Nutritional and Phytochemical Composition of Mediterranean Wild Vegetables after Culinary Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analytical Methods
2.2.1. Moisture
2.2.2. Crude Protein
2.2.3. Total Fat
2.2.4. Total Available Carbohydrates (TAC)
2.2.5. Total Dietary Fiber Content
2.2.6. Ash Content and Mineral Composition
2.2.7. Folic acid and Folates (Vitamin B9)
2.2.8. Vitamin C and Organic Acids
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tardío, J.; Pardo-de-Santayana, M. Ethnobotanical Analysis of Wild Fruits and Vegetables Traditionally Consumed in Spain. In Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables; Springer: New York, NY, USA, 2016; pp. 57–80. ISBN 978-1-4939-3327-3. [Google Scholar]
- Tardío, J.; Pardo de Santayana, M. Wild food plants traditionally used in Spain: Regional analysis. In Plants and People: Choices and Diversity through Time; Marinova, E., Peña-Chocarro Chevalier, L.A., Eds.; Oxbow Books: Barnsley, UK, 2014. [Google Scholar]
- Pardo-De-Santayana, M.; Tardío, J.; Morales, R. The gathering and consumption of wild edible plants in the Campoo (Cantabria, Spain). Int. J. Food Sci. Nutr. 2005, 56, 529–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łuczaj, Ł.; Kujawska, M. Botanists and their childhood memories: An under-utilized expert source in ethnobotanical research. Bot. J. Linn. Soc. 2012, 168, 334–343. [Google Scholar] [CrossRef]
- García-Herrera, P.; Sánchez Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Díez-Marqués, C.; Molina, M.; Tardío, J. Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. J. Food Compos. Anal. 2014, 34, 163–170. [Google Scholar] [CrossRef]
- Tardío, J.; Molina, M.; Aceituno-Mata, L.; Pardo de Santayana, M.; Morales, R.; Fernández-Ruiz, V.; Morales, P.; García, P.; Cámara, M.; Sánchez Mata, M.C. Montia fontana L. (Portulacaceae), an interesting wild vegetable traditionally consumed in the Iberian Peninsula. Genet. Resou. Crop. Evol. 2011, 58, 1105–1118. [Google Scholar]
- García-Herrera, P.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J.; Olmedilla-Alonso, B. Carotenoid content of wild edible young shoots traditionally consumed in Spain (Asparagus acutifolius L., Humulus lupulus L., Bryonia dioica Jacq. and Tamus communis L.). J. Sci. Food Agric. 2013, 93, 1692–1698. [Google Scholar]
- García-Herrera, P.; Morales, P.; Fernández-Ruiz, V.; Sánchez Mata, M.C.; Cámara, M.; Carvalho, A.M.; Ferreira, I.C.F.R.; Pardo de Santayana, M.; Molina, M.; Tardío, J. Nutrients, phytochemicals and antioxidant activity in wild populations of Allium ampeloprasum L., a valuable underutilizable vegetable. Food Res. Int. 2014, 62, 272–279. [Google Scholar]
- Morales, P.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Molina, M.; Ferreira, I.C.F.R. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet. Resour. Crop. Evol. 2012, 59, 851–863. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.; Carvalho, A.M.; Sánchez-Mata, M.D.C.; Cámara, M.; Tardío, J. Fatty acids profiles of some Spanish wild vegetables. Food Sci. Technol. Int. 2012, 18, 281–290. [Google Scholar] [CrossRef]
- Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Cámara, M.; Tardío, J. Optimization and application of FL-HPLC for folates analysis in 20 species of Mediterranean wild vegetables. Food Anal. Methods 2015, 8, 302–311. [Google Scholar] [CrossRef]
- Zhan, L.J.; Pang, L.Y.; Ma, Y.D.; Zhang, C.C. Thermal processing affecting phytochemical contents and total antioxidant capacity in broccoli (Brassica oleracea L.). J. Food Process. Preserv. 2018, 42. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Costa, S.M.; Monaco, K.D.; Uliana, M.R.; Fernandez, R.M.; Correa, C.R.; Vianello, F.; Cisneros-Zevallos, L.; Minatel, I.O. Cooking processes increase bioactive compounds in organic and conventional green beans. Int. J. Food Sci. Nutr. 2017, 68, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Danowska-Oziewicz, M.; Narwojsz, A.; Draszanowska, A.; Marat, N. The effects of cooking method on selected quality traits of broccoli and green asparagus. Int. J. Food Sci. Technol. 2020, 55, 127–135. [Google Scholar] [CrossRef]
- Sergio, L.; Cantore, V.; Spremulli, L.; Pinto, L.; Baruzzi, F.; Di Venere, D.; Boari, F. Effect of cooking and packaging conditions on quality of semi-dried green asparagus during cold storage. LWT Food Sci. Technol. 2018, 89, 712–718. [Google Scholar] [CrossRef]
- Tardío, J.; Pardo-de-Santayana, M.; Morales, R. Ethnobotanical review of wild edible plants in Spain. Bot. J. Linn. Soc. 2006, 152, 27–71. [Google Scholar] [CrossRef]
- Tardío, J. Spring is coming: The gathering and consumption of wild vegetables in Spain. In Ethnobotany in the New Europe: People, Health and Wild Plants Resources; Pardo-de-Santayana, M., Pieroni, A., Puri, R., Eds.; Berghahn Books: NewYork, NY, USA, 2010; pp. 211–238. [Google Scholar]
- Couplan, F. Les Belles Veneneuses. Encyclopedie des Plantes Comestibles de l’Europe, Vol 3; Equilibres Aujourd’houi: Flers, France, 1990. [Google Scholar]
- Hadad Chi, G.R.; Moradi, Z. The amounts and distribution of diosgenin and saponin and their carbohydrate moiety of Tamus communis L. J. Agric. Sci. Technol. 2005, 12, 55–66. [Google Scholar]
- Lin, J.T.; Liu, S.C.; Chen, S.L.; Chen, H.Y.; Yang, D.J. Effects of domestic processing on steroidal saponins in taiwanese yam cultivar (Dioscorea pseudojaponica Yamamoto). J. Agric. Food Chem. 2006, 54, 9948–9954. [Google Scholar] [CrossRef]
- Güçlü-Üstündağ, Ö.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef]
- Siegall, C.B.; Gawlak, S.L.; Chace, D.; Wolff, E.A.; Mixan, B.; Marquardt, H. Characterization of ribosome-inactivating proteins isolated from Bryonia dioica and their utility as carcinoma-reactive immunoconjugates. Bioconjug. Chem. 1994, 5, 423–429. [Google Scholar] [CrossRef]
- Łuczaj, Ł.; Končić, M.Z.; Miličević, T.; Dolina, K.; Pandža, M. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia). J. Ethnobiol. Ethnomed. 2013, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Mata, M.C.; Matallana-González, M.C.; Morales, P. The contribution of wild plants to dietary intakes of micronutrients (I): Vitamins. In Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables; Sánchez Mata, M.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 111–140. ISBN 978-1-4939-3327-3. [Google Scholar]
- García-Herrera, P.; Sánchez Mata, M.C. The contribution of wild plants to dietary intakes of micronutrients (I): Mineral Elements. In Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables; Sánchez Mata, M.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 111–140. ISBN 978-1-4939-3327-3. [Google Scholar]
- Lesková, E.; Kubíková, J.; Kovacíková, E.; Kosická, M.; Porubská, J.; Holcikova, K. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J. Food Compos. Anal. 2006, 19, 252–276. [Google Scholar] [CrossRef]
- Ros-Berruezo, G. Influence of food processing on vitamin content and availability. In “Hot Topics” en Vitaminas y Salud; Instituto Tomás Pascual Sanz: Madrid, Spain, 2011; pp. 25–34. [Google Scholar]
- Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E.; Kaloudis, T.; Kromhout, D.; Miskaki, P.; Petrochilou, I.; Poulima, E.; et al. Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chem. 2000, 70, 319–323. [Google Scholar] [CrossRef]
- Salvatore, S.; Pellegrini, N.; Brenna, O.; Del Rio, D.; Frasca, G.; Brighenti, F.; Tumino, R. Antioxidant characterization of some Sicilian edible wild greens. J. Agric. Food Chem. 2005, 53, 9465–9471. [Google Scholar] [CrossRef] [PubMed]
- Schönfeldt, H.C.; Pretorius, B. The nutrient content of five traditional South African dark green leafy vegetables—A preliminary study. J. Food Compos. Anal. 2011, 24, 1141–1146. [Google Scholar] [CrossRef]
- Boari, F.; Cefola, M.; Di Gioia, F.; Pace, B.; Serio, F.; Cantore, V. Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants. Int. J. Food Sci. Nutr. 2013, 64, 870–876. [Google Scholar] [CrossRef]
- Van Jaarsvelda, P.; Fabera, M.; van Heerdenb, I.; Wenholdc, F.; van Rensburgd, W.J.; van Averbekee, W. Nutrient content of eight African leafy vegetables and their potential contribution to dietary reference intakes. J. Food Compos. Anal. 2014, 33. [Google Scholar] [CrossRef] [Green Version]
- Amalraj, A.; Pius, A. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India—An in vitro study. Food Chem. 2015, 170, 430–436. [Google Scholar] [CrossRef]
- Li, K.S.; Ali, A.; Muhammad, I.I. The influence of microwave cooking on the nutritional composition and antioxidant activity of the underutilized perah seed. Acta Sci. Pol. Technol. Aliment. 2017, 16, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, K.D.; Ranaweera, K.K.D.; Rupasinghe, H.P. Effect of different cooking methods on polyphenols, carotenoids and antioxidant activities of selected edible leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Savo, V.; Salomone, F.; Mattoni, E.; Tofani, D.; Caneva, G. Traditional Salads and Soups with Wild Plants as a Source of Antioxidants: A Comparative Chemical Analysis of Five Species Growing in Central Italy. Evid. Based Complement. Altern. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Barros de Oliveira, H.A.; Anunciação, P.C.; Pereira da Silva, B.; Natal de Souza1, Â.M.; Silva Pinheiro, S.; Mattos Della Lucia, C.; de Morais Cardoso, L.; Vidigal Castro, L.C.; Pinheiro-Sant’ Ana1, H.M. Nutritional value of non-conventional vegetables prepared by family farmers in rural communities. Ciência Rural Santa Maria 2019, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Di Venere, D. Bioactive Phenolics and Antioxidant Capacity of Some Edible Wild Greens as Affected By Different Cooking Treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Tardío, J.; Pascual, H.; Morales, R. Alimentos Silvestres de Madrid: Guía de Plantas y Setas de Uso Alimentario Tradicional en la Comunidad de Madrid; Ediciones La Librería: Madrid, Spain, 2002. [Google Scholar]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis; Asociación de Químicos Analíticos Oficial Internacional AOAC, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Osborne, J.J.; Voogt, L. Análisis de Los Nutrientes de Los Alimentos; Acribia: Zaragoza, Spain, 1986. [Google Scholar]
- Sánchez-Mata, M.C.; Cabrera-Loera, R.D.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Díez-Marqués, C.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resou. Crop. Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Murphy, E.W.; Criner, P.E.; Gray, B.C. Comparison of methods for determining retentions of nutrients in cooked foods. J. Agric. Food Chem. 1975, 23, 1153. [Google Scholar] [CrossRef] [PubMed]
- Bergström, L. Nutrients Losses and Gains in the Preparation of Food; Livsmedelsverket: Uppsala, Sweden, 1994.
- European Food Safety Authority (EFSA). Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Lachance, P.A.; Fischer, M.C. Effects of food preparation procedures in nutrient retention with emphasis on food service practices. In Nutritional Evaluation of Food Processing; Karmas, E., Harris, R.S., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1988; pp. 505–556. [Google Scholar]
- Derache, R. Toxicología y Seguridad de los Alimentos; Omega: Barcelona, Spain, 1990. [Google Scholar]
- Eitenmiller, R.R.; Laden, W.O. Vitamin A and b-carotene. Ascorbic acid. Thiamin. Vitamin B-6. Folate. In Vitamin Analysis for the Health and Food Science; Eitenmiller, R.R., Laden, W.O., Eds.; CRC Press: Boca Ratón, FL, USA, 1999; pp. 15–19, 226–228, 275, 375, 411–465. [Google Scholar]
- Lin, B.F.; Lin, R.F. Effect of Chinese stir-fry cooking on folate contents of vegetables. J. Chin. Chem. Soc. 1999, 37, 443–454. [Google Scholar]
- Barceló-Coll, J.; Nicola Rodrigo, G.; Sabater Garcia, B.; Sánchez Tamés, R. Fisiología Vegetal; Piramide: Madrid, Spain, 1995. [Google Scholar]
- López-Bucio, J.; Nieto-Jacobo, M.F.; Ramírez-Rodríguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- Nagaoka, S.; Kakiuchi, T.; Ohara, K.; Mukai, K. Kinetics of the reaction which natural vitamin regenerates E by Vitamin, C. Chem. Phys. Lipid. 2007, 146, 26–32. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Torija-Isasa, M.E.; Giménez-Martínez, J.J.; Rodríguez-García, I.; Giménez-Giménez, A. Oxalic acid and calcium determination in wild edible plants. J. Agric. Food Chem. 1996, 44, 1821–1823. [Google Scholar] [CrossRef]
- Israr, B.; Frazier, R.A.; Gordon, M.H. Effects of phytate and minerals on the bioavailability of oxalate from food. Food Chem. 2013, 141, 1690–1693. [Google Scholar] [CrossRef]
- Mahan, L.K.; Escott-Stump, S.; Raymond, J.L. Krause Dietoterapia, 13th ed.; Elsevier: Madrid, Spain, 2012. [Google Scholar]
- Yadav, S.K.; Sehgal, S. Effect of domestic processing and cooking on selected antinutrient contents of some green leafy vegetables. Plant. Foods Hum. Nutr. 2003, 58, 1–11. [Google Scholar] [CrossRef]
Family | Species | Edible Part | Site | |
---|---|---|---|---|
Polygonaceae | Rumex pulcher L. | Basal leaves | Alcalá de Henares | |
Caryophyllaceae | Silene vulgaris (Moench) Garcke. | Tender stems with leaves | Cadalso de los Vidrios | |
Asparagaceae | Asparagus acutifolius L. | Young shoots with or without leaves | Alcalá de Henares | |
Cannabaceae | Humulus lupulus L. | Young shoots with or without leaves | Alcalá de Henares | |
Cucurbitaceae | Bryonia dioica Jacq. | Young shoots with or without leaves | Alcalá de Henares | |
Dioscoreaceae | Tamus communis L. | Young shoots with or without leaves | Tres Cantos |
Species | Moisture | Proteins | Lipids | TAC | Dietary Fiber | Ashes | |
---|---|---|---|---|---|---|---|
Rumex pulcher L. | Fresh | 88.1 ± 0.1 * | 2.70 ± 0.01 * | 0.10 ± 0.02 * | 3.31 ± 0.10 * | 4.23 ± 0.03 * | 1.54 ± 0.02 * |
Boiled | 90.8 ± 0.9 | 0.31 ± 0.02 | 0.03 ± 0.00 | 2.02 ± 0.12 | 4.41 ± 0.07 | 0.81 ± 0.01 | |
Silene vulgaris (Moench) Garcke. | Raw | 86.1 ± 0.1 * | 3.16 ± 0.09 * | 0.33 ± 0.02 * | 1.50 ± 0.07 * | 5.64 ± 0.06 * | 2.18 ± 0.03 * |
Boiled | 92.1 ± 0.4 | 1.98 ± 0.02 | 0.22 ± 0.02 | 1.13 ± 0.03 | 3.28 ± 0.03 | 0.77 ± 0.02 | |
Asparagus acutifolius L. | Raw | 86.9 ± 0.1 * | 3.00 ± 0.13 * | 0.44 ± 0.02 * | 4.46 ± 0.19 | 3.73 ± 0.06 * | 1.00 ± 0.04 * |
Boiled | 89.6 ± 0.1 | 2.52 ± 0.02 | 0.12 ± 0.00 | 4.99 ± 0.45 | 3.56 ± 0.02 | 0.57 ± 0.03 | |
Bryonia dioica L. | Raw | 90.7 ± 0.1 * | 3.05 ± 0.21 | 0.11 ± 0.01 | 1.06 ± 0.07 | 3.69 ± 0.05 * | 1.03 ± 0.03 * |
Boiled | 93.4 ± 0.2 | 2.01 ± 0.44 | 0.15 ± 0.02 | 1.21 ± 0.18 | 2.88 ± 0.03 | 0.62 ± 0.02 | |
Humulus lupulus L. | Raw | 86.2 ± 0.1 * | 4.23 ± 0.49 * | 0.10 ± 0.01 * | 2.02 ± 0.21 | 4.50 ± 0.15 * | 1.26 ± 0.01 * |
Boiled | 90.7 ± 0.2 | 0.56 ± 0.01 | 0.15 ± 0.01 | 1.89 ± 0.17 | 3.81 ± 0.03 | 0.72 ± 0.01 | |
Tamus communis L. | Raw | 88.7 ± 0.4 * | 3.14 ± 0.06 * | 0.20 ± 0.01 * | 2.02 ± 0.21 * | 4.06 ± 0.10 * | 1.03 ± 0.01 * |
Boiled | 90.6 ± 0.1 | 0.55 ± 0.05 | 0.08 ± 0.00 | 3.07 ± 0.19 | 3.33 ± 0.04 | 0.68 ± 0.03 |
Species | K (mg/100 g) | Na (mg/100 g) | Ca (mg/100 g) | Mg (mg/100 g) | |
---|---|---|---|---|---|
Rumex pulcher L. | Raw | 520.8 ± 41.4 * | 123.5 ± 9.4 * | 68.2 ± 2.8 * | 45.7 ± 1.0 * |
Boiled | 206.1 ± 20.3 | 29.1 ± 0.2 | 107.1 ± 9.7 | 26.9 ± 1.8 | |
Silene vulgaris (Moench) Garcke. | Raw | 670.7 ± 69.0 * | 21.8 ± 1.6 * | 74.0 ± 3.3 | 56.0 ± 0.6 * |
Boiled | 226.4 ± 3.7 | 11.8 ± 2.5 | 67.9 ± 5.4 | 21.1 ± 0.2 | |
Asparagus acutifolius L. | Raw | 338.1 ± 21.5 * | 37.5 ± 3.0 * | 17.6 ± 1.5 * | 15.6 ± 0.9 * |
Boiled | 177.1 ± 18.0 | 21.0 ± 1.9 | 31.5 ± 0.3 | 10.9 ± 1.8 | |
Bryonia dioica L. | Raw | 351.1 ± 12.9 * | 21.9 ± 2.3 | 31.7 ± 1.2 * | 14.6 ± 0.8 * |
Boiled | 171.0 ± 10.2 | 18.1 ± 0.2 | 16.0 ± 1.5 | 9.0 ± 1.7 | |
Humulus lupulus L. | Raw | 421.3 ± 14.2 * | 57.7 ± 8.1 * | 58.3 ± 0.8 * | 28.9 ± 1.0 * |
Boiled | 171.8 ± 15.7 | 7.1 ± 0.7 | 40.4 ± 5.6 | 17.0 ± 0.6 | |
Tamus communis L. | Raw | 307.4 ± 9.4 * | 16.3 ± 3.4 | 42.1 ± 2.7 | 19.0 ± 1.4 |
Boiled | 202.4 ± 22.9 | 14.9 ± 1.7 | 47.3 ± 3.3 | 15.2 ± 1.2 |
Species | Cu (mg/100 g) | Fe (mg/100 g) | Mn (mg/100 g) | Zn (mg/100 g) | |
---|---|---|---|---|---|
Rumex pulcher L. | Raw | 0.10 ± 0.01 | 1.26 ± 0.03 | 0.22 ± 0.01 | 0.39 ± 0.02 * |
Boiled | 0.08 ± 0.01 | 1.10 ± 0.18 | 0.20 ± 0.02 | 0.18 ± 0.03 | |
Silene vulgaris (Moench) Garcke. | Raw | 0.01 ± 0.002 | 0.21 ± 0.00 * | 0.55 ± 0.01 * | 0.51 ± 0.01 * |
Boiled | 0.06 ± 0.02 | 0.47 ± 0.02 | 0.60 ± 0.01 | 0.20 ± 0.01 | |
Asparagus acutifolius L. | Raw | 0.13 ± 0.01 * | 0.36 ± 0.03 | 0.07 ± 0.003 * | 0.85 ± 0.01 * |
Boiled | 0.38 ± 0.08 | 0.22 ± 0.09 | 0.12 ± 0.01 | 0.42 ± 0.00 | |
Bryonia dioica L. | Raw | 0.26 ± 0.02 * | 0.41 ± 0.02 * | 0.13 ± 0.005 * | 0.61 ± 0.03 * |
Boiled | 0.10 ± 0.01 | 0.20 ± 0.005 | 0.08 ± 0.001 | 0.30 ± 0.03 | |
Humulus lupulus L. | Raw | 0.14 ± 0.02 * | 0.58 ± 0.03 | 0.10 ± 0.002 * | 0.82 ± 0.01 * |
Boiled | 0.08 ± 0.001 | 0.57 ± 0.07 | 0.18 ± 0.02 | 0.40 ± 0.02 | |
Tamus communis L. | Raw | 0.14 ± 0.01 * | 0.48 ± 0.02 | 0.11 ± 0.03 | 0.64 ± 0.01 * |
Boiled | 0.09 ± 0.02 | 0.43 ± 0.04 | 0.13 ± 0.01 | 0.44 ± 0.04 |
Species | Total Folates (mg/100 g) | % PRI | AA (mg/100 g) | DHAA (mg/100 g) | Total Vitamin C (mg/100 g) | % PRI | |
---|---|---|---|---|---|---|---|
Rumex pulcher L. | Raw | 0.397 ± 0.023 * | 120.3 | 30.8 ± 0.7 * | 16.1 ± 0.2 * | 46.5 ± 0.1 * | 42.3 |
Boiled | 0.277 ± 0.026 | 83.9 | 20.4 ± 0.7 | 1.2 ± 0.3 | 21.6 ± 0.9 | 19.6 | |
Silene vulgaris (Moench) Garcke. | Raw | 0.519 ± 0.140 * | 157.3 | 14.3 ± 1.0 | 11.1 ± 0.9 * | 25.1 ± 0.5 * | 22.8 |
Boiled | 0.102 ± 0.012 | 30.9 | 13.9 ± 1.0 | nd | 13.4 ± 0.8 | 12.2 | |
Asparagus acutifolius L. | Raw | 0.589 ± 0.017 * | 178.5 | 29.3 ± 0.1 * | 26.0 ± 0.6 | 56.7 ± 0.6 * | 51.5 |
Boiled | 0.283 ± 0.007 | 85.7 | 24.2 ± 0.5 | 23.6 ± 1.4 | 47.9 ± 1.8 | 43.5 | |
Bryonia dioica L. | Raw | 0.177 ± 0.008 * | 53.6 | 12.0 ± 0.3 * | 13.7 ± 1.7 * | 25.7 ± 2.0 * | 23.4 |
Boiled | 0.122 ± 0.015 | 36.9 | 6.4 ± 0.3 | 0.2 ± 0.1 | 6.4 ± 0.2 | 5.8 | |
Humulus lupulus L. | Raw | 0.304 ± 0.045 * | 92.1 | 37.2 ± 0.2 * | 23.2 ± 0.8 * | 60.9 ± 0.1 * | 55.4 |
Boiled | 0.177 ± 0.038 | 53.6 | 11.3 ± 0.5 | 5.6 ± 0.2 | 17.4 ± 0.8 | 15.8 | |
Tamus communis L. | Raw | 0.159 ± 0.004 * | 48.2 | 56.9 ± 0.2 * | 1.6 ± 0.1 * | 58.6 ± 0.4 * | 53.3 |
Boiled | 0.109 ± 0.022 | 33.0 | 36.2 ± 0.8 | nd | 40.9 ± 1.6 | 37.2 |
Species | Oxalic Acid | Glutamic Acid | Malic Acid | Citric Acid | |
---|---|---|---|---|---|
Rumex pulcher L. | Raw | 0.73 ± 0.02 * | nd | nd | 0.102 ± 0.003 * |
Boiled | 0.29 ± 0.02 | nd | nd | 0.034 ± 0.003 | |
Silene vulgaris (Moench) Garcke. | Raw | 0.63 ± 0.07 * | nd | nd | 0.12 ± 0.01 * |
Boiled | 0.45 ± 0.03 | nd | nd | 0.06 ± 0.02 | |
Asparagus acutifolius L. | Raw | 0.10 ± 0.01 | 0.042 ± 0.005 * | 0.22 ± 0.04 * | 0.33 ± 0.05 |
Boiled | 0.08 ± 0.00 | 0.029 ± 0.002 | 0.09 ± 0.01 | 0.20 ± 0.07 | |
Bryonia dioica L. | Raw | 0.36 ± 0.02 * | 0.119 ± 0.004 * | 1.71 ± 0.04 * | 0.06 ± 0.01 * |
Boiled | 0.13 ± 0.01 | nd | 0.98 ± 0.07 | 0.041 ± 0.005 | |
Humulus lupulus L. | Raw | 0.09 ± 0.02 | nd | 0.77 ± 0.17 * | 0.17 ± 0.01 |
Boiled | 0.083 ± 0.007 | nd | 0.47 ± 0.02 | 0.12 ± 0.03 | |
Tamus communis L. | Raw | 0.08 ± 0.01 | nd | nd | 0.34 ± 0.02 * |
Boiled | 0.08 ± 0.01 | nd | nd | 0.24 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Herrera, P.; Morales, P.; Cámara, M.; Fernández-Ruiz, V.; Tardío, J.; Sánchez-Mata, M.C. Nutritional and Phytochemical Composition of Mediterranean Wild Vegetables after Culinary Treatment. Foods 2020, 9, 1761. https://doi.org/10.3390/foods9121761
García-Herrera P, Morales P, Cámara M, Fernández-Ruiz V, Tardío J, Sánchez-Mata MC. Nutritional and Phytochemical Composition of Mediterranean Wild Vegetables after Culinary Treatment. Foods. 2020; 9(12):1761. https://doi.org/10.3390/foods9121761
Chicago/Turabian StyleGarcía-Herrera, Patricia, Patricia Morales, Montaña Cámara, Virginia Fernández-Ruiz, Javier Tardío, and María Cortes Sánchez-Mata. 2020. "Nutritional and Phytochemical Composition of Mediterranean Wild Vegetables after Culinary Treatment" Foods 9, no. 12: 1761. https://doi.org/10.3390/foods9121761