Content of Toxic Elements in 12 Groups of Rice Products Available on Polish Market: Human Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Digestion
2.3. Toxic Elements Analysis
2.3.1. Arsenic, Cadmium, and Lead
2.3.2. Mercury
2.3.3. Quality Control
2.4. Health Risk Assessment
2.5. Data Analyses
3. Results
3.1. Content of As, Cd, Pb, and Hg
3.2. Health Risk Assessment for Polish Population
3.3. Health Risk Assessment for Thai Population
3.4. Mean BMDL, PTMI, and PTWI Values for Polish and Thai Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organisation of the United Nations. Available online: http://www.fao.org/statistics/en/ (accessed on 20 September 2020).
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture—Alternative Pathways to 2050; Summary Version; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Rozkrut, D. Statistical Yearbook of the Republic of Poland; Statistical Publishing Establishment, Central Statistical Office: Warsaw, Poland, 2018; pp. 310–316.
- Jo, G.; Todorov, T.I. Distribution of nutrient and toxic elements in brown and polished rice. Food Chem. 2019, 289, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Arao, T.; Kawasaki, T.; Baba, K.; Mori, S.; Matsumoto, S. Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environ. Sci. Technol. 2009, 43, 9361–9367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Wang, P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil. 2020, 446, 1–21. [Google Scholar] [CrossRef]
- Chaudhari, P.R.; Tamrakar, N.; Singh, L.; Tandon, A.; Sharma, D. Rice nutritional and medicinal properties: A review article. J. Pharmacogn. Phytochem. 2018, 7, 150–156. [Google Scholar]
- Mbanjo, E.G.N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front. Genet. 2020, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 15 September 2020).
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Arsenic, Metals, Fibres, and Dusts; International Agency for Research of Cancer: Lyon, France, 2012; Volume 100C A Review of Human Carcinogens. [Google Scholar]
- European Food Safety Authority. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- Li, P.; Feng, X.; Yuan, X.; Chan, H.M.; Qiu, G.; Sun, G.X.; Zhu, Y.G. Rice consumption contributes to low level methylmercury exposure in southern China. Environ. Int. 2012, 15, 18–23. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database (accessed on 15 September 2020).
- United States Environmental Protection Agency. A Review of the Reference Dose and Reference Concentration Processes; Risk Assessment Forum United States Environmental Protection Agency, United States Environmental Protection Agency: Washington, DC, USA, 2002.
- United Stated Department of Agriculture, Foreign Agricultural Service. Grain and Feed Annual. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Grain%20and%20Feed%20Annual_Bangkok_Thailand_03-15-2020 (accessed on 10 September 2020).
- Phimol, P.; Visuthismajarn, P.; Lin, C.; Rukkur, S. Assessment of arsenic concentrations and estimated daily intake of arsenic from rice (Oryza sativa) in Ron Phibun District, Southern Thailand. Int. J. Environ. Sci. Technol. 2017, 8, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EU) 2015/1006 of Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Inorganic Arsenic in Foodstuffs. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1006&from=EN (accessed on 20 September 2020).
- Polish National Food Safety Standard, Maximum Contamination Levels in Foodstuffs. National Commission for Health and Family Planning (GB 2762-2012). General Veterinary Inspectorate 2014. Available online: https://www.wetgiw.gov.pl/main/szukaj?szukaj=maksymalne+poziomy+zanieczyszcze%C5%84 (accessed on 20 September 2020).
- Commission Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN (accessed on 20 September 2020).
- Commission Regulation (EU) 2018/73 Amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Mercury Compounds in or on Certain Products. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1600858620936&uri=CELEX:32018R0073 (accessed on 20 September 2020).
- Sommella, A.; Deacon, C.; Norton, G.; Pigna, M.; Violante, A.; Meharg, A.A. Total arsenic, inorganic arsenic, and other elements concentrations in Italian rice grain varies with origin and type. Environ. Pollut. 2013, 181, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Pastorelli, A.A.; Angeletti, R.; Binatob, G.; Mariani, M.B.; Cibin, V.; Morellia, S.; Ciardullo, S.; Stacchinia, P. Exposure to cadmium through Italian rice (Oryza sativa L.): Consumption and implications for human health. J. Food Compos. 2018, 69, 115–121. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Irakli, M.; Katsantonis, D. Presence of mycotoxins, heavy metals and nitrate residues in organic commercial cereal-based foods sold in the Greek market. J. Consum. Prot. Food Saf. 2020, 15, 109–119. [Google Scholar] [CrossRef]
- Pinto, E.; Almeidac, A.; Ferreira, I.M.P.L.V.O. Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. J. Food Compos. 2016, 18, 81–92. [Google Scholar] [CrossRef]
- Brombach, C.C.; Piumi, P.M.; Kolambage-Dona, P.P.P.; Ezzeldina, M.F.; Chen, B.; Corns, W.T.; Feldmann, J.; Kruppa, E.M. Methylmercury varies more than one order of magnitude in commercial European rice. Food Chem. 2017, 1, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Menon, M.; Sarkar, B.; Hufton, J.; Reynolds, C.; Reinac, S.V.; Young, S. Do arsenic levels in rice pose a health risk to the UK population? Ecotox. Environ. Saf. 2020, 197, 110601. [Google Scholar] [CrossRef]
- Liao, W.; Wang, G.; Li, K.; Zhao, W.; Wu, Y. Effect of cooking on speciation and in vitro bioaccessibility of hg and as from rice, using ordinary and pressure cookers. Biol. Trace Elem. Res. 2019, 187, 329–339. [Google Scholar] [CrossRef]
- Kukusamude, C.; Sricharoen, P.; Limchoowong, N.; Kongsria, S. Heavy metals and probabilistic risk assessment via rice consumption in Thailand. Food Chem. 2020, 334, 127402. [Google Scholar] [CrossRef]
- Londonio, A.; Morzan, E.; Smichowski, P. Determination of toxic and potentially toxic elements in rice and rice-based products by inductively coupled plasma-mass spectrometry. Food Chem. 2019, 284, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Santa-Rios, A.; Barst, B.D.; Basu, N.; Bayena, S. Occurrence and bioaccessibility of mercury in commercial rice samples in Montreal (Canada). Food Chem. Toxicol. 2019, 126, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Punshon, T.; Jackson, B.P. Essential micronutrient and toxic trace element concentrations in gluten containing and gluten-free foods. Food Chem. 2018, 252, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Hashempour-Baltork, F.; Hosseini, H.; Houshiarrad, A.; Esmaeili, M. Contamination of foods with arsenic and mercury in Iran: A comprehensive review. Environ. Sci. Pollut. Res. 2019, 26, 25399–25413. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Han, J.; Pang, J.; Wang, X.; Lin, Y.; Wang, Y.; Qiua, G. Methylmercury and inorganic mercury in Chinese commercial rice: Implications for overestimated human exposure and health risk. Environ. Poll. 2020, 258, 113706. [Google Scholar] [CrossRef] [PubMed]
- Shariatifar, N.; Rezaei, M.; Alizadeh Sani, M.; Arabameri, M. Assessment of rice marketed in Iran with emphasis on toxic and essential elements; effect of different cooking methods. Biol. Trace Elem. Res. 2020, 198, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Norton, G.; Deacon, C.; Williams, P.N. Variation in rice cadmium related to human exposure. Environ. Sci. Technol. 2013, 47, 5613–5618. [Google Scholar] [CrossRef]
- Kumarathilaka, P.; Seneweera, S.; Ok, J.S.; Meharg, A.; Bundschuhaf, J. Arsenic in cooked rice foods: Assessing health risks and mitigation options. Environ. Internat. 2019, 127, 584–591. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Abduljabbar, M. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk. Int. J. Hyg. Environ. Health 2017, 2020, 1168–1178. [Google Scholar] [CrossRef]
- Islam, S.; Rahmana, M.M.; Duan, L.; Islam, M.R.; Kuchel, T.; Naiduab, R. Variation in arsenic bioavailability in rice genotypes using swine model: An animal study. Sci. Tot. Envirn. 2017, 599–600, 324–331. [Google Scholar] [CrossRef]
- Sharafi, K.; Nodehi, R.N.; Mahvi, A.H.; Pirsaheb, M.; Nazmara, S.; Mahmoudi, B.; Yunesian, M. Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model—Comparison of calculated human health risk from raw, cooked and digested rice. Food Chem. 2019, 299, 125126. [Google Scholar] [CrossRef] [PubMed]
- Althobiti, R.A.; Sadiq, N.W.; Beauchemin, D. Realistic risk assessment of arsenic in rice. Food Chem. 2018, 257, 230–236. [Google Scholar] [CrossRef] [PubMed]
Phase | Temperature [°C] | Pressure [atm] | Time [min] | Power [%] |
---|---|---|---|---|
1. | 170 | 20 | 10 | 90 |
2. | 190 | 30 | 10 | 90 |
3. | 210 | 40 | 10 | 90 |
4. | 50 | 40 | 18 | 0 |
Parameter | Analytical Conditions | ||
---|---|---|---|
As | Cd | Pb | |
Mode | KED | Standard | Standard |
Mass (amu) | 75 | 110 111 113 114 | 206 207 208 |
Dwell Time per amu (ms) | 50 | 50 | 50 |
Integration Time (ms) | 1000 | 1000 | 1000 |
Detector Calibration Mode | Dual | Dual | Dual |
Replicates | 5 | 5 | 5 |
Element | Precision (%) | Recovery (%) | Declared Concentration in CRM (µg/kg) |
---|---|---|---|
As | 3.2% | 98.5% | 10 |
Cd | 2.4% | 99.0% | 7 |
Pb | 2.4% | 99.6% | 52 |
Hg | 2.2% | 102.0% | 1.5 |
Type of Rice and Rice Product | n | As [µg/kg] | Cd [µg/kg] | Pb [µg/kg] | Hg [µg/kg] | ||||
---|---|---|---|---|---|---|---|---|---|
X ± SD (Min–Max) | Me (Q1–Q3) | X ±SD (Min–Max) | Me (Q1–Q3) | X ± SD (Min–Max) | Me (Q1-Q3) | X ± SD (Min–Max) | Me (Q1–Q3) | ||
Flakes | 12 | 122.2 ± 58.1 (56.3–246.1) | 109.5 (79.2–169.4) | 27.9 ± 22.1 (0.3–73.1) | 20.0 (15.0–34.6) | 18.4 ± 13.3 (0.4–48.7) | 13.2 (11.7–21.9) | 2.5 ± 1.7 (0.9–7.2) | 2.0 (1.4–2.4) |
White | 11 | 96.8 ± 36.1 (46.0–168.9) | 96.6 (72.4–126.0) | 23.4 ± 22.8 (4.2–81.7) | 20.8 (5.8–34.1) | 26.2 ± 17.7 (9.7–59.7) | 18.6 (11.1–43.7) | 2.8 ± 2.7 (0.1–8.3) | 1.6 (1.0–4.5) |
Basmati | 10 | 55.6 ± 10.3 (39.5–71.5) | 57.3 (48.1–61.3) | 14.2 ± 15.2 (1.9–39.5) | 4.8 (2.5–30.9) | 40.4 ± 19.1 (17.0–66.0) | 44.9 (20.9–52.9) | 3.0 ± 4.3 (0.4–14.8) | 1.7 (0.5–3.1) |
Parboiled | 10 | 96.7 ± 32.7 (53.6–151.3) | 97.1 (73.3–115.8) | 33.5 ± 49.8 (8.9–171.6) | 16.7 (9.2–25.3) | 36.9 ± 17.0 (17.6–64.1) | 37.2 (21.4–48.0) | 4.0 ± 5.0 (0.1–15.8) | 1.8 (0.8–5.8) |
Brown | 10 | 204.6 ± 75.2 (113.0–314.5) | 199.8 (149.0–277.5) | 23.8 ± 29.8 (1.9–103.0) | 14.1 (8.8–25.7) | 34.1 ± 34.5 (9.3–106.7) | 18.4 (15.7–35.6) | 2.3 ± 1.7 (0.2–5.9) | 1.8 (1.3–3.5) |
Waffles | 9 | 178.9 ± 33.5 (124.3–232.9) | 173.3 (158.2–202.7) | 18.7 ± 14.1 (8.6–40.3) | 9.7 (9.2–34.1) | 56.4 ± 46.2 (14.8–134.8) | 27.6 (19.8–96.5) | 3.5 ± 1.7 (0.3–6.2) | 3.5 (2.8–4.5) |
Expanded | 8 | 105.7 ± 28.4 (66.3–160.8) | 104.8 (87.0–117.4) | 16.6 ± 12.8 (6.3–46.6) | 13.9 (9.0–16.9) | 79.2 ± 36.8 (21.4–135.6) | 79.3 (54.0–105.1) | 2.7 ± 1.9 (1.1–6.5) | 1.7 (1.4–3.8) |
Pasta | 7 | 54.6 ± 6.3 (48.0–65.2) | 54.3 (48.4–58.4) | 20.5 ± 11.3 (8.0–37.3) | 17.9 (12.5–35.0) | 31.6 ± 14.6 (18.9–60.1) | 24.5 (23.6–42.9) | 3.7 ± 2.4 (1.1–7.3) | 4.3 (1.2–5.4) |
Black | 6 | 127.8 ± 78.8 (4.2–236.3) | 124.4 (101.1–176.5) | 44.8 ± 40.9 (8.4–122.1) | 32.3 (21.5–52.5) | 25.3 ± 10.8 (13.7–42.3) | 23.7 (15.6–32.6) | 2.4 ± 1.6 (1.3–5.3) | 1.6 (1.4–2.7) |
Flour | 6 | 100.5 ± 44.7 (65.1–187.3) | 89.5 (69.3–102.1) | 50.2 ± 21.8 (21.4–85.7) | 48.1 (38.8–59.2) | 46.3 ± 7.5 (36.5–54.3) | 46.6 (39.2–54.3) | 1.8 ± 0.8 (1.0–3.1) | 1.6 (1.4–2.4) |
Red | 5 | 252.2 ± 173.6 (157.5–562.2) | 176.6 (176.4–188.6) | 18.6 ± 16.3 (2.3–45.1) | 14.2 (10.1–21.1) | 19.6 ± 11.3 (11.6–39.4) | 14.7 (13.7–18.4) | 2.7 ± 0.6 (2.1–3.7) | 2.5 (2.4–3.0) |
Wild | 5 | 132.3 ± 67.4 (14.7–182.7) | 157.0 (142.1–165.1) | 26.6 ± 16.7 (10.0–54.1) | 21.3 (19.7–27.7) | 39.1 ± 41.7 (9.6–106.6) | 14.6 (12.0–52.9) | 2.2 ± 1.5 (1.2–4.8) | 1.5 (1.4–2.0) |
TOTAL | 99 | 123.5 ± 77.1 (4.2–562.2) | 107.2 (66.0–165.1) | 25.7 ± 26.5 (0.3–171.6) | 17.9 (9.2–35.0) | 37.5 ± 29.3 (0.4–135.6) | 24.5 (16.2–52.7) | 2.8 ± 2.6 (0.1–15.8) | 2.1 (1.3–3.6) |
Analyzed Parameter | As | p-Value | Cd | p-Value | Pb | p-Value |
---|---|---|---|---|---|---|
Subgroups among which differences were found | pasta—brown rice | p < 0.05 | Flour—basmati rice | p < 0.05 | white rice—expanded rice | p < 0.05 |
pasta—red rice | p < 0.05 | |||||
basmati rice—red rice | p < 0.05 | white rice—red rice | p < 0.05 | |||
basmati rice—brown rice | p < 0.001 | |||||
waffles—pasta | p < 0.001 | flakes—expanded rice | p < 0.01 |
Type of Rice Product | n | EDI [mg/day]/EWI [mg/week] | |||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Pb | Hg | ||||||
Flakes | 12 | 0.00061 ± 0.00029 (0.00028–0.00123) | 0.00428 ± 0.00203 (0.00197–0.00861) | 0.00014 ± 0.00011 (0.00000–0.00037) | 0.00098 ± 0.00077 (0.00001–0.00256) | 0.00014 ± 0.00011 (0.00000–0.00037) | 0.00064 ± 0.00046 (0.00001–0.00171) | 0.00001 ± 0.00001 (0.00000–0.00004) | 0.00008 ± 0.00006 (0.00003–0.00025) |
White | 11 | 0.00048 ± 0.00018 (0.00023–0.00084) | 0.00339 ± 0.00126 (0.00161–0.00591) | 0.00012 ± 0.00011 (0.00002–0.00041) | 0.00082 ± 0.00080 (0.00015–0.00286) | 0.00013 ± 0.00009 (0.00005–0.00030) | 0.00092 ± 0.00062 (0.00034–0.00209) | 0.00001 ± 0.00001 (0.00000–0.00004) | 0.00010 ± 0.00009 (0.00000–0.00029) |
Basmati | 10 | 0.00028 ± 0.00005 (0.00020–0.00036) | 0.00194 ± 0.00036 (0.00138–0.00250) | 0.00007 ± 0.00008 (0.00001–0.00020) | 0.00050 ± 0.00053 (0.00007–0.00138) | 0.00020 ± 0.00010 (0.00009–0.00033) | 0.00141 ± 0.00067 (0.00060–0.00231) | 0.00001 ± 0.00002 (0.00000–0.00007) | 0.00010 ± 0.00015 (0.00001–0.00052) |
Parboiled | 10 | 0.00048 ± 0.00016 (0.00027–0.00076) | 0.00339 ± 0.00114 (0.00188–0.00530) | 0.00017 ± 0.00025 (0.00004–0.00086) | 0.00117 ± 0.00174 (0.00031–0.00601) | 0.00018 ± 0.00009 (0.00009–0.00032) | 0.00129 ± 0.00060 (0.00061–0.00224) | 0.00002 ± 0.00002 (0.00000–0.00008) | 0.00014 ± 0.00017 (0.00000–0.00055) |
Brown | 10 | 0.00102 ± 0.00038 (0.00056–0.00157) | 0.00716 ± 0.00263 (0.00395–0.01101) | 0.00012 ± 0.00015 (0.00001–0.00052) | 0.00083 ± 0.00104 (0.00007–0.00361) | 0.00017 ± 0.00017 (0.00005–0.00053) | 0.00119 ± 0.00121 (0.00033–0.00373) | 0.00001 ± 0.00001 (0.00000–0.00003) | 0.00001 ± 0.00001 (0.00000–0.00003) |
Waffles | 9 | 0.00089 ± 0.00017 (0.00062–0.00116) | 0.00626 ± 0.00117 (0.00435–0.00815) | 0.00009 ± 0.00007 (0.00004–0.00020) | 0.00065 ± 0.00049 (0.00030–0.00141) | 0.00028 ± 0.00023 (0.00007–0.00067) | 0.00197 ± 0.00162 (0.00052–0.00472) | 0.00002 ± 0.00001 (0.00000–0.00003) | 0.00012 ± 0.00006 (0.00001–0.00022) |
Expanded | 8 | 0.00053 ± 0.00014 (0.00033–0.00080) | 0.00370 ± 0.00100 (0.00232–0.00563) | 0.00008 ± 0.00006 (0.00003–0.00023) | 0.00058 ± 0.00045 (0.00022–0.00163) | 0.00040 ± 0.00018 (0.00011–0.00068) | 0.00277 ± 0.00129 (0.00075–0.00475) | 0.00001 ± 0.00001 (0.00001–0.00003) | 0.00009 ± 0.00007 (0.00004–0.00023) |
Pasta | 7 | 0.00027 ± 0.00003 (0.00024–0.00033) | 0.00191 ± 0.00022 (0.00168–0.00228) | 0.00010 ± 0.00006 (0.00004–0.00019) | 0.00072 ± 0.00040 (0.00028–0.00131) | 0.00016 ± 0.00007 (0.00009–0.00030) | 0.00111 ± 0.00051 (0.00066–0.00210) | 0.00002 ± 0.00001 (0.00001–0.00004) | 0.00013 ± 0.00008 (0.00004–0.00025) |
Black | 6 | 0.00064 ± 0.00039 (0.00002–0.00118) | 0.00447 ± 0.00276 (0.00015–0.00827) | 0.00022 ± 0.00020 (0.00004–0.00061) | 0.00157 ± 0.00143 (0.00029–0.00427) | 0.00013 ± 0.00005 (0.00007–0.00021) | 0.00088 ± 0.00038 (0.00048–0.00148) | 0.00001 ± 0.00001 (0.00001–0.00003) | 0.00008 ± 0.00005 (0.00004–0.00019) |
Flour | 6 | 0.00050 ± 0.00022 (0.00033–0.00094) | 0.00352 ± 0.00157 (0.00228–0.00655) | 0.00025 ± 0.00011 (0.00011–0.00043) | 0.00176 ± 0.00076 (0.00075–0.00300) | 0.00023 ± 0.00004 (0.00018–0.00027) | 0.00162 ± 0.00026 (0.00128–0.00190) | 0.00001 ± 0.00000 (0.00001–0.00002) | 0.00006 ± 0.00003 (0.00004–0.00011) |
Red | 5 | 0.00126 ± 0.00087 (0.00079–0.00281) | 0.00883 ± 0.00608 (0.00551–0.01968) | 0.00009 ± 0.00008 (0.00001–0.00023) | 0.00065 ± 0.00057 (0.00008–0.00158) | 0.00010 ± 0.00006 (0.00006–0.00020) | 0.00068 ± 0.00040 (0.00040–0.00138) | 0.00001 ± 0.00000 (0.00001–0.00002) | 0.00010 ± 0.00002 (0.00007–0.00013) |
Wild | 5 | 0.00066 ± 0.00034 (0.00007–0.00091) | 0.00463 ± 0.00236 (0.00051–0.00640) | 0.00013 ± 0.00008 (0.00005–0.00027) | 0.00093 ± 0.00058 (0.00035–0.00189) | 0.00020 ± 0.00021 (0.00005–0.00053) | 0.00137 ± 0.00146 (0.00034–0.00373) | 0.00001 ± 0.00001 (0.00001–0.00002) | 0.00008 ± 0.00005 (0.00004–0.00017) |
TOTAL | 99 | 0.00062 ± 0.00039 | 0.00865 ± 0.00540 | 0.00013 ± 0.00013 | 0.00180 ± 0.00185 | 0.00019 ± 0.00015 | 0.00262 ± 0.00205 | 0.00001 ± 0.00001 | 0.00020 ± 0.00018 |
Type of Rice Product | n | THQ X ± SD (Min–Max) | HI X ± SD (Min–Max) | |||
---|---|---|---|---|---|---|
As | Cd | Pb | Hg | |||
Flakes | 12 | 0.0291 ± 0.0138 (0.0134–0.0586) | 0.0020 ± 0.0016 (0.0000–0.0052) | 0.0004 ± 0.0003 (0.0000–0.0010) | 0.0006 ± 0.0004 (0.0002–0.0017) | 0.0320 ± 0.0132 (0.0168–0.0607) |
White | 11 | 0.0230 ± 0.0086 (0.0110–0.0402) | 0.0017 ± 0.0016 (0.0003–0.0058) | 0.0005 ± 0.0004 (0.0002–0.0012) | 0.0007 ± 0.0006 (0.0000–0.0020) | 0.0259 ± 0.0079 (0.0120–0.0408) |
Basmati | 10 | 0.0132 ± 0.0025 (0.0094–0.0170) | 0.0010 ± 0.0011 (0.0001–0.0028) | 0.0008 ± 0.0004 (0.0003–0.0013) | 0.0007 ± 0.0010 (0.0001–0.0035) | 0.0158 ± 0.0024 (0.0129–0.0212) |
Parboiled | 10 | 0.0230 ± 0.0078 (0.0128–0.0360) | 0.0024 ± 0.0036 (0.0006–0.0123) | 0.0008 ± 0.0003 (0.0004–0.0013) | 0.0024 ± 0.0036 (0.0006–0.0123) | 0.0271 ± 0.0103 (0.0144–0.0496) |
Brown | 10 | 0.0487 ± 0.0179 (0.0269–0.0749) | 0.0017 ± 0.0021 (0.0001–0.0074) | 0.0007 ± 0.0007 (0.0002–0.0022) | 0.0006 ± 0.0004 (0.0001–0.0014) | 0.0517 ± 0.0173 (0.0287–0.0769) |
Waffles | 9 | 0.0426 ± 0.0080 (0.0296–0.0554) | 0.0013 ± 0.0010 (0.0006–0.0029) | 0.0012 ± 0.0009 (0.0003–0.0028) | 0.0008 ± 0.0004 (0.0001–0.0015) | 0.0459 ± 0.0086 (0.0334–0.0611) |
Expanded | 8 | 0.0252 ± 0.0068 (0.0158–0.0383) | 0.0012 ± 0.0009 (0.0005–0.0033) | 0.0016 ± 0.0008 (0.0004–0.0028) | 0.0006 ± 0.0004 (0.0003–0.0015) | 0.0286 ± 0.0065 (0.0214–0.0408) |
Pasta | 7 | 0.0130 ± 0.0015 (0.0114–0.0155) | 0.0015 ± 0.0008 (0.0006–0.0027) | 0.0006 ± 0.0003 (0.0004–0.0012) | 0.0009 ± 0.0006 (0.0003–0.0017) | 0.0160 ± 0.0017 (0.0141–0.0187) |
Black | 6 | 0.0304 ± 0.0188 (0.0010–0.0563) | 0.0032 ± 0.0029 (0.0006–0.0087) | 0.0005 ± 0.0002 (0.0003–0.0009) | 0.0006 ± 0.0004 (0.0003–0.0013) | 0.0347 ± 0.0163 (0.0104–0.0577) |
Flour | 6 | 0.0239 ± 0.0106 (0.0155–0.0446) | 0.0036 ± 0.0016 (0.0015–0.0061) | 0.0009 ± 0.0002 (0.0007–0.0011) | 0.0004 ± 0.0002 (0.0002–0.0007) | 0.0289 ± 0.0095 (0.0207–0.0473) |
Red | 5 | 0.0601 ± 0.0413 (0.0375–0.1339) | 0.0013 ± 0.0012 (0.0002–0.0032) | 0.0004 ± 0.0002 (0.0002–0.0008) | 0.0007 ± 0.0001 (0.0005–0.0009) | 0.0624 ± 0.0406 (0.0393–0.1349) |
Wild | 5 | 0.0315 ± 0.0160 (0.0035–0.0435) | 0.0019 ± 0.0012 (0.0007–0.0039) | 0.0008 ± 0.0009 (0.0002–0.0022) | 0.0005 ± 0.0004 (0.0003–0.0011) | 0.0347 ± 0.0157 (0.0077–0.0469) |
TOTAL | 99 | 0.0294 ± 0.0184 | 0.0018 ± 0.0019 | 0.0008 ± 0.0006 | 0.0007 ± 0.0006 | 0.0327 ± 0.0181 |
Mean CR for all | 99 | 0.0000009 | 0.0000008 | 0.0000000 | N/A | N/A |
Element | As | Cd | Pb | Hg |
---|---|---|---|---|
Measured content [µg/kg] X ± SD (Min–Max) | 98.73 ± 55.20 (4.21–205.95) | 40.96 ± 42.18 (8.03–171.64) | 31.41 ± 23.22 (9.58–106.65) | 2.74 ± 1.93 (0.77–7.26) |
EDI [mg/day] X ± SD (Min–Max) | 0.530 ± 0.296 (0.023–1.105) | 0.220 ± 0.226 (0.043–0.921) | 0.169 ± 0.125 (0.051–0.572) | 0.015 ± 0.010 (0.004–0.039) |
EWI [mg/week] X ± SD (Min–Max) | 3.709 ± 2.074 (0.158–7.737) | 1.539 ± 1.584 (0.302–6.448) | 1.180 ± 0.872 (0.360–4.007) | 0.103 ± 0.072 (0.029–0.273) |
THQ X ± SD (Min–Max) | 1.766 ± 0.987 (0.075–3.684) | 0.220 ± 0.226 (0.043–0.921) | 0.048 ± 0.036 (0.015–0.164) | 0.049 ± 0.034 (0.014–0.130) |
HI X ± SD (Min–Max) | 2.083 ± 1.021 (0.782–4.019) | |||
mean CR | 0.0000477 | 0.0000831 | 0.0000001 | N/A |
Population | Element | As BMDL [µg/kg BW/Day] | Cd PTMI [µg/kg BW/Month] | Pb BMDL [µg/kg BW/Day] | Hg PTWI [µg/kg BW/Week] |
---|---|---|---|---|---|
Polish | 0.0088 | 0.0551 | 0.0018 | 0.0014 | |
Thai | 0.5297 | 6.5849 | 0.2195 | 0.1014 | |
Reference limit | 3.00 | 25.00 | 0.02 - 3.00 | 4.00 |
References | Place of Sample Collection | Study Material | Element (µg/kg) | |||
---|---|---|---|---|---|---|
As | Cd | Pb | Hg | |||
Sommella et al. [25] | Italy | Rice (without subdivision into types, n = 101) | Min–Max: 70–470 | Min–Max: 0–160 | - | - |
Pastorelli et al. [26] | Italy | White rice (n = 41) | X = 92 | - | - | - |
Brown rice (n = 34) | X = 62 | - | - | - | ||
Skendi et al. [27] | Greece | Rice (without subdivision into types, n = 26) | - | Me = 60 | Me = 50 | - |
Pinto et al. [28] | Portugal and Spain | White rice (n = 56) | X ± SD = 170 ± 6 | X ± SD = 11 ± 10 | X ± SD = 3 ± 2 | - |
Parboiled rice (n = 13) | X ± SD = 160 ± 50 | X ± SD = 5 ± 3 | X ± SD = 3 ± 2 | - | ||
Brown rice (n = 11) | X ± SD = 210 ± 50 | X ± SD = 10 ± 7 | X ± SD = 5 ± 4 | - | ||
Wild rice (n = 6) | X ± SD = 180 ± 30 | X ± SD = 9 ± 6 | X ± SD = 2 ± 2 | - | ||
Brombach et al. [29] | United Kingdom, Germany, and Switzerland | All studied rice products (n = 87) | - | - | - | X ± SD = 3.04 ± 2.7 |
Wild rice (n = 3) | - | - | - | Min–Max: 1.63–5.83 | ||
Basmati rice (n = 8) | - | - | - | Min–Max: 1.24–6.56 | ||
White rice (n = 19) | - | - | - | Min–Max: 0.53–11.14 | ||
Menon et al. [30] | United Kingdom | All studied rice products (n = 55) | X = 150 (Min–Max: 10–370) | - | - | - |
Xu et al. [31] | China | Rice (without subdivision into types, n = 709) | - | - | - | X = 4.03 |
(Min–Max: 0.638–31.7) | ||||||
Kukusamude et al. [32] | Thailand | Locally cultivated rice (n = 55) | ||||
Type A (n = 5) | X = 110 (Min–Max: 81–135) | X = 24 (Min–Max: 3–92) | - | - | ||
Type B (n = 15) | X = 160 (Min–Max: 67–254) | X = 21 (Min–Max: 6–55) | - | - | ||
Type C (n = 9) | X = 190 (Min–Max: 77–283) | X = 6 (Min–Max: 2–10) | - | - | ||
Type D (n = 26) | X = 240 (Min–Max: 166–402) | X = 9 (Min–Max: 3–29) | - | - | ||
Londonio et al. [33] | Argentina | All studied rice products (n = 24) | X = 237 | X = 6 | X = 25 | Below the limit of detection |
(Min–Max: 67–858) | (Min–Max: 0–24) | (Min–Max: 0–139) | ||||
Lin et al. [34] | Canada | Basmati rice (n = 23) | - | - | - | X = 1.7 |
Black and red (n = 7) | - | - | - | X = 4.7 | ||
Jasmine (n = 12) | - | - | - | X = 2.9 | ||
Long grain (n = 22) | - | - | - | X = 4.1 | ||
Short and medium grain (n = 25) | - | - | - | X = 2.0 | ||
White rice (n = 67) | - | - | - | X = 2.6 | ||
Punshon and Jackson [35] | United States of America | All studied products (n = 67), of which: | ||||
Rice flour (n = 4) | X = 112 | X = 26 | X = 4 | X = 2.2 | ||
White rice (n = 5) | X = 94 | X = 38 | X = 19 | X = 1.4 | ||
Brown rice (n = 6) | X = 183 | X = 27 | X = 8 | X = 1.8 | ||
Enriched white (n = 7) | X = 177 | X = 10.9 | X = 21 | X = 1.9 |
Type of Health Risk Indicator | Element | Product/Group of Products | Our Results | Other Authors | Population | References |
---|---|---|---|---|---|---|
EDI [mg/day] | Hg | All rice products | 0.00001 | 0.0000067 | Canadian | Lin et al. [34] |
EDI [mg/day] | iAs | All rice products | 0.00062 * | 0.0019–0.0020 | British | Menon et al. [30] |
EWI [mg/week] | Cd | Brown rice | 0.00083 | 0.104 | Italian | Pastorelli et al. [26] |
White rice | 0.00082 | 0.065 | Pastorelli et al. [26] | |||
EWI [mg/week] | As/Cd | Rice A (white) Rice B (brown) Rice C (white) Rice D (white) | 0.00083 (brown) 0.00082 (white) | 0.045–0.046/0.01 0.300–0.301/0.013–0.014 0.173–0.174/0.048 0.380/0.020 | Thai | Kukusamude et al. [32] |
EWI [mg/week] | As | All rice products | 0.00865 | 0.0063 | Iranian | Hashempour-Baltork et al. [36] |
EWI [mg/week] | As/Cd/Pb/Hg | All rice products | 0.00865/0.00180/0.00262/0.00020 | 0.247/0.00715/0.0403/<0.02 | Argentinian | Londonio et al. [33] |
PTWI [% PTWI] | Cd/Pb | Brown | 0.17/0.07 | 0.50/0.03 | Portuguese and Spanish | Pinto et al. [28] |
Parboiled | 0.24/0.07 | 0.20/0.04 | ||||
Wild | 0.19/0.08 | 0.50/0.03 | ||||
White | 0.01/0.05 | 0.60/0.04 | ||||
PTWI [mg/week] | Hg | All rice products | 0.0014 | 0.0014–0.0017 | Chinese | Xu et al. [37] |
THQ | As/Cd/Pb | Rinsed (white) | 0.0230/0.0017/0.0005 | 0.0739–0.1855/ 0.0083–0.0207/ 0.0009–0.0024 | Iranian | Shariatifar et al. [38] |
Traditionally cooked (white) | 0.2883–0.6883/ 0.0116–0.0277/ 0.0014–0.0034 | |||||
THQ | As/Cd | Rice A (white) Rice B (brown) Rice C (white) Rice D (white) | 0.0487/0.0017 (brown) 0.0230/0.0017 (white) | 0.425/0.027 2.79/0.131 1.65/0.035 3.58/0.057 | Thai | Kukusamude et al. [32] |
HI | As, Cd, Pb | Rinsed (white) | 0.0259 | 0.1053–0.2654 | Iranian | Shariatifar et al. [38] |
Traditionally cooked (white) | 0.3147–0.7522 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, J.; Markiewicz-Żukowska, R.; Nowakowski, P.; Grabia, M.; Puścion-Jakubik, A.; Mielcarek, K.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Socha, K. Content of Toxic Elements in 12 Groups of Rice Products Available on Polish Market: Human Health Risk Assessment. Foods 2020, 9, 1906. https://doi.org/10.3390/foods9121906
Bielecka J, Markiewicz-Żukowska R, Nowakowski P, Grabia M, Puścion-Jakubik A, Mielcarek K, Gromkowska-Kępka KJ, Soroczyńska J, Socha K. Content of Toxic Elements in 12 Groups of Rice Products Available on Polish Market: Human Health Risk Assessment. Foods. 2020; 9(12):1906. https://doi.org/10.3390/foods9121906
Chicago/Turabian StyleBielecka, Joanna, Renata Markiewicz-Żukowska, Patryk Nowakowski, Monika Grabia, Anna Puścion-Jakubik, Konrad Mielcarek, Krystyna Joanna Gromkowska-Kępka, Jolanta Soroczyńska, and Katarzyna Socha. 2020. "Content of Toxic Elements in 12 Groups of Rice Products Available on Polish Market: Human Health Risk Assessment" Foods 9, no. 12: 1906. https://doi.org/10.3390/foods9121906
APA StyleBielecka, J., Markiewicz-Żukowska, R., Nowakowski, P., Grabia, M., Puścion-Jakubik, A., Mielcarek, K., Gromkowska-Kępka, K. J., Soroczyńska, J., & Socha, K. (2020). Content of Toxic Elements in 12 Groups of Rice Products Available on Polish Market: Human Health Risk Assessment. Foods, 9(12), 1906. https://doi.org/10.3390/foods9121906