Egg Yolk Antioxidants Profiles: Effect of Diet Supplementation with Linseeds and Tomato-Red Pepper Mixture before and after Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Experimental Design
2.3. Data Collection and Chemical Analyses
2.4. Egg Yolk Color
2.5. Antioxidant Profile Determination
2.5.1. Total Carotenoid Determination
2.5.2. Total Phenol Determination
2.5.3. Flavonoid Determination
2.5.4. Oxidative Status Determination
2.6. Statistical Analysis
- Yij = represents the jth observation on the ith treatment
- µ = overall mean
- Ti = the main effect of the ith treatment
- eij = random error present in the jth observation on the ith treatment
3. Results and Discussion
3.1. Egg Physical Characteristics
3.2. Egg Yolk Antioxidant Profile
3.3. Egg Yolk Coloration
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anton, M.; Nau, F.; Nys, Y. Bioactive egg components and their potential uses. World’s Poult. Sci. J. 2006, 62, 429–438. [Google Scholar] [CrossRef]
- Nau, F.; Yamakawa, Y.N.Y.; Réhault-Godbert, S. Nutritional value of the hen egg for humans. Prod. Anim. Paris Inst. Natl. Rech. Agron. 2010, 23, 225–236. [Google Scholar]
- Ruxton, C. Recommendations for the use of eggs in the diet. Nurs. Stand. 2010, 24, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewicz, Z.; Herman, M.; Starostecka, E. Hen’s egg as a source of valuable biologically active substances. Postępy Hig. Med. Doświadczalnej 2016, 70, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Heflin, L.E.; Malheiros, R.; Anderson, K.E.; Johnson, L.K.; Raatz, S.K. Mineral content of eggs differs with hen strain, age, and rearing environment. Poult. Sci. 2018, 97, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Abeyrathne, E.D.N.S.; Lee, H.Y.; Ahn, D.U. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—A review. Poult. Sci. 2013, 92, 3292–3299. [Google Scholar] [CrossRef] [PubMed]
- Nimalaratne, C.; Schieber, A.; Wu, J. Effects of storage and cooking on the antioxidant capacity of laying hen eggs. Food Chem. 2016, 194, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, F.; Cao, Q.; Ren, B.; Zhu, L.; Striker, G.; Vlassara, H. Amelioration of oxidant stress by the defensin lysozyme. Am. J. Physiol. Metab. 2006, 290, E824–E832. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Hoq, M.I.; Aoki, T. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 2007, 41, 631–640. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 2011, 129, 155–161. [Google Scholar] [CrossRef]
- Young, D.; Nau, F.; Pasco, M.; Mine, Y. Identification of hen egg yolk-derived phosvitin phosphopeptides and their effects on gene expression profiling against oxidative stress-induced Caco-2 cells. J. Agric. Food Chem. 2011, 59, 9207–9218. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Jin, Y.; Liu, M.; Yang, Y.; Zhang, M.; Guo, Y. Research on the preparation of antioxidant peptides derived from egg white with assisting of high-intensity pulsed electric field. Food Chem. 2013, 139, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jin, Y.; Lin, S.; Jones, G.S.; Chen, F. Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chem. 2015, 175, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Nimalaratne, C.; Bandara, N.; Wu, J. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chem. 2015, 188, 467–472. [Google Scholar] [CrossRef]
- Lee, J.H.; Moon, S.H.; Kim, H.S.; Park, E.; Ahn, D.U.; Paik, H.-D.; Paik, H. Antioxidant and anticancer effects of functional peptides from ovotransferrin hydrolysates. J. Sci. Food Agric. 2017, 97, 4857–4864. [Google Scholar] [CrossRef]
- Yoo, H.; Bamdad, F.; Gujral, N.; Suh, J.-W.; Sunwoo, H. High Hydrostatic Pressure-Assisted Enzymatic Treatment Improves Antioxidant and Anti-inflammatory Properties of Phosvitin. Curr. Pharm. Biotechnol. 2017, 18, 158–167. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Huang, X.; Ahn, D.U. Antioxidant, angiotensin-converting enzyme inhibitory activity and other functional properties of egg white proteins and their derived peptides—A review. Poult. Sci. 2018, 97, 1462–1468. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the art of Ready-to-Use Therapeutic Food: A tool for nutraceuticals addition to foodstuff. Food Chem. 2013, 140, 843–849. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. To Nutraceuticals and Back: Rethinking a Concept. Foods 2017, 6, 74. [Google Scholar] [CrossRef]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. Nutraceuticals—Shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev. Clin. Pharmacol. 2018, 12, 1–7. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin. Ther. Pat. 2018, 28, 875–882. [Google Scholar] [CrossRef]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. A Current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Wijesekara, I.; Vo, T.-S.; Van Ta, Q.; Kim, S.-K. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res. Int. 2011, 44, 523–529. [Google Scholar] [CrossRef]
- Walker, L.A.; Wang, T.; Xin, H.; Dolde, D. Supplementation of Laying-Hen Feed with Palm Tocos and Algae Astaxanthin for Egg Yolk Nutrient Enrichment. J. Agric. Food Chem. 2012, 60, 1989–1999. [Google Scholar] [CrossRef]
- Iskender, H.; Yenice, G.; Dokumacioglu, E.; Kaynar, O.; Hayirli, A.; Kaya, A. Comparison of the effects of dietary supplementation of flavonoids on laying hen performance, egg quality and egg nutrient profile. Br. Poult. Sci. 2017, 58, 550–556. [Google Scholar] [CrossRef]
- Damaziak, K.; Marzec, A.; Riedel, J.; Szeliga, J.; Koczywąs, E.; Cisneros, F.; Michalczuk, M.; Łukasiewicz, M.; Gozdowski, D.; Siennicka, A.; et al. Effect of dietary canthaxanthin and iodine on the production performance and egg quality of laying hens. Poult. Sci. 2018, 97, 4008–4019. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I. Nutritional modulation of the antioxidant capacities in poultry: The case of selenium. Poult. Sci. 2018. [Google Scholar] [CrossRef]
- Campos, J.; Severino, P.; Ferreira, C.; Zielinska, A.; Santini, A.; Souto, S.; Souto, E.B. Linseed essential oil-Source of Lipids as Active Ingredients for Pharmaceuticals and Nutraceuticals. Curr. Med. Chem. 2018. [Google Scholar] [CrossRef]
- Naviglio, D.; Romano, R.; Pizzolongo, F.; Santini, A.; De Vito, A.; Schiavo, L.; Nota, G.; Musso, S.S. Rapid determination of esterified glycerol and glycerides in triglyceride fats and oils by means of periodate method after transesterification. Food Chem. 2007, 102, 399–405. [Google Scholar] [CrossRef]
- Naviglio, D.; Pizzolongo, F.; Ferrara, L.; Aragón, A.; Santini, A. Extraction of pure lycopene from industrial tomato by-products in water using a new high-pressure process. J. Sci. Food Agric. 2008, 88, 2414–2420. [Google Scholar] [CrossRef]
- Naviglio, D.; Caruso, T.; Iannece, P.; Aragòn, A.; Santini, A. Characterization of high purity lycopene from tomato wastes using a new pressurized extraction approach. J. Agric. Food Chem. 2008, 56, 6227–6231. [Google Scholar] [CrossRef]
- Romano, R.; Masucci, F.; Giordano, A.; Musso, S.S.; Naviglio, D.; Santini, A. Effect of tomato by-products in the diet of Comisana sheep on composition and conjugated linoleic acid content of milk fat. Int. Dairy J. 2010, 20, 858–862. [Google Scholar] [CrossRef]
- Santini, A.; Graziani, G.; Ritieni, A. Nutraceuticals Recovery from Tomato Processing Waste and By-Products: Lycopene. In Tomatoes: Cultivation, Varieties and Nutrition; Chapter 17; (NARO Institute of Vegetables and Tea Science, National Agriculture and Food Research Organization, Ibaraki, Japan) ; Series: Food Science and Technology; Higashide, T., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2013; pp. 313–322. ISBN 978-1-62417-915-0. [Google Scholar]
- Gervasi, T.; Pellizzeri, V.; Benameur, Q.; Gervasi, C.; Santini, A.; Cicero, N.; Dugo, G. Valorization of raw materials from agricultural industry for astaxanthin and beta-carotene production by Xanthophyllomyces dendrorhous. Nat. Prod. Res. 2017, 32, 1554–1561. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules 2018, 23, 1888. [Google Scholar] [CrossRef]
- Goodwin, T.W. The Biochemistry of Carotenoids: Volume II, Animals, 2nd ed.; Chapman and Hall: New York, NY, USA, 1984. [Google Scholar]
- Li, H.; Jin, L.; Wu, F.; Thacker, P.H.; Li, X.; Wang, X.; Liu, S.I.; Li, S.H.; Xu, Y. Effect of Red Pepper (Capsicum frutescens) Powder or Red Pepper Pigment on the Performance and Egg Yolk Color of Laying Hens Asian-Aust. J. Anim. Sci. 2012, 25, 1605–1610. [Google Scholar] [CrossRef]
- Akdemir, F.; Orhan, C.; Sahin, N.; Sahin, K.; Hayirli, A. Tomato powder in laying hen diets: Effects on concentrations of yolk carotenoids and lipid peroxidation. Br. Poult. Sci. 2012, 53, 675–680. [Google Scholar] [CrossRef]
- D’Evoli, L.; Lombardi-Boccia, G.; Lucarini, M. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes. Foods 2013, 2, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Manzo, N.; Santini, A.; Pizzolongo, F.; Aiello, A.; Romano, R. Degradation kinetic (D100) of lycopene during the thermal treatment of concentrated tomato paste. Nat. Prod. Res. 2018, 21, 1–7. [Google Scholar] [CrossRef]
- Hammershøj, M.; Kidmose, U.; Steenfeldt, S. Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens. J. Sci. Food Agric. 2010, 90, 1163–1171. [Google Scholar] [CrossRef] [Green Version]
- Lucarini, M.; Lanzi, S.; D’Evoli, L.; Aguzzi, A.; Lombardi-Boccia, G. Intake of vitamin A and carotenoids from the Italian population-results of an Italian total diet study. Int. J. Vitam. Nutr. Res. 2006, 76, 103–109. [Google Scholar] [CrossRef]
- Adams, C.A. Pigmenters & poultry feeds. Feed Compd. 1985, 5, 12–14. [Google Scholar]
- Englmaierová, M.; Skřivan, M.; Bubancová, I. A comparison of lutein, spray-dried Chlorella, and synthetic carotenoids effects on yolk colour, oxidative stability, and reproductive performance of laying hens. Czech J. Anim. Sci. 2013, 58, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Leesson, S.; Caston, L. Enrichment of eggs with lutein. Poult. Sci. 2004, 83, 1709–1712. [Google Scholar] [CrossRef]
- Fredriksson, S.; Elwinger, K.; Pickova, J. Fatty acid and carotenoid composition of egg yolk as an effect of microalgae addition to feed formula for laying hens. Food Chem. 2006, 99, 530–537. [Google Scholar] [CrossRef]
- Karadas, F.; Grammenidis, E.; Surai, P.F.; Acamovic, T.; Sparks, N. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Br. Poult. Sci. 2006, 47, 561–566. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and Prevention of Chronic Disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Dahan, K.; Fennal, M.; Kumar, N.B. Lycopene in the prevention of prostate cancer. J. Soc. Integr. Oncol. 2008, 6, 29–36. [Google Scholar]
- Bohn, T. Carotenoids and Markers of Oxidative Stress in Human Observational Studies and Intervention Trials: Implications for Chronic Diseases. Antioxidants 2019, 8, 179. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Andrew, R.; Izzo, A.A. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol. 2017, 174, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Mehra, N.K.; Swarnakar, N.K. Role of Antioxidants for the Treatment of Cardiovascular Diseases: Challenges and Opportunities. Curr. Pharm. Des. 2015, 21, 4441–4455. [Google Scholar] [CrossRef]
- Athreya, K.; Xavier, M.F. Antioxidants in the Treatment of Cancer. Nutr. Cancer 2017, 69, 1099–1104. [Google Scholar] [CrossRef]
- Costantini, D. Understanding diversity in oxidative status and oxidative stress: The opportunities and challenges ahead. J. Exp. Biol. 2019, 222, jeb194688. [Google Scholar] [CrossRef]
- Shafi, S.; Ansari, H.R.; Bahitham, W.; Aouabdi, S. The Impact of Natural Antioxidants on the Regenerative Potential of Vascular Cells. Front. Cardiovasc. Med. 2019, 6, 28. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence and human health. Phyt. Res. 2019. [Google Scholar] [CrossRef]
- Miller, E.D.; Dziedzic, A.; Saluk-Bijak, J.; Bijak, M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients 2019, 11, 1528. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; El-Tawil, O.S.; Bungǎu, S.G.; Abdel-Daim, M.M.; Atanasov, A.G. Antioxidants: Scientific Literature Landscape Analysis. Oxidative Med. Cell. Longev. 2019, 2019, 8278454. [Google Scholar] [CrossRef]
- Hamilton, P.B.; Tirado, J.F.; Garcia-Hernandz, F. Deposition in egg yolks of the carotenoids from saponified and unsaponified oleoresin of red pepper (Capsicum annuum). Poult. Sci. 1999, 69, 462–470. [Google Scholar] [CrossRef]
- Gonzalez, M.; Castaño, E.; Avila, E.; De Mejia, E.G. Effect of capsaicin from red pepper (Capsicum sp) on the deposition of carotenoids in egg yolk. J. Sci. Food Agric. 1999, 79, 1904–1908. [Google Scholar] [CrossRef]
- Amaya, E.; Becquet, P.; Carné, S.; Peris, S.; Miralles, P. Carotenoids in Animal Nutrition; Fefana Publications: Bruxelles, Belgium, 2014; ISBN 978-2-9601289-4-9. [Google Scholar]
- Sim, J.S.; Sunwoo, H.H. Designer eggs: Nutritional and functional significance. In Eggs and Health Nutrition; Watson, R.R., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Shahryar, H.A.; Salamatdoust, R.; Chekani-Azar, S.; Ahadi, F.; Vahdatpour, T. Lipid oxidation in fresh and stored eggs enriched with dietary ω3 and ω6 polyunsaturated fatty acids and vitamin E and A dosages. Afr. J. Biotechnol. 2010, 9, 1827–1832. [Google Scholar]
- Wang, Q.; Jin, G.; Wang, N.; Guo, X.; Jin, Y.; Ma, M. Lipolysis and oxidation of lipids during egg storage at different temperatures. Czech J. Food Sci. 2017, 35, 229–235. [Google Scholar]
- Omri, B.; Chalghoumi, R.; Abdouli, H. Study of the Effects of Dietary Supplementation of Linseed, Fenugreek Seeds and Tomato-Pepper Mix on Laying Hen’s Performances, Egg Yolk Lipids and Antioxidants Profiles and Lipid Oxidation Status. J. Anim. Sci. Livest. Prod. 2017, 1, 2. [Google Scholar] [CrossRef]
- Amaya, D.B. Harvestplus Handbook for Carotenoids Analysis; International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT): Washington, DC, USA, 2004. [Google Scholar]
- Makkar, H.P.S. Antinutritional factors in foods for livestock. BSAP Occas. Publ. 1993, 16, 69–85. [Google Scholar] [CrossRef]
- Patel, A.; Patel, A.; Patel, N.M. Estimation of flavonoid, polyphenolic content and In vitro antioxidant capacity of leaves of Tephrosiapurpurea Linn. (Leguminosae). Int. J. Pharm. Sci. Res. 2010, 1, 66–77. [Google Scholar]
- Gutteridge, J.M. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem. Interact. 1994, 91, 133–140. [Google Scholar] [CrossRef]
- Durazzo, A. Extractable and Non-extractable Polyphenols: An Overview. In Non-extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Food Chemistry, Function and Analysis No. 5; Royal Society of Chemistry: London, UK, 2018; p. 3761. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power (FRAP) assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadeley, M. Malondialdehyde determination as Index of lipid peroxidation. Methods Enzym. 1990, 186, 421–431. [Google Scholar]
- SAS: Statistical Analysis System. User’s Guide Version; SAS Institute: Raleigh, NC, USA, 1989. [Google Scholar]
- Cox, C. Delta Method. In Encyclopedia of Biostatistics; Armitage, P., Colton, T., Eds.; John Wiley & Sons: New York, NY, USA, 1998; pp. 1125–1127. [Google Scholar]
- Yassein, S.A.; El-Mallah, G.M.; Sawsan, M.A.; El-Ghamry, A.A.; Abdel-Fattah, M.M.; El-Harriry, D.M. Response of laying hens to dietary flaxseed levels on performance, egg quality criteria, fatty acid composition of egg and some blood parameters. Int. J. Res. Stud. Biosci. 2015, 3, 27–34. [Google Scholar]
- Ahmad, S.; Ahsan-Ul-Haq, Y.; Kamran, M.; Ata-Ur-Rehman, Z.; Sahail, M.U.; Shahid-Ur-Rahman. Effect of feeding whole linseed as a source of polyunsaturated fatty acids on performance and egg characteristics of laying hens kept at high ambient temperature. Braz. J. Poult. Sci. 2010, 15, 21–26. [Google Scholar] [CrossRef]
- Niemiec, J.; Stępińska, M.; Świerczewska, E.; Riedel, J.; Boruta, A. The effect of storage on egg quality and fatty acid content in PUFA-enriched eggs. J. Anim. Feed. Sci. 2001, 10, 267–272. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Wu, J. Hen Egg as an Antioxidant Food Commodity: A Review. Nutrients 2015, 7, 8274–8293. [Google Scholar] [CrossRef] [Green Version]
- Kotrbáček, V.; Skřivan, M.; Kopecký, J.; Pěnkava, O.; Hudečková, P.; Uhríková, L.; Doubek, J. Retention of carotenoids in egg yolks of laying hens supplemented with heterotrophic Chlorella. Czech J. Anim. Sci. 2013, 58, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Amar, B.K.; Larid, R.; Zidaini, S. Enriching Egg Yolk with Carotenoids & Phenols. Int. J. Agric. Biol. Sci. Eng. 2013, 7, 489–493. [Google Scholar]
- Habanabashaka, M.; Sengabo, M.; Oladunjoye, I.O. Effect of Tomato Waste Meal on Lay Performance, Egg Quality, Lipid Profile and Carotene Content of Eggs in Laying Hens. Iran. J. Appl. Anim. Sci. 2014, 4, 555–559. [Google Scholar]
- Niu, Z.; Gao, Y.; Liu, F.; Fu, J. Influence of Paprika Extract Supplement on Egg Quality of Laying Hens Fed Wheat-Based Diet. Int. J. Poult. Sci. 2008, 7, 887–889. [Google Scholar] [Green Version]
- Barbosa, V.C.; Gaspar, A.; Calixto, L.F.L.; Agostinho, T.S.P. Stability of the pigmentation of egg yolks enriched with omega-3 and carophyll stored at room temperature and under refrigeration. Rev. Bras. Zootec. 2011, 40, 1540–1544. [Google Scholar] [CrossRef] [Green Version]
- Gawecki, K.; Awecki, K.; Potkanmski, A.; Lipinska, H. Effect of carophyll yellow and carophyll red added to comercial feeds for laying hens on yolk colour and its stability during short-term refrigeration. Rocz. Akad. Rol. W Pozn. 1977, 94, 85–93. [Google Scholar]
- Venglovskà, K.; Grešáková, Ľ.; Placha, I.; Ryzner, M.; Cobanova, K. Effects of feed supplementation with manganese from its different sources on performance and egg parameters of laying hens. Czech J. Anim. Sci. 2014, 59, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Hayat, Z.; Gherian, G.; Pasha, T.N.; Khatak, F.M.; Jabbar, M.A. Effect of feeding flax and two types of antioxidants on egg production egg quality and lipid composition of eggs. J. Appl. Poult. Res. 2010, 18, 541–551. [Google Scholar] [CrossRef]
- Boruta, A.; Niemiec, J. The effect of diet composition and length of storing eggs on changes in the fatty acid profile of egg yolk. J. Anim. Feed. Sci. 2005, 14, 427–430. [Google Scholar] [CrossRef]
- Sahin, N.; Akdemir, F.; Orhan, C.; Kucuk, O.; Hayirli, A.; Sahin, K. Lycopene-enriched quail egg as functional food for humans. Food Res. Int. 2004, 41, 295–300. [Google Scholar] [CrossRef]
- Pereira, G.V.N. Inheritance of Acyl-Sugar Contents in Tomato Genotypes and Its Relationship to Foliar Trichomes and Repellence to Spider Mites Tetrancychus Evani. Ph.D. Thesis, Université de Lovaras, Minas Gerais, Brasil, 2005. [Google Scholar]
- Abdouli, H.; Belhouane, S.; Hcini, E. Effect of fenugreek seeds on hens’ egg yolk color and sensory quality. J. New Sci. 2014, 5, 20–24. [Google Scholar]
- Lokaewmanee, K.; Komori, T.; Yamauchi, K.-E.; Saito, K. Effects on egg yolk colour of paprika or paprika combined with marigold flower extract. Ital. J. Anim. Sci. 2010, 9, 67. [Google Scholar] [CrossRef]
- Dvorak, P.; Dolezalova, J.; Suchy, P. Photocolorimetric determination of yolk colour in relation to selected quality parameters of eggs. J. Sci. Food Agric. 2009, 89, 1886–1889. [Google Scholar] [CrossRef]
- Salajedheh, M.H.; Ghazi, S.; Mahdavi, R.; Mozafari, O. Effects of different levels of dried tomato pomace on performance, egg quality and serum metabolites of laying hens. Afr. J. Biotechnol. 2012, 11, 15373–15379. [Google Scholar]
- Mansoori, B.; Modirsanei, M.; Kiaei, M.M. Influence of dried tomato pomace as an alternative to wheat bran in maize or wheat based diets, on the performance of laying hens and traits of produced eggs. Iran. J. Veter. Res. 2008, 9, 341–346. [Google Scholar]
Diets | |||
---|---|---|---|
Control (C) | Linseeds (L) | Linseeds–Tomato–Pepper (LTP) | |
Ingredients (%) | |||
Linseed | 0 | 4.5 | 4.5 |
Dried Tomato | 0 | 0 | 1 |
Sweet red pepper | 0 | 0 | 1 |
Yellow corn | 66.5 | 63.5 | 61.5 |
Soybean meal | 25.5 | 24.0 | 24.0 |
Calcium carbonate, Mineral and Vitamin mixture | 8.0 | 8.0 | 8.0 |
Chemical Composition | |||
Crude protein, (%, dry matter (DM)) | 18.1 | 18 | 18 |
Ether extract (%, DM) | 3.56 | 5.6 | 5.27 |
Metabolizable energy (Kcal/Kg DM) | 2750 | 2850 | 2830 |
Antioxidants | |||
α-carotene, * (10−9) g/kg DM | 3.41 | 5.1 | 21.7 |
β-carotene, * (10−9) g/kg DM | 3.37 | 5.36 | 23.2 |
β-cryptoxanthine,* (10−9) g/kg DM | 3.84 | 5.50 | 25.3 |
Lycopene, * (10−9) g/kg DM | 1.77 | 3.48 | 15.7 |
Zeaxanhine, * (10−9) g/kg DM | 3.90 | 5.59 | 25.7 |
£ Flavonoids, g CE/kg DM | 2.26 | 1.59 | 2.03 |
¥ Total phenols, g GAE/kg DM | 3.02 | 3.53 | 2.98 |
Parameters | Eggs | Diets | p-Value | ||
---|---|---|---|---|---|
C α | L α | LTP α | |||
Egg weight, g | Fresh | 55.48 aA | 57.67 aA | 57.09 aA | 0.07 |
Stored | 54.08 cA | 56.87 aA | 56.21 abA | 0.024 | |
Yolk weight, g | Fresh | 13.79 aA | 13.84 aA | 13.86 aA | 0.99 |
Stored | 14.54 aA | 14.69 aB | 14.48 aB | 0.92 | |
Albumen weight, g | Fresh | 33.95 aA | 35.53 aA | 34.73 aA | 0.13 |
Stored | 31.88 bB | 34.00 aA | 33.68 aA | 0.046 | |
Shell weight, g | Fresh | 5.4 aA | 6.15 aA | 5.89 aA | 0.16 |
Stored | 5.2 cA | 5.65 aA | 5.58 abB | 0.004 | |
Shell thickness, mm | Fresh | 0.39 aA | 0.4 aA | 0.42 aA | 0.15 |
Stored | 0.4 aA | 0.42 aA | 0.41 aA | 0.41 |
Parameters | Eggs | Diets | p-Value | ||
---|---|---|---|---|---|
C α | L α | LTP α | |||
α-carotene, µg/g | Fresh | 11.0 bA | 12.26 aA | 12.7 aA | 0.0002 |
Stored | 11.47 abA | 11.66 aA | 12.03 aA | 0.033 | |
β-carotene, µg/g | Fresh | 11.2 bA | 12.3 aA | 12.9 aA | 0.0001 |
Stored | 11.53 aA | 11.71 aA | 12.18 aA | 0.06 | |
β-Cryptoxanthine, µg/g | Fresh | 12.4 bA | 13.81 aA | 14.42 aA | 0.0001 |
Stored | 12.59 aA | 13.11 aA | 13.45 aA | 0.089 | |
Lycopene, µg/g | Fresh | 7.67 bA | 8.42 aA | 8.90 aA | <0.0001 |
Stored | 7.98 bA | 8.09 aA | 8.37 aA | 0.034 | |
Zeaxanthine, µg/g | Fresh | 12.4 bA | 13.81 aA | 14.42 aA | 0.0001 |
Stored | 12.59 aA | 13.11 aA | 13.45 aA | 0.089 | |
Total phenols, mg GAE/g ¥ | Fresh | 1.86 bA | 2.17 aA | 2.16 aA | 0.0034 |
Stored | 1.57 aB | 1.74aB | 1.64 aB | 0.69 | |
Flavonoids, mg CE/g £ | Fresh | 1.92 bA | 1.53 bA | 2.96 aA | 0.0009 |
Stored | 1.50 aA | 1.39 aA | 2.17 aA | 0.38 |
Parameters | Eggs | Diets | p-Value | ||
---|---|---|---|---|---|
C α | L α | LTP α | |||
Antioxidant activity, mg AAE/g § | Fresh | 4.48 bA | 5.07 aA | 5.16 aA | 0.0009 |
Stored | 3.68 aB | 3.89 aB | 3.99 aB | 0.0004 | |
Antioxidant activity, mg GAE/g ¥ | Fresh | 3.14 aA | 4.38 aA | 4.14 aA | 0.11 |
Stored | 1.16 aB | 1.40 aB | 1.58 aB | 0.16 | |
Thiobarbituric acid reactive substances (TBARS), μg MDA/g | Fresh | 0.11 aA | 0.14 aA | 0.15 aA | 0.28 |
Stored | 0.14 bA | 0.24 aA | 0.16 bA | 0.01 |
Parameters | Eggs | Diets | p-Value | ||
---|---|---|---|---|---|
C α | L α | LTP α | |||
RYCF | Fresh | 4.67 cA | 5.65 bA | 8.2 aA | <0.0001 |
Stored | 4.7 cA | 5.4 bA | 7.53 aA | <0.0001 | |
L* | Fresh | 72.65 aA | 71.63 aA | 69.42 bA | <0.0001 |
Stored | 73.32 aA | 72.84 aB | 70.47 bB | 0.003 | |
a* | Fresh | −0.59 bA | 1.19 bA | 6.59 aA | <0.0001 |
Stored | 0.59 bA | 0.53 bB | 6.44 aA | <0.0001 | |
b* | Fresh | 62.81 aA | 64.91 aA | 60.28 aA | 0.1 |
Stored | 64.59 aA | 64.06 aA | 61.22 bA | 0.003 | |
C* | Fresh | 62.85 aA | 64.95 aA | 60.70 aA | 0.15 |
Stored | 64.46 aA | 64.07 aA | 61.58 aA | 0.06 |
Parameters | Eggs | α-Carotene | β-Carotene | β-Cryptoxanthine | Lycopene | Zeaxanthine |
---|---|---|---|---|---|---|
RYCF | Fresh | 0.53 ** | 0.55 ** | 0.52 ** | 0.57 *** | 0.52 ** |
Stored | 0.41 * | 0.39 * | 0.34 * | 0.40 * | 0.34 * | |
L* | Fresh | −0.56 ** | −0.54 ** | −0.47 * | −0.58 *** | −0.47 * |
Stored | −0.09 | −0.29 | −0.24 | −0.09 | −0.24 | |
a* | Fresh | 0.54 ** | 0.52 ** | 0.47 * | 0.57 *** | 0.47 * |
Stored | 0.38 * | 0.37 * | 0.30 | 0.38 * | 0.30 | |
b* | Fresh | −0.12 | −0.17 | −0.018 | −0.13 | 0.018 |
Stored | 0.13 | 0.07 | 0.02 | 0.12 | 0.02 | |
C* | Fresh | −0.10 | −0.15 | 0.003 | −0.115 | 0.003 |
Stored | 0.15 | 0.09 | 0.04 | 0.14 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omri, B.; Alloui, N.; Durazzo, A.; Lucarini, M.; Aiello, A.; Romano, R.; Santini, A.; Abdouli, H. Egg Yolk Antioxidants Profiles: Effect of Diet Supplementation with Linseeds and Tomato-Red Pepper Mixture before and after Storage. Foods 2019, 8, 320. https://doi.org/10.3390/foods8080320
Omri B, Alloui N, Durazzo A, Lucarini M, Aiello A, Romano R, Santini A, Abdouli H. Egg Yolk Antioxidants Profiles: Effect of Diet Supplementation with Linseeds and Tomato-Red Pepper Mixture before and after Storage. Foods. 2019; 8(8):320. https://doi.org/10.3390/foods8080320
Chicago/Turabian StyleOmri, Besma, Nadir Alloui, Alessandra Durazzo, Massimo Lucarini, Alessandra Aiello, Raffaele Romano, Antonello Santini, and Hedi Abdouli. 2019. "Egg Yolk Antioxidants Profiles: Effect of Diet Supplementation with Linseeds and Tomato-Red Pepper Mixture before and after Storage" Foods 8, no. 8: 320. https://doi.org/10.3390/foods8080320
APA StyleOmri, B., Alloui, N., Durazzo, A., Lucarini, M., Aiello, A., Romano, R., Santini, A., & Abdouli, H. (2019). Egg Yolk Antioxidants Profiles: Effect of Diet Supplementation with Linseeds and Tomato-Red Pepper Mixture before and after Storage. Foods, 8(8), 320. https://doi.org/10.3390/foods8080320