Multi-Chemical Profiling of Strawberry as a Traceability Tool to Investigate the Effect of Cultivar and Cultivation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Analysis of Sugars and Organic Acids
2.3. Analysis of Phenolic Compounds
2.4. Analysis of Mineral Elements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Multi-Chemical Profiling of Strawberry
3.2. Application of Pattern Recognition Tools for Selecting Chemical Descriptors of Cultivar and Agronomic Conditions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control 2014, 39, 172–184. [Google Scholar] [CrossRef]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, A.; Nguyen, A.; Betts, N.M.; Lyons, T.J. Strawberry as a functional food: An evidence-based review. Crit. Rev. Food Sci. Nutr. 2014, 54, 790–806. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.; Nair, S. Developing New Functional Food and Nutraceutical Products, 1st ed.; Academic Press: San Diego, CA, USA, 2016. [Google Scholar]
- Sturm, K.; Koron, D.; Stampar, F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 2003, 83, 417–422. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Akhatou, I.; Fernández-Recamales, A. Influence of cultivar and culture system on nutritional and organoleptic quality of strawberry. J. Sci. Food Agric. 2014, 94, 866–875. [Google Scholar] [CrossRef]
- Nowicka, A.; Kucharska, A.Z.; Sokoł-Łętowska, A.; Fecka, I. Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch. Food Chem. 2019, 270, 32–46. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Mazzoni, L.; Romandini, S.; Bompadre, S.; Diamanti, J.; Capocasa, F.; Mezzetti, B.; Quiles, J.L.; Ferreiro, M.S.; et al. The potential impact of strawberry on human health. Nat. Prod. Res. 2013, 27, 448–455. [Google Scholar] [CrossRef]
- Akhatou, I.; Fernández-Recamales, A. Nutritional and nutraceutical quality of strawberries in relation to harvest time and crop conditions. J. Agric Food Chem. 2014, 62, 5749–5760. [Google Scholar] [CrossRef]
- Akhatou, I.; González-Domínguez, R.; Fernández-Recamales, Á. Investigation of the effect of genotype and agronomic conditions on metabolomic profiles of selected strawberry cultivars with different sensitivity to environmental stress. Plant Physiol. Biochem. 2016, 101, 14–22. [Google Scholar] [CrossRef]
- Wang, S.Y.; Millner, P. Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria × ananassa Duch.). J. Agric. Food Chem. 2009, 57, 9651–9657. [Google Scholar] [CrossRef] [PubMed]
- Kruger, E.; Josuttis, M.; Nestby, R.; Toldam-Andersen, T.B.; Carlen, C.; Mezzetti, B. Influence of growing conditions at different latitudes of Europe on strawberry growth performance, yield and quality. J. Berry Res. 2012, 2, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria × ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Akhatou, I.; Sayago, A.; González-Domínguez, R.; Fernández-Recamales, Á. Application of Targeted Metabolomics to Investigate Optimum Growing Conditions to Enhance Bioactive Content of Strawberry. J. Agric. Food Chem. 2017, 65, 9559–9567. [Google Scholar] [CrossRef] [PubMed]
- Crespo, P.; Giné Bordonaba, J.; Terry, L.A.; Carlen, C. Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem. 2010, 122, 16–24. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Pereira, G.E.; Gaudillere, J.-P.; Pieri, P.; Hilbert, G.; Maucourt, M.; Deborde, C.; Moing, A.; Rolin, D. Microclimate influence on mineral and metabolic profiles of grape berries. J. Agric. Food Chem. 2006, 54, 6765–6775. [Google Scholar] [CrossRef]
- Sayago, A.; González-Domínguez, R.; Beltrán, R.; Fernández-Recamales, Á. Combination of complementary data mining methods for geographical characterization of extra virgin olive oils based on mineral composition. Food Chem. 2018, 261, 42–50. [Google Scholar] [CrossRef]
- Sayago, A.; González-Domínguez, R.; Urbano, J.; Fernández-Recamales, Á. Combination of vintage and new-fashioned analytical approaches for varietal and geographical traceability of olive oils. LWT 2019, 111, 99–104. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Morales, M.T.; Fernández-Recamales, Á. Assessment of Virgin Olive Oil Adulteration by a Rapid Luminescent Method. Foods 2019, 8, 287. [Google Scholar] [CrossRef] [Green Version]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. Metabolomics: An Emerging Tool for Wine Characterization and the Investigation of Health Benefits. In Engineering Tools in the Beverage Industry. Volume 3: The Science of Beverages, 1st ed.; Grumezescu, A., Holban, A.M., Eds.; Woodhead Publishing: Duxford, UK, 2019; Volume 3, pp. 315–350. [Google Scholar]
Compounds | Aromas | Camarosa | Diamante | Medina | Ventana | p Value |
---|---|---|---|---|---|---|
sucrose | 6.9 ± 4.8 | 14.1 ± 2.3 | 9.2 ± 1.7 | 6.7 ± 3.4 | 10.0 ± 3.1 | 0.0003 |
glucose | 11.9 ± 4.4 | 11.7 ± 3.2 | 12.4 ± 3.0 | 12.3 ± 3.9 | 14.6 ± 3.9 | 0.4836 |
fructose | 11.6 ± 4.1 | 11.0 ± 2.8 | 11.5 ± 2.4 | 11.4 ± 3.8 | 13.3 ± 3.4 | 0.6800 |
Total Sugars | 30.5 ± 12.8 | 36.7 ± 6.3 | 33.1 ± 5.7 | 30.4 ± 10.2 | 37.9 ± 8.7 | 0.3383 |
ascorbic acid | 0.1 ± 0.04 | 0.2 ± 0.1 | 0.2 ± 0.02 | 0.2 ± 0.08 | 0.2 ± 0.1 | 0.4145 |
citric acid | 5.1 ± 2.0 | 6.3 ± 0.8 | 5.3 ± 1.1 | 4.7 ± 1.4 | 5.3 ± 0.8 | 0.1937 |
tartaric acid | 0.08 ± 0.08 | 0.1 ± 0.04 | 0.2 ± 0.06 | 0.07 ± 0.09 | 0.2 ± 0.07 | 0.0959 |
malic acid | 0.5 ± 0.1 | 2.4 ± 0.4 | 0.6 ± 0.2 | 0.5 ± 0.1 | 0.7 ± 0.2 | 0.0871 |
Total Acids | 5.8 ± 2.2 | 8.9 ± 2.9 | 6.2 ± 1.3 | 5.5 ± 1.5 | 6.4 ± 0.8 | 0.0074 |
pelargonidin derivative 1 | 0.9 ± 0.3 | 0.8 ± 0.2 | 0.6 ± 0.2 | 0.7 ± 0.3 | 0.7 ± 0.4 | 0.0750 |
cyanidin 3-glucoside | 6.4 ± 1.6 | 4.0 ± 0.8 | 3.0 ± 1.1 | 3.8 ± 0.2 | 1.4 ± 0.6 | 0.0000 |
pelargonidin 3-glucoside | 120.9 ± 17.7 | 117.2 ± 29.9 | 72.4 ± 3.3 | 102.7 ± 30.9 | 86.1 ± 22.2 | 0.0003 |
pelargonidin 3-rutinoside | 7.4 ± 1.6 | 15.8 ± 5.1 | 5.2 ± 1.0 | 6.2 ± 0.7 | 6.7 ± 2.5 | 0.0000 |
pelargonidin derivative 2 | 0.7 ± 0.2 | 0.6 ± 0.3 | 0.6 ± 0.2 | 0.7 ± 0.09 | 0.8 ± 0.4 | 0.8180 |
pelargonidin acetate | 3.0 ± 0.4 | 2.3 ± 0.7 | 1.4 ± 0.2 | 2.1 ± 0.8 | 1.1 ± 0.4 | 0.0000 |
Total Anthocyanins | 139.4 ± 18.3 | 140.9 ± 35.9 | 83.3 ± 1.9 | 116.2 ± 32.3 | 96.7 ± 25.1 | 0.0001 |
p-hydroxybenzoic acid | 0.6 ± 0.1 | 1.4 ± 0.3 | 0.8 ± 0.9 | 0.3 ± 0.02 | 0.5 ± 0.03 | 0.0139 |
caffeic acid | 0.4 ± 0.1 | 0.6 ± 0.2 | 0.2 ± 0.01 | 0.5 ± 0.1 | 0.9 ± 0.2 | 0.0001 |
p-coumaric acid | 7.8 ± 1.7 | 6.6 ± 3.1 | 4.2 ± 2.2 | 5.8 ± 1.3 | 19.3 ± 6.1 | 0.0000 |
ferulic acid | 0.08 ± 0.02 | 0.2 ± 0.07 | 0.2 ± 0.02 | 0.1 ± 0.04 | 0.4 ± 0.08 | 0.0078 |
ellagic acid | 39.3 ± 10.3 | 35.8 ± 10.5 | 54.3 ± 23.8 | 45.8 ± 22.3 | 63.4 ± 25.9 | 0.1295 |
Total Phenolic Acids | 48.1 ± 11.1 | 44.6 ± 13.5 | 59.8 ± 24.5 | 52.6 ± 22.4 | 84.4 ± 36.3 | 0.0129 |
quercetin | 1.4 ± 0.08 | 1.5 ± 0.2 | 0.9 ± 0.2 | 0.9 ± 0.3 | 0.7 ± 0.1 | 0.0249 |
Kaempferol O-glucoside | 23.0 ± 7.2 | 29.5 ± 10.3 | 18.3 ± 6.0 | 21.2 ± 9.5 | 30.3 ± 8.3 | 0.0262 |
Total Flavonols | 24.4 ± 7.2 | 31.0 ± 10.4 | 19.3 ± 6.1 | 22.2 ± 9.9 | 31.0 ± 7.9 | 0.0237 |
P | 224.3 ± 35.6 | 251.6 ± 11.3 | 196.2 ± 29.5 | 219.2 ± 21.8 | 218.5 ± 16.4 | 0.0025 |
Ba | 0.6 ± 0.2 | 0.5 ± 0.06 | 0.4 ± 0.06 | 0.4 ± 0.02 | 0.4 ± 0.04 | 0.9586 |
Ca | 210.7 ± 24.1 | 244.2 ± 35.4 | 156.4 ± 20.1 | 195.4 ± 33.2 | 235.2 ± 28.6 | 0.9732 |
Cr | 0.1 ± 0.02 | 0.06 ± 0.01 | 0.06 ± 0.02 | 0.05 ± 0.01 | 0.2 ± 0.03 | 0.9932 |
Cu | 4.6 ± 1.9 | 4.8 ± 1.1 | 4.8 ± 1.4 | 4.9 ± 1.4 | 5.4 ± 1.3 | 0.9915 |
Fe | 7.8 ± 1.2 | 7.6 ± 1.1 | 5.8 ± 1.6 | 8.7 ± 1.1 | 7.5 ± 1.9 | 0.9723 |
K | 2843.5 ± 287.6 | 2788.2 ± 357.4 | 2098.1 ± 210.2 | 2844.8 ± 351.9 | 3597.9 ± 443.5 | 0.9263 |
Mg | 226.7 ± 26.9 | 179.3 ± 26.0 | 142.5 ± 20.1 | 167.5 ± 23.7 | 222.6 ± 30.7 | 0.9526 |
Mn | 8.8 ± 1.9 | 6.9 ± 1.0 | 5.9 ± 1.9 | 6.8 ± 1.1 | 9.9 ± 1.1 | 0.9394 |
Na | 189.1 ± 28.9 | 116.0 ± 23.7 | 98.3 ± 21.5 | 88.9 ± 17.4 | 126.2 ± 16.1 | 0.9000 |
Ni | 0.3 ± 0.06 | 0.3 ± 0.02 | 0.3 ± 0.07 | 0.3 ± 0.03 | 0.3 ± 0.05 | 0.9890 |
Sr | 6.0 ± 1.0 | 3.6 ± 1.7 | 3.1 ± 1.5 | 4.8 ± 1.8 | 5.6 ± 1.7 | 0.8802 |
Zn | 3.2 ± 0.9 | 7.5 ± 0.8 | 3.74 ± 0.49 | 3.47 ± 0.33 | 4.26 ± 0.30 | 0.5551 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Domínguez, R.; Sayago, A.; Akhatou, I.; Fernández-Recamales, Á. Multi-Chemical Profiling of Strawberry as a Traceability Tool to Investigate the Effect of Cultivar and Cultivation Conditions. Foods 2020, 9, 96. https://doi.org/10.3390/foods9010096
González-Domínguez R, Sayago A, Akhatou I, Fernández-Recamales Á. Multi-Chemical Profiling of Strawberry as a Traceability Tool to Investigate the Effect of Cultivar and Cultivation Conditions. Foods. 2020; 9(1):96. https://doi.org/10.3390/foods9010096
Chicago/Turabian StyleGonzález-Domínguez, Raúl, Ana Sayago, Ikram Akhatou, and Ángeles Fernández-Recamales. 2020. "Multi-Chemical Profiling of Strawberry as a Traceability Tool to Investigate the Effect of Cultivar and Cultivation Conditions" Foods 9, no. 1: 96. https://doi.org/10.3390/foods9010096
APA StyleGonzález-Domínguez, R., Sayago, A., Akhatou, I., & Fernández-Recamales, Á. (2020). Multi-Chemical Profiling of Strawberry as a Traceability Tool to Investigate the Effect of Cultivar and Cultivation Conditions. Foods, 9(1), 96. https://doi.org/10.3390/foods9010096