Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Wine Samples
2.3. Total Phenolic Compounds
2.4. Total Proanthocyanidins
2.5. Identification and Quantification of Phenolic Compounds by High Performance Liquid Cromatography (HPLC)-Diode Array Detector (DAD) and Liquid Chromatography-DAD/Electron Spray Ionization (ESI)-Mass Spectrometry (MS) Analysis
2.6. Color Index (Red Color Index (RCI) and CIELab)
2.7. Tannin Specific Activity (TSA)
2.8. Interaction of Wine with Human Saliva
2.9. Statistical Analysis
3. Results
3.1. Phenolic Composition of Red Nebbiolo Wines
3.2. Interaction of Wines with Salivary Proteins
Author Contributions
Funding
Conflicts of Interest
References
- Linskens, H.; Jackson, J. Phenolic Composition of Natural Wine Types—Wine Analysis; Springer: Berlin, Germany, 1988. [Google Scholar]
- Macheix, J.; Fleuriet, A. Phenolics in Fruits and Fruit Products: Progress and Prospects; INRA: Paris, France, 1993. [Google Scholar]
- Soares, S.; Brandao, E.; Mateus, N.; de Freitas, V. Sensorial properties of red wine polyphenols: Astringency and bitterness. Crit. Rev. Food Sci. Nutr. 2017, 57, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Roggero, J.P.; Coen, S.; Ragonnet, B. High Performance Liquid Chromatography Survey on Changes in Pigment Content in Ripening Grapes of Syrah. An Approach to Anthocyanin Metabolism. Am. J. Enol. Vitic. 1986, 37, 77–83. [Google Scholar]
- Busse-Valverde, N.; Gomez-Plaza, E.; Lopez-Roca, J.M.; Gil-Munoz, R.; Bautista-Ortin, A.B. The extraction of anthocyanins and proanthocyanidins from grapes to wine during fermentative maceration is affected by the enological technique. J. Agric. Food Chem. 2011, 59, 5450–5455. [Google Scholar] [CrossRef] [PubMed]
- Mazza, G.; Francis, F. Anthocyanins in grapes and grape products. Crit. Rev. Food Sci. Nutr. 1995, 35, 341–371. [Google Scholar] [CrossRef]
- Oliveira, J.; da Silva, M.A.; Jorge Parola, A.; Mateus, N.; Brás, N.F.; Ramos, M.J.; de Freitas, V. Structural characterization of a A-type linked trimeric anthocyanin derived pigment occurring in a young Port wine. Food Chem. 2013, 141, 1987–1996. [Google Scholar] [CrossRef]
- Mateus, N.; Carvalho, E.; Carvalho, A.R.F.; Melo, A.; González-Paramás, A.M.; Santos-Buelga, C.; Silva, A.M.S.; de Freitas, V. Isolation and Structural Characterization of New Acylated Anthocyanin−Vinyl−Flavanol Pigments Occurring in Aging Red Wines. J. Agric. Food Chem. 2003, 51, 277–282. [Google Scholar] [CrossRef]
- Mateus, N.; Silva, A.M.S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C.; de Freitas, V. A New Class of Blue Anthocyanin-Derived Pigments Isolated from Red Wines. J. Agric. Food Chem. 2003, 51, 1919–1923. [Google Scholar] [CrossRef]
- García-Estévez, I.; Cruz, L.; Oliveira, J.; Mateus, N.; de Freitas, V.; Soares, S. First evidences of interaction between pyranoanthocyanins and salivary proline-rich proteins. Food Chem. 2017, 228, 574–581. [Google Scholar] [CrossRef]
- Puech, J.-L.; Mertz, C.; Michon, V.; Le Guernevé, C.; Doco, T.; du Penhoat, C.H. Evolution of Castalagin and Vescalagin in Ethanol Solutions. Identification of New Derivatives. J. Agric. Food Chem. 1999, 47, 2060–2066. [Google Scholar] [CrossRef]
- Glabasnia, A.; Hofmann, T. Sensory-Directed Identification of Taste-Active Ellagitannins in American (Quercus alba L.) and European Oak Wood (Quercus robur L.) and Quantitative Analysis in Bourbon Whiskey and Oak-Matured Red Wines. J. Agric. Food Chem. 2006, 54, 3380–3390. [Google Scholar] [CrossRef]
- Stark, T.; Wollmann, N.; Wenker, K.; Lösch, S.; Glabasnia, A.; Hofmann, T. Matrix-Calibrated LC-MS/MS Quantitation and Sensory Evaluation of Oak Ellagitannins and Their Transformation Products in Red Wines. J. Agric. Food Chem. 2010, 58, 6360–6369. [Google Scholar] [CrossRef] [PubMed]
- Chira, K.; Teissedre, P.-L. Chemical and sensory evaluation of wine matured in oak barrel: Effect of oak species involved and toasting process. Eur. Food Res. Technol. 2015, 240, 533–547. [Google Scholar] [CrossRef]
- Ishikawa, T.; Noble, A.C. Temporal perception of astringency and sweetness in red wine. Food Qual. Prefer. 1995, 6, 27–33. [Google Scholar] [CrossRef]
- Kallithraka, S.; Bakker, J.; Clifford, M.N. Effect of pH on Astringency in Model Solutions and Wines. J. Agric. Food Chem. 1997, 45, 2211–2216. [Google Scholar] [CrossRef]
- Kallithraka, S.; Bakker, J.; Clifford, M.N.; Vallis, L. Correlations between saliva protein composition and some T–I parameters of astringency. Food Qual. Prefer. 2001, 12, 145–152. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E.J. The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- McRae, J.M.; Schulkin, A.; Kassara, S.; Holt, H.E.; Smith, P.A. Sensory Properties of Wine Tannin Fractions: Implications for In-Mouth Sensory Properties. J. Agric. Food Chem. 2013, 61, 719–727. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Heymann, H.; Waterhouse, A.L. Red Wine Dryness Perception Related to Physicochemistry. J. Agric. Food Chem. 2020, 68, 2964–2972. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [Green Version]
- Soares, S.; Vitorino, R.; Osório, H.; Fernandes, A.; Venâncio, A.; Mateus, N.; Amado, F.; de Freitas, V. Reactivity of Human Salivary Proteins Families Toward Food Polyphenols. J. Agric. Food Chem. 2011, 59, 5535–5547. [Google Scholar] [CrossRef]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different phenolic compounds activate distinct human bitter taste receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.; Jourdes, M.; Silva, M.; Giordanengo, T.; Mourey, N.; Teissedre, P.-L. Impact of Concentration of Ellagitannins in Oak Wood on Their Levels and Organoleptic Influence in Red Wine. J. Agric. Food Chem. 2011, 59, 5677–5683. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.; Albertin, W.; Jourdes, M.; Le Floch, A.; Giordanengo, T.; Mourey, N.; Teissedre, P.-L. Variations in oxygen and ellagitannins, and organoleptic properties of red wine aged in French oak barrels classified by a near infrared system. Food Chem. 2016, 204, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Arnous, A.; Makris, D.P.; Kefalas, P. Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines. J. Agric. Food Chem. 2001, 49, 5736–5742. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.C.; Domingues, V.F.; de Freitas, V.; Delerue-Matos, C.; Mateus, N. Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chem. 2012, 134, 1926–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, R.; Mateus, N.; de Freitas, V. Inhibition of α-amylase activity by condensed tannins. Food Chem. 2011, 125, 665–672. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Stonestreet, E. Dosage des tanins du vin rouge et détermination de leur structure. Chim. Anal. 1966, 48, 188–196. [Google Scholar]
- Yang, P.; Li, H.; Wang, H.; Han, F.; Jing, S.; Yuan, C.; Guo, A.; Zhang, Y.; Xu, Z. Dispersive Liquid-Liquid Microextraction Method for HPLC Determination of Phenolic Compounds in Wine. Food Anal. Methods 2017, 10, 2383–2397. [Google Scholar] [CrossRef]
- Azevedo, J.; Fernandes, A.; Oliveira, J.; Brás, N.F.; Reis, S.; Lopes, P.; Roseira, I.; Cabral, M.; Mateus, N.; de Freitas, V. Reactivity of Cork Extracts with (+)-Catechin and Malvidin-3-O-glucoside in Wine Model Solutions: Identification of a New Family of Ellagitannin-Derived Compounds (Corklins). J. Agric. Food Chem. 2017, 65, 8714–8726. [Google Scholar] [CrossRef]
- Guerreiro, J.R.L.; Teixeira, N.; De Freitas, V.; Sales, M.G.F.; Sutherland, D.S. A saliva molecular imprinted localized surface plasmon resonance biosensor for wine astringency estimation. Food Chem. 2017, 233, 457–466. [Google Scholar] [CrossRef]
- De Freitas, V.; Mateus, N. Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem. 2001, 49, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Koot, A.; Schnitzler, E.; van Ruth, S.M. Authentication of geographical origin and crop system of grape juices by phenolic compounds and antioxidant activity using chemometrics. J. Food Sci. 2015, 80, C584–C593. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuw, R.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- Lima, M.; Silani, I.; Toaldo, I.; Corrêa, L.; Biasoto, A.C.T.; Pereira, G.E.; Ninow, J.L. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the northeast region of Brazil. Food Chem. 2014, 161, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messana, I.; Cabras, T.; Inzitari, R.; Lupi, A.; Zuppi, C.; Olmi, C.; Fadda, M.B.; Cordaro, M.; Giardina, B.; Castagnola, M. Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J. Proteome Res. 2004, 3, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Brandão, E.; Soares, S.; Mateus, N.; de Freitas, V. In Vivo Interactions between Procyanidins and Human Saliva Proteins: Effect of Repeated Exposures to Procyanidins Solution. J. Agric. Food Chem. 2014, 62, 9562–9568. [Google Scholar] [CrossRef]
- Hufnagel, J.C.; Hofmann, T. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef]
Wine | M | P |
---|---|---|
520 nm | 0.581 ± 0.006 a | 0.373 ± 0.001 a |
CIELab | ||
L* | 69.04 ± 0.02 b | 78.950 ± 0.001 b |
a* | 23.37 ± 0.03 c | 14.89 ± 0.05 c |
b* | 30.20 ± 0.06 d | 28.4 ± 0.1 d |
C* | 38.21 ± 0.03 e | 32.09 ± 0.09 e |
Ho | 52.18 ± 0.09 f | 62.4 ± 0.1 f |
[Anthocyanins] mg/L | 114 ± 3 g | 151 ± 4 g |
[Carboxypyranoanthocyanins] mg/L | 5 ± 1 h | 1.4 ± 0.3 h |
Compound/[M–H]− (m/z) | P Wines (µM) | M Wines (µM) |
---|---|---|
Gallic acid (169) | 3459 ± 186 a | 3059 ± 46 a |
Methyl coumarate (177) | 146 ± 32 b | 71 ± 5 b |
Methyl cinnamate (161) | 129 ± 28 | 159 ± 7 |
Protocatechuic acid (153) | 141 ± 15 | 188 ± 16 |
Ethyl ferulate (221) | 75 ± 3 d | 110 ± 2 d |
Caftaric acid (311) | 638 ± 25 e | 983 ± 67 e |
Ethyl cinnamate (175) | 242 ± 53 | 335 ± 9 |
Coutaric acid (isomer) (295) | 928 ± 55 f | 716 ± 46 f |
Coutaric acid (isomer) (295) | 826 ± 149 g | 130 ± 40 g |
Fertaric acid (325) | 519 ± 73 h | 895 ± 50 h |
Caffeic acid (179) | 405 ± 60 i | 611 ± 68 i |
Coumaric acid (163) | 294 ± 31 j | 528 ± 21 j |
Syringic acid (197) | 327 ± 75 | 278 ± 29 |
Ethyl cinnamate (175) | 525 ± 44 l | 913 ± 64 l |
Ellagic acid (301) | 173 ± 4 m | 330 ± 32 m |
Total benzoic acids | 4100 ± 280 | 3855 ± 123 |
Total cinnamic acids | 3610 ± 393 | 3863 ± 292 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, J.; Brandão, E.; Soares, S.; Oliveira, J.; Lopes, P.; Mateus, N.; de Freitas, V. Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins. Foods 2020, 9, 1867. https://doi.org/10.3390/foods9121867
Azevedo J, Brandão E, Soares S, Oliveira J, Lopes P, Mateus N, de Freitas V. Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins. Foods. 2020; 9(12):1867. https://doi.org/10.3390/foods9121867
Chicago/Turabian StyleAzevedo, Joana, Elsa Brandão, Susana Soares, Joana Oliveira, Paulo Lopes, Nuno Mateus, and Victor de Freitas. 2020. "Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins" Foods 9, no. 12: 1867. https://doi.org/10.3390/foods9121867