammonium chloride | 9.04 | Dummy | [46] |
368 | N,N,N-Trimethyldocosan-1-aminium cation | 8.97, 10.43 | Plastic syringe (5 mL) | [47,49] |
369 | 2,2’-(1,4-phenylene) bis[4H-3,1-benzoxazin-4-one]; N-[2-[(2-hydroxyethyl)amino]ethyl]oleamide; 2,2’-methylene bis(4-ethyl-6-tert-butylphenol); lignoceric acid; 2-ethylhexyl palmitate | 23.19 | Baby bottle | [46] |
371 | Decamethylcyclopentasiloxane; pentasiloxane; octaethylene glycol; dioctyl adipate; bis(2-ethylhexyl) adipate | 6.40 | Food container, baby bottle, dummy | [47,48,49,51] |
376 | 1,3,5-Tris (2,2-dimethylpropionylamino)-benzene; sodium 3-[(4-anilinophenyl)diazenyl]benzenesulfonate (Acid Yellow 36) | 18.54 | Baby bottle | [46] |
379 | α-Cyano-4-hydroxycinnamic acid [M2+H]+ | 9.04 | Dummy | [47,49] |
385 | Bisphenol F bis(2-chloro-1-propanol) ether | 6.31 | Food container, baby bottle, dummy | [46] |
397 | ? | 18.54 | Baby bottle | [47,49] |
399 | Setoglaucine (Basic Blue 1); tris-(2-butoxyethyl) phosphate; decyl octyl adipate | 4.25, 13.29 | Dummy | [46] |
403 | Acetyltributyl citrate; glyceryl monooleate [M+H+CH2O2]+; unknown | 5.54 | Food container, baby bottle, dummy | [34] |
426 | 2-(4,6-Diphenyl-1,3,5-triazin-2-yl)-5-(hexyloxy)phenol | 20.93, 23.59 | Infusion bottle, food container, baby bottle, dummy | [46] |
431 | 2,5-Bis(5’-tert-butylbenzoxazol-2-yl)thiophene | 12.03 | Dummy | [35,48] |
455 | ? | 8.45 | Plastic syringe (5 mL) | [47,49] |
456 | ? | 20.93–23.00 | Infusion bottle, food container, baby bottle, dummy | |
463 | Septapropylene glycol [M+K]+; | 18.50 | Dummy | [49] |
480 | ? | 18.50 | Dummy | |
485 | ? | 2.19 | Food container | [47,49] |
485 | ? | 2.19, 10.76 | Baby bottle | [47,49] |
486 | ? | 2.26, 4.65 | Infusion bottle | |
491 | Bisphenol A diglycidyl ether; derivative | 18.50, 21.60 | Dummy | [46] |
502 | ? | 9.19 | Baby bottle | |
511 | 1-Piperidinyloxy, 4,4’-[1,10-dioxo-1,10-decanediyl)bis(oxy)]bis[2,2,6,6-tetramethyl] | 17.80 | Plastic syringe (5 mL) | [46] |
563 | 4,4’-Bis(2-sulphostyryl)biphenyl, disodium salt | 21.00 | Insulin syringe (1 mL), plastic syringe (5 mL) | [46] |
567 | Irganox 1330 fragment (2,6-di-tert-butylphenol split off) | 4.25 | Dummy | [52] |
740 | ? | 4.39 | Infusion bottle | |
953 | ? | 7.91 | Infusion bottle | [47] |
955 | ? | 4.45, 7.91 | Infusion bottle |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumoska, K.; Jug, U.; Metličar, V.; Vovk, I. Oleamide, a Bioactive Compound, Unwittingly Introduced into the Human Body through Some Plastic Food/Beverages and Medicine Containers. Foods 2020, 9, 549. https://doi.org/10.3390/foods9050549
Naumoska K, Jug U, Metličar V, Vovk I. Oleamide, a Bioactive Compound, Unwittingly Introduced into the Human Body through Some Plastic Food/Beverages and Medicine Containers. Foods. 2020; 9(5):549. https://doi.org/10.3390/foods9050549
Chicago/Turabian StyleNaumoska, Katerina, Urška Jug, Valentina Metličar, and Irena Vovk. 2020. "Oleamide, a Bioactive Compound, Unwittingly Introduced into the Human Body through Some Plastic Food/Beverages and Medicine Containers" Foods 9, no. 5: 549. https://doi.org/10.3390/foods9050549
APA StyleNaumoska, K., Jug, U., Metličar, V., & Vovk, I. (2020). Oleamide, a Bioactive Compound, Unwittingly Introduced into the Human Body through Some Plastic Food/Beverages and Medicine Containers. Foods, 9(5), 549. https://doi.org/10.3390/foods9050549