Production of Bio-Functional Protein through Revalorization of Apricot Kernel Cake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Protein Extraction
2.3. Functional Properties of Protein Isolate
2.3.1. Protein Solubility
2.3.2. Water and Oil Absorption Capacity
2.3.3. Foaming Capacity and Stability
2.3.4. Preparation and Characterization of Emulsions
2.4. Determination of Amygdalin Content
2.5. α-Glucosidase Inhibitory Potential
2.6. Protein Digestion
2.7. Determination of the Degree of Hydrolysis
2.8. SDS-PAGE
2.9. Determination of Antioxidant Activity
2.9.1. DPPH Radical Scavenging Assay
2.9.2. ABTS Radical Scavenging Activity Assay
2.9.3. Reducing Power
2.10. Assay of ACE-Inhibitory Activity
2.11. Statistical Analysis
3. Results
3.1. Proximate Composition and Amygdalin Content
3.2. Functional Properties of Protein Isolate
3.3. A-Glucosidase Inhibitory Activity
3.4. Digestibility of Protein Isolates
3.5. Antioxidant Capacity of Digested PIs
3.6. ACE Inhibitory Capacity of Digested PIs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat.com (accessed on 30 July 2019).
- Pavlović, N.; Vidović, S.; Vladić, J.; Popović, L.; Moslovac, T.; Jakobović, S.; Jokić, S. Recovery of tocopherols, amygdalin, and fatty acids from apricot kernel oil: Cold pressing versus supercritical carbon dioxide. Eur. J. Lipid Sci. Technol. 2018, 120, 1800043. [Google Scholar]
- Özkal, S.G.; Yener, M.E.; Bayındırh, L. The solubility of apricot kernel oil in supercritical carbon dioxide. Int. J. Food Sci. Technol. 2006, 41, 399–404. [Google Scholar] [CrossRef]
- Alpaslan, M.; Hayta, M. Apricot kernel: Physical and chemical properties. J. Am. Oil Chem. Soc. 2006, 83, 469–471. [Google Scholar]
- Garcia, M.C.; González-Garcia, E.; Vásquez-Villanueva, R.; Marina, M.L. Apricot and other seed stones: Amygdalin content and the potential to obtain antioxidant, angiotensin I converting enzyme inhibitor and hypocholesterolemic peptides. Food Funct. 2016, 7, 4693–4701. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosenbrough, N.J.; Fair, A.L.; Randall, R.J. Protein measurement with the Folin-phenol reagents. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Rodsamran, P.; Sothornvit, R. Physicochemical and functional properties of protein concentrate from by-product of coconut processing. Food Chem. 2018, 241, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Bučko, S.; Katona, J.; Popović, L.; Vaštag, Ž.; Petrović, L.; Vučinić-Vasić, M. Investigation on solubility, interfacial and emulsifying properties of pumpkin (Cucurbitapepo) seed protein isolate. LWT Food Sci. Technol. 2015, 64, 609–615. [Google Scholar] [CrossRef]
- Bolarinwa, F.I.; Orfilaa, C.; Morgana, M.R.A. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef][Green Version]
- Chan, H.H.; Sun, H.D.; Reddy, M.V.B.; Wu, T.S. Potent α-glucosidase inhibitors from the roots of Panaxjaponicus C. A. Meyer var. major. Phytochemistry 2010, 71, 1360–1364. [Google Scholar] [CrossRef]
- Popović, L.; Peričin, D.; Vaštag, Ž.; Popović, S.; Krimer, V.; Torbica, A. Antioxidative and Functional Properties of Pumpkin Oil Cake Globulin Hydrolysates. J. Am. Oil Chem. Soc. 2013, 90, 1157–1165. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.J.; Jimenéz-Pérez, S. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 2001, 72, 119–125. [Google Scholar] [CrossRef][Green Version]
- Yoshie-Stark, Y.; Bez, J.; Wada, Y.; Wäsche, A. Functional properties, lipoxygenase activity, and health aspects of lupinusalbus protein isolates. J. Agric. Food Chem. 2004, 52, 7681–7689. [Google Scholar] [CrossRef] [PubMed]
- Hallabo, S.A.S.; Wakei-El, F.A.; Morsi, M.K.S. Chemical and physical properties of apricot kernels, apricot kernel oil and almond kernel oil. Egypt. J. Food Sci. 1997, 3, 1–6. [Google Scholar]
- Sharma, P.C.; Tilakratne, B.M.K.S.; Gupta, A. Utilization of wild apricot kernel press cake for extraction of protein isolate. J. Food Sci. Technol. 2010, 47, 682–685. [Google Scholar] [CrossRef][Green Version]
- Ma, M.; Ren, Y.; Xie, W.; Zhou, D.; Tang, S.; Kuang, M.; Wang, S.; Du, S. Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem. 2018, 240, 856–862. [Google Scholar] [CrossRef]
- Matsui, T.; Yoshimoto, C.; Osajima, K.; Oki, T.; Osajima, Y. In vitro survey of α-glucosidase inhibitory food components. Biosci. Biotechnol. Biochem. 1996, 60, 2019–2022. [Google Scholar] [CrossRef]
- Garcia, M.C.; Endermann, J.; González-Garcia, E.; Marina, M.L. HPLC-Q-TOF-MS Identification of antioxidant and antihypertensive peptides recovered from cherry (Prunuscerasus L.) subproducts. J. Agric. Food Chem. 2015, 63, 1514–1520. [Google Scholar] [CrossRef]
- Sze-Tao, K.W.C.; Sathe, S.K. Functional properties and in vitro digestibility of almond (Prunusdulcis L.) protein isolate. Food Chem. 2000, 69, 153–160. [Google Scholar] [CrossRef]
- Zheng, L.; Su, G.W.; Ren, J.Y.; Gu, L.J.; You, L.J.; Zhao, M.M. Isolation and characterization of an oxygen radical absorbance activity peptide from defatted peanut meal hydrolysate and its antioxidant properties. J. Agric. Food Chem. 2012, 60, 5431–5437. [Google Scholar] [CrossRef]
- Vaštag, Ž.; Popović, L.; Popović, S.; Krimer, V.; Peričin, D. Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate. Food Chem. 2011, 124, 1316–1321. [Google Scholar] [CrossRef]
Composition | CP | SFE |
---|---|---|
Moisture (%) | 8.90 ± 0.10 | 6.25 ± 0.03 |
Crude fiber (%) | 8.94 ± 0.40 | 8.06 ± 0.19 |
Crude lipids (%) | 22.04 ± 0.23 | 6.37 ± 0.54 |
Total carbohydrate (%) | 15.07 ± 0.01 | 23.23 ± 0.06 |
Reducing sugars (%) | 6.30 ± 0.01 | 6.72 ± 0.02 |
Crude protein (%) | 42.31 ± 0.53 | 43.43 ± 0.80 |
Protein content in isolates (%) | 83.94 ± 0.71 | 70.68 ± 0.18 |
Amygdalin content in isolates (mg/g PI) | 0.0046 ± 0.0002 | <LOD |
Functional properties | ||
Water absorption capacity (g/g PI) | 0.53 ± 0.06 | 0.65 ± 0.033 |
Oil absorption capacity (g/g PI) | 0.67± 0.05 | 0.91 ± 0.054 |
Foaming capacity (%) | 53.33 ± 0.6 | 46.67 ± 0.7 |
Foaming stability (%) | 45.33 ± 0.8 | 44.67 ± 0.4 |
Emulsion’s mean droplet diameter (µm) | 3.29 ± 0.1 | 3.38 ± 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čakarević, J.; Vidović, S.; Vladić, J.; Gavarić, A.; Jokić, S.; Pavlović, N.; Blažić, M.; Popović, L. Production of Bio-Functional Protein through Revalorization of Apricot Kernel Cake. Foods 2019, 8, 318. https://doi.org/10.3390/foods8080318
Čakarević J, Vidović S, Vladić J, Gavarić A, Jokić S, Pavlović N, Blažić M, Popović L. Production of Bio-Functional Protein through Revalorization of Apricot Kernel Cake. Foods. 2019; 8(8):318. https://doi.org/10.3390/foods8080318
Chicago/Turabian StyleČakarević, Jelena, Senka Vidović, Jelena Vladić, Aleksandra Gavarić, Stela Jokić, Nika Pavlović, Marijana Blažić, and Ljiljana Popović. 2019. "Production of Bio-Functional Protein through Revalorization of Apricot Kernel Cake" Foods 8, no. 8: 318. https://doi.org/10.3390/foods8080318