Sensory and Physicochemical Analysis of Meat from Bovine Breeds in Different Livestock Production Systems, Pre-Slaughter Handling Conditions, and Ageing Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Physicochemical Analysis
2.3. Sensorial Analysis
2.4. Statistical Analysis
3. Results
3.1. Effect of Breed, Livestock Production, and Pre-Slaughter Handling on Meat Physicochemical Traits
3.2. Effect of Breed, Livestock Production, and Pre-Slaughter Handling on Meat Sensory Attributes
3.3. Principal Component Discriminant Analysis for Breed Factor
4. Discussion
4.1. Effect of Breed, Livestock Production, and Pre-Slaughter Handling on Meat Physicochemical Traits
4.2. Effect of Breed, Livestock Production, and Pre-Slaughter Handling on Meat Sensory Attributes
4.3. Principal Component Discriminant Analysis for Breed Factor
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QA/visualize (accessed on 20 May 2019).
- RD 2129/2008. Catálogo Oficial de Razas. Available online: https://www.mapa.gob.es/es/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo/ (accessed on 24 May 2019).
- Cañas-Álvarez, J.J.; González-Rodríguez, A.; Munilla, S.; Varona, L.; Díaz, C.; Baro, J.A.; Altarriba, J.; Molina, A.; Piedrafita, J. Genetic diversity and divergence among Spanish beef cattle breeds assessed by a bovine high-density SNP chip. J. Anim. Sci. 2015, 93, 5164–5174. [Google Scholar] [CrossRef] [PubMed]
- Mouresan, E.F.; González-Rodríguez, A.; Cañas-Álvarez, J.J.; Díaz, C.; Altarriba, J.; Baro, J.A.; Piedrafita, J.; Molina, A.; Toro, M.A.; Varona, L. On the haplotype diversity along the genome in Spanish beef cattle populations. Livest. Sci. 2017, 201, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Piedrafita, J.; Quintanilla, R.; Sañudo, C.; Olleta, J.L.; Campo, M.M.; Panea, B.; Renand, G.; Turin, F.; Jabet, S.; Osoro, K.; et al. Carcass quality of 10 beef cattle breeds of the Southwest of Europe in their typical production systems. Livest. Prod. Sci. 2003, 82, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Albertí, P.; Ripoll, G.; Goyache, F.; Lahoz, F.; Olleta, J.L.; Panea, B.; Sañudo, C. Carcass characterisation of seven Spanish beef breeds slaughtered at two commercial weights. Meat Sci. 2005, 71, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Bispo, E.; Monserrat, L.; González, L.; Franco, D.; Moreno, T. Effect of weaning status on animal performance and meat quality of Rubia Gallega calves. Meat Sci. 2010, 86, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Sierra, V.; Guerrero, L.; Fernández-Suárez, V.; Martínez, A.; Castro, P.; Osoro, K.; Rodríguez-Colunga, M.J.; Coto-Montes, A.; Oliván, M. Eating quality of beef from biotypes included in the PGI “Ternera Asturiana” showing distinct physicochemical characteristics and tenderization pattern. Meat Sci. 2010, 86, 343–351. [Google Scholar] [CrossRef]
- Christensen, M.; Ertbjerg, P.; Failla, S.; Sañudo, C.; Richardson, R.I.; Nute, G.R.; Olleta, J.L.; Panea, B.; Albertí, P.; Juárez, M.; et al. Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Sci. 2011, 87, 61–65. [Google Scholar] [CrossRef]
- González, L.; Moreno, T.; Bispo, E.; Dugan, M.E.R.; Franco, D. Effect of supplementing different oils: Linseed, sunflower and soybean, on animal performance, carcass characteristics, meat quality and fatty acid profile of veal from “Rubia Gallega” calves. Meat Sci. 2014, 96, 829–836. [Google Scholar] [CrossRef]
- Avilés, C.; Martínez, A.L.; Domenech, V.; Peña, F. Effect of feeding system and breed on growth performance, and carcass and meat quality traits in two continental beef breeds. Meat Sci. 2015, 107, 94–103. [Google Scholar] [CrossRef]
- Horcada, A.; Polvillo, O.; Juárez, M.; Avilés, C.; Martínez, A.L.; Peña, F. Influence of feeding system (concentrate and total mixed ration) on fatty acid profiles of beef from three lean cattle breeds. J. Food Compos. Anal. 2016, 49, 110–116. [Google Scholar] [CrossRef]
- Panea, B.; Olleta, J.L.; Sañudo, C.; del Mar Campo, M.; Oliver, M.A.; Gispert, M.; Serra, X.; Renand, G.; del Carmen Oliván, M.; Jabet, S.; et al. Effects of breed-production system on collagen, textural, and sensory traits of 10 European beef cattle breeds. J. Texture Stud. 2018, 49, 528–535. [Google Scholar] [CrossRef] [PubMed]
- McIlveen, H.; Buchanan, J. The impact of sensory factors on beef purchase and consumption. Nutr. Food Sci. 2001, 31, 286–292. [Google Scholar] [CrossRef]
- Villarroel, M.; María, G.A.; Sañudo, C.; Olleta, J.L.; Gebresenbet, G. Effect of transport time and sensorial aspects of beef meat quality. Meat Sci. 2003, 63, 353–357. [Google Scholar] [CrossRef]
- Bonneau, M.; Lebret, B. Production systems and influence on eating quality of pork. Meat Sci. 2010, 84, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Resconi, V.C.; Campo, M.M.; Font i Furnols, M.; Montossi, F.; Sañudo, C. Sensory quality of beef from different finishing diets. Meat Sci. 2010, 86, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Torrico, D.D.; Hutchings, S.C.; Ha, M.; Bittner, E.P.; Fuentes, S.; Warner, R.D.; Dunshea, F.R. Novel techniques to understand consumer responses towards food products: A review with a focus on meat. Meat Sci. 2018, 144, 30–42. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Domínguez, R. Cooking losses, lipid oxidation and formation of volatile compounds in foal meat as affected by cooking procedure. Flavour Fragr. J. 2014, 29, 240–248. [Google Scholar] [CrossRef]
- Moholisa, E.; Hugo, A.; Strydom, P.E.; van Heerden, I. The effects of animal age, feeding regime and a dietary beta-agonist on tenderness of three beef muscles. J. Sci. Food Agric. 2017, 97, 2375–2381. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Meinert, L. Meat flavour in pork and beef—From animal to meal. Meat Sci. 2017, 132, 112–117. [Google Scholar] [CrossRef]
- Ferguson, D.M.; Warner, R.D. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Sci. 2008, 80, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Raats, J.G. Relationship between pre-slaughter stress responsiveness and beef quality in three cattle breeds. Meat Sci. 2009, 81, 653–657. [Google Scholar] [CrossRef] [Green Version]
- Weglarz, A. Effect of pre-slaughter housing of different cattle categories on beef quality. Anim. Sci. Pap. Reports 2011, 29, 43–52. [Google Scholar]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [PubMed]
- ISO 13299:2016 (2016) ISO. Available online: https://www.iso.org/standard/58042.html (accessed on 20 September 2005).
- ISO 8586:2012 (2012) ISO. Available online: https://www.iso.org/standard/45352.html (accessed on 20 September 2005).
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs To Balance the Effect of Order of Presentation and First-Order Carry-Over Effects in Hall Tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Zhang, X.; Owens, C.M.; Schilling, M.W. Meat: The edible flesh from mammals only or does it include poultry, fish, and seafood? Anim. Front. 2017, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Sañudo, C.; Albertí, P.; Ripoll, G.; Campo, M.M.; Olleta, J.L.; Panea, B.; Khliji, S.; Santolaria, P. Effect of production system before the finishing period on carcass, meat and fat qualities of beef. Animal 2013, 7, 2063–2072. [Google Scholar] [CrossRef] [Green Version]
- Humada, M.J.; Sañudo, C.; Serrano, E. Chemical composition, vitamin E content, lipid oxidation, colour and cooking losses in meat from Tudanca bulls finished on semi-extensive or intensive systems and slaughtered at 12 or 14 months. Meat Sci. 2014, 96, 908–915. [Google Scholar] [CrossRef]
- Realini, C.E.; Duckett, S.K.; Brito, G.W.; Dalla Rizza, M.; De Mattos, D. Effect of pasture vs. concentrate feeding with or without antioxidants on carcass characteristics, fatty acid composition, and quality of Uruguayan beef. Meat Sci. 2004, 66, 567–577. [Google Scholar] [CrossRef]
- Lanari, M.C.; Brewster, M.; Yang, A.; Tume, R.K. Pasture and grain finishing affect the color stability of beef. J. Food Sci. 2002, 67, 2467–2473. [Google Scholar] [CrossRef]
- Gatellier, P.; Mercier, Y.; Juin, H.; Renerre, M. Effect of finishing mode (pasture- or mixed-diet) on lipid composition, colour stability and lipid oxidation in meat from Charolais cattle. Meat Sci. 2005, 69, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Domingo, G.; Iglesias, A.; Monserrat, L.; Sanchez, L.; Cantalapiedra, J.; Lorenzo, J.M. Effect of crossbreeding with Limousine, Rubia Gallega and Belgium Blue on meat quality and fatty acid profile of Holstein calves. Anim. Sci. J. 2015, 86, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Dunne, P.G.; Monahan, F.J.; Moloney, A.P. Current perspectives on the darker beef often reported from extensively-managed cattle: Does physical activity play a significant role? Livest. Sci. 2011, 142, 1–22. [Google Scholar] [CrossRef]
- Warren, H.E.; Scollan, N.D.; Nute, G.R.; Hughes, S.I.; Wood, J.D.; Richardson, R.I. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. II: Meat stability and flavour. Meat Sci. 2008, 78, 270–278. [Google Scholar] [CrossRef]
- Keane, M.G.; Allen, P. Effects of production system intensity on performance, carcass composition and meat quality of beef cattle. Livest. Prod. Sci. 1998, 56, 203–214. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Cittadini, A.; Munekata, P.E.; Domínguez, R. Physicochemical properties of foal meat as affected by cooking methods. Meat Sci. 2015, 108, 50–54. [Google Scholar] [CrossRef]
- Oliete, B.; Carballo, J.A.; Varela, A.; Moreno, T.; Monserrat, L.; Sánchez, L. Effect of weaning status and storage time under vacuum upon physical characteristics of meat of the Rubia Gallega breed. Meat Sci. 2006, 73, 102–108. [Google Scholar] [CrossRef]
- Lucero-Borja, J.; Pouzo, L.B.; de la Torre, M.S.; Langman, L.; Carduza, F.; Corva, P.M.; Santini, F.J.; Pavan, E. Slaughter weight, sex and age effects on beef shear force and tenderness. Livest. Sci. 2014, 163, 140–149. [Google Scholar] [CrossRef]
- Chambaz, A.; Scheeder, M.R.L.; Kreuzer, M.; Dufey, P.A. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 2003, 63, 491–500. [Google Scholar] [CrossRef]
- Lepetit, J.; Grajales, A.; Favier, R. Modelling the effect of sarcomere length on collagen thermal shortening in cooked meat: Consequence on meat toughness. Meat Sci. 2000, 54, 239–250. [Google Scholar] [CrossRef]
- Cho, S.; Kang, G.; Seong, P.N.; Park, B.; Kang, S.M. Effect of slaughter age on the antioxidant enzyme activity, color, and oxidative stability of Korean Hanwoo (Bos taurus coreanae) cow beef. Meat Sci. 2015, 108, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Traore, S.; Aubry, L.; Gatellier, P.; Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Santé-Lhoutellier, V. Higher drip loss is associated with protein oxidation. Meat Sci. 2012, 90, 917–924. [Google Scholar] [CrossRef]
- Gregory, K.E.; Cundiff, L.V.; Koch, R.M.; Dikeman, M.E.; Koohmaraie, M. Breed effects, retained heterosis, and estimates of genetic and phenotypic parameters for carcass and meat traits of beef cattle. J. Anim. Sci. 1994, 72, 1174–1183. [Google Scholar] [CrossRef]
- Gil, M.; Serra, X.; Gispert, M.; Àngels Oliver, M.; Sañudo, C.; Panea, B.; Olleta, J.L.; Campo, M.; Oliván, M.; Osoro, K.; et al. The effect of breed-production systems on the myosin heavy chain 1, the biochemical characteristics and the colour variables of Longissimus thoracis from seven Spanish beef cattle breeds. Meat Sci. 2001, 58, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Moloney, A.P.; Mooney, M.T.; Troy, D.J.; Keane, M.G. Finishing cattle at pasture at 30 months of age or indoors at 25 months of age: Effects on selected carcass and meat quality characteristics. Livest. Sci. 2011, 141, 17–23. [Google Scholar] [CrossRef]
- Chail, A.; Legako, J.F.; Pitcher, L.R.; Griggs, T.C.; Ward, R.E.; Martini, S.; MacAdam, J.W. Legume finishing provides beef with positive human dietary fatty acid ratios and consumer preference comparable with grain-finished beef. J. Anim. Sci. 2016, 94, 2184–2197. [Google Scholar] [CrossRef] [Green Version]
- O’Quinn, T.G.; Brooks, J.C.; Polkinghorne, R.J.; Garmyn, A.J.; Johnson, B.J.; Starkey, J.D.; Rathmann, R.J.; Miller, M.F. Consumer assessment of beef strip loin steaks of varying fat levels. J. Anim. Sci. 2012, 90, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Corbin, C.H.; O’Quinn, T.G.; Garmyn, A.J.; Legako, J.F.; Hunt, M.R.; Dinh, T.T.N.; Rathmann, R.J.; Brooks, J.C.; Miller, M.F. Sensory evaluation of tender beef strip loin steaks of varying marbling levels and quality treatments. Meat Sci. 2015, 100, 24–31. [Google Scholar] [CrossRef]
- French, P.; Riordan, E.G.O.; Monahan, F.J.; Caffrey, P.J.; Mooney, M.T.; Troy, D.J.; Moloney, A.P. The eating quality of meat of steers fed grass and/or concentrates. Meat Sci. 2001, 57, 379–386. [Google Scholar] [CrossRef]
- Kerth, C.R.; Braden, K.W.; Cox, R.; Kerth, L.K.; Rankins, D.L. Carcass, sensory, fat color, and consumer acceptance characteristics of Angus-cross steers finished on ryegrass (Lolium multiflorum) forage or on a high-concentrate diet. Meat Sci. 2007, 75, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T. The role of intramuscular connective tissue in meat texture. Anim. Sci. J. 2010, 81, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef]
- French, P.; O’Riordan, E.G.; Monahan, F.J.; Caffrey, P.J.; Vidal, M.; Mooney, M.T.; Troy, D.J.; Moloney, A.P. Meat quality of steers finished on autumn grass, grass silage or concentrate-based diets. Meat Sci. 2000, 56, 173–180. [Google Scholar] [CrossRef]
- Serra, X.; Guerrero, L.; Guàrdia, M.D.; Gil, M.; Sañudo, C.; Panea, B.; Campo, M.M.; Olleta, J.L.; García-Cachán, M.D.; Piedrafita, J.; et al. Eating quality of young bulls from three Spanish beef breed-production systems and its relationships with chemical and instrumental meat quality. Meat Sci. 2008, 79, 98–104. [Google Scholar] [CrossRef]
- Sañudo, C.; Macie, E.S.; Olleta, J.L.; Villarroel, M.; Panea, B.; Albertí, P. The effects of slaughter weight, breed type and ageing time on beef meat quality using two different texture devices. Meat Sci. 2004, 66, 925–932. [Google Scholar] [CrossRef]
- Revilla, I.; Vivar-Quintana, A.M. Effect of breed and ageing time on meat quality and sensory attributes of veal calves of the “Ternera de Aliste” quality label. Meat Sci. 2006, 73, 189–195. [Google Scholar] [CrossRef]
- Colle, M.J.; Richard, R.P.; Killinger, K.M.; Bohlscheid, J.C.; Gray, A.R.; Loucks, W.I.; Day, R.N.; Cochran, A.S.; Nasados, J.A.; Doumit, M.E. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the biceps femoris and semimembranosus. Meat Sci. 2016, 119, 110–117. [Google Scholar] [CrossRef]
- O’Quinn, T.G.; Legako, J.F.; Brooks, J.C.; Miller, M.F. Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience. Transl. Anim. Sci. 2018, 2, 26–36. [Google Scholar] [CrossRef] [Green Version]
- García-Torres, S.; López-Gajardo, A.; Mesías, F.J. Intensive vs. free-range organic beef. A preference study through consumer liking and conjoint analysis. Meat Sci. 2016, 114, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Caine, W.R.; Aalhus, J.L.; Best, D.R.; Dugan, M.E.R.; Jeremiah, L.E. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 2003, 64, 333–339. [Google Scholar] [CrossRef]
- Neely, T.R.; Lorenzen, C.L.; Miller, R.K.; Tatum, J.D.; Wise, J.W.; Taylor, J.F.; Buyck, M.J.; Reagan, J.O.; Savell, J.W. Beef Customer Satisfaction: Role of Cut, USDA Quality Grade, and City on In-Home Consumer Ratings. J. Anim. Sci. 1998, 76, 1027–1033. [Google Scholar] [CrossRef]
- Jiang, T.; Busboom, J.R.; Nelson, M.L.; Mengarelli, R. Omega-3 fatty acids affected human perception of ground beef negatively. Meat Sci. 2011, 89, 390–399. [Google Scholar] [CrossRef]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
Breed | Livestock Production System | Pre-Slaughter Handling | Interactions with Breed | SEM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AV | RE | RG | p-Value | E | I | p-Value | M | NM | p-Value | B × LPS | B × HPS | ||
pH | 5.48 c | 5.79 a | 5.62 b | <0.0001 | 5.63 | 5.65 | 0.678 | 5.64 | 5.64 | 0.512 | 0.271 | 0.696 | 0.019 |
Color | |||||||||||||
Luminosity (L*) | 39.38 b | 38.15 b | 41.18 a | 0.001 | 40.32 | 39.10 | 0.075 | 39.44 | 40.09 | 0.504 | <0.0001 | 0.505 | 0.304 |
Redness (a*) | 16.14 b | 22.04 a | 11.74 c | <0.0001 | 14.25 | 18.13 | <0.0001 | 16.65 | 15.36 | 0.101 | <0.0001 | <0.0001 | 0.211 |
Yellowness (b*) | 11.03 b | 11.17 b | 12.54 a | <0.0001 | 11.77 | 11.58 | 0.929 | 11.81 | 11.56 | 0.146 | 0.001 | <0.0001 | 0.166 |
Croma (C*) | 19.72 b | 26.73 a | 17.20 c | <0.0001 | 19.75 | 21.79 | 0.010 | 21.30 | 20.06 | 0.113 | <0.0001 | <0.0001 | 0.234 |
Hue (h*) | 36.10 b | 25.92 c | 47.08 a | <0.0001 | 40.93 | 33.82 | <0.0001 | 37.47 | 37.99 | 0.161 | <0.0001 | 0.958 | 0.402 |
Textural parameters | |||||||||||||
Drip loss (%) | 1.92 a | 1.41 b | 1.89 a | 0.001 | 1.75 | 1.77 | 0.490 | 1.63 | 1.88 | 0.055 | 0.401 | 0.130 | 0.056 |
WB test (7 days, N) | 91.7 b | 113.6 a | 66.4 c | <0.0001 | 87.2 | 87.4 | 0.518 | 87.8 | 86.8 | 0.462 | 0.023 | 0.001 | 0.241 |
WB test (14 days, N) | 79.5 b | 100.1 a | 58.5 c | <0.0001 | 76.4 | 77.0 | 0.570 | 75.6 | 77.7 | 0.093 | 0.001 | <0.0001 | 0.195 |
Lipid oxidation | |||||||||||||
TBARS (7 days) | 0.0667 | 0.0559 | 0.0687 | 0.671 | 0.0591 | 0.0711 | 0.094 | 0.0576 | 0.0710 | 0.251 | <0.0001 | 0.573 | 0.005 |
TBARS (14 days) | 0.1767 a | 0.0668 b | 0.0884 b | 0.003 | 0.0723 | 0.1551 | 0.001 | 0.0668 | 0.201 | 0.002 | <0.0001 | <0.0001 | 0.013 |
Protein oxidation | |||||||||||||
Carbonyls (7 days) | 1.48 b | 2.19 a | 1.99 a | <0.0001 | 2.03 | 1.72 | 0.005 | 1.86 | 1.92 | 0.382 | 0.320 | 0.257 | 0.051 |
Carbonyls (14 days) | 2.08 | 2.09 | 2.02 | 0.916 | 2.02 | 2.10 | 0.566 | 2.19 | 1.93 | 0.024 | 0.879 | 0.004 | 0.053 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Pedrouso, M.; Rodríguez-Vázquez, R.; Purriños, L.; Oliván, M.; García-Torres, S.; Sentandreu, M.Á.; Lorenzo, J.M.; Zapata, C.; Franco, D. Sensory and Physicochemical Analysis of Meat from Bovine Breeds in Different Livestock Production Systems, Pre-Slaughter Handling Conditions, and Ageing Time. Foods 2020, 9, 176. https://doi.org/10.3390/foods9020176
López-Pedrouso M, Rodríguez-Vázquez R, Purriños L, Oliván M, García-Torres S, Sentandreu MÁ, Lorenzo JM, Zapata C, Franco D. Sensory and Physicochemical Analysis of Meat from Bovine Breeds in Different Livestock Production Systems, Pre-Slaughter Handling Conditions, and Ageing Time. Foods. 2020; 9(2):176. https://doi.org/10.3390/foods9020176
Chicago/Turabian StyleLópez-Pedrouso, María, Raquel Rodríguez-Vázquez, Laura Purriños, Mamen Oliván, Susana García-Torres, Miguel Ángel Sentandreu, José Manuel Lorenzo, Carlos Zapata, and Daniel Franco. 2020. "Sensory and Physicochemical Analysis of Meat from Bovine Breeds in Different Livestock Production Systems, Pre-Slaughter Handling Conditions, and Ageing Time" Foods 9, no. 2: 176. https://doi.org/10.3390/foods9020176
APA StyleLópez-Pedrouso, M., Rodríguez-Vázquez, R., Purriños, L., Oliván, M., García-Torres, S., Sentandreu, M. Á., Lorenzo, J. M., Zapata, C., & Franco, D. (2020). Sensory and Physicochemical Analysis of Meat from Bovine Breeds in Different Livestock Production Systems, Pre-Slaughter Handling Conditions, and Ageing Time. Foods, 9(2), 176. https://doi.org/10.3390/foods9020176