Effects of Infrared Radiation on Eggplant (Solanum melongena L.) Greenhouse Cultivation and Fruits’ Phenolic Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Standards and Solvents
2.2. Greenhouse Experimental Setup
2.3. Extraction Procedure
2.4. Spectrophotometric Studies
2.4.1. Total Phenolic Content (TPC) Assay
2.4.2. Scavenging Activity on ABTS+ Radical
2.4.3. Ferric Reducing/Antioxidant Power Assay (FRAP)
2.5. Statistical Analysis
2.6. LC-MS Phenolic Profile
2.6.1. Instrumentation
2.6.2. Chromatographic Conditions
2.6.3. Mass Spectrometry Analysis
3. Results and Discussion
3.1. Temperature Results
3.2. Cultivation Results
3.3. Total Phenolic Content (TPC) Antiradical and Antioxidant Activity of Eggplant’ Fruits
3.4. Characterization of Phenolic Profile of Eggplant Fruits’ Extracts by LC-MS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaushık, G.; Chel, A. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar]
- De Pascale, S.; Maggio, A. Sustainable protected cultivation at a Mediterranean climate. Perspectives and challenges. Acta Hortic. 2004, 691, 29–42. [Google Scholar]
- Perdigones, A.; García, J.L.; Pastor, M.; Benavente, R.M.; Luna, L.; Chaya, C.; de la Plaza, S. Effect οf heating control strategies on greenhouse energy efficiency: Experimental results and modelling. Trans. ASABE 2006, 49, 143–155. [Google Scholar] [CrossRef]
- Teitel, M.; Segal, L.; Shklyar, A.; Barak, M. A comparison between pipe and air heating methods for greenhouses. J. Agric. Eng. Res. 1999, 72, 259–273. [Google Scholar] [CrossRef]
- Kavga, A.; Panidis, T.; Bontozoglou, V.; Pantelakis, S. Infrared heating of greenhouses revisited: An experimental and modeling study. Trans. ASABE 2009, 52, 1–11. [Google Scholar] [CrossRef]
- Kavga, A.; Alexopoulos, G.; Bontozoglou, B.; Pantelakis, S.; Panidis, T.H. Experimental Investigation of the Energy Needs for a Conventionally and an Infrared-Heated Greenhouse. Adv. Mech. Eng. 2012, 4, 789515. [Google Scholar] [CrossRef]
- Kavga, A.; Panidis, T.H. Assessment of Infrared Heating Benefits in a Production Greenhouse. Appl. Eng. Agric. 2015, 31, 143–151. [Google Scholar]
- Teitel, M.; Shklyar, A.; Elad, Y.; Dikhtyar, V.; Jerby, E. Development of a microwave system for greenhouse heating. Acta Hortic. 2000, 534, 189–196. [Google Scholar] [CrossRef]
- Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 2018, 268, 602–610. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Urías-Orona, V.; Muy-Rangel, M.D.; Heredia, J.B. Structure and content of phenolics in eggplant (Solanum melongena)—A review. S. Afr. J. Bot. 2017, 111, 161–169. [Google Scholar] [CrossRef]
- Salerno, L.; Modica, M.N.; Pittalà, V.; Romeo, G.; Siracusa, M.A.; Di Giacomo, C.; Sorrenti, V.; Acquaviva, R. Antioxidant activity and phenolic content of microwave-assisted Solanum melongena extracts. Sci. World J. 2014, 2014, 719486. [Google Scholar] [CrossRef] [PubMed]
- Kavga, A.; Strati, I.F.; Sinanoglou, V.J.; Fotakis, C.; Sotiroudis, G.; Christodoulou, P.; Zoumpoulakis, P. Evaluating the experimental cultivation of peppers in low-energy-demand greenhouses. An interdisciplinary study. J. Sci. Food Agric. 2019, 99, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Andreou, V.; Strati, I.F.; Fotakis, C.; Liouni, M.; Zoumpoulakis, P.; Sinanoglou, V.J. Herbal distillates: A new era of grape marc distillates with enriched antioxidant profile. Food Chem. 2018, 253, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.G.; Glamočlija, J.; Ćirić, A.; Soković, M.; Heropoulos, G.; Proestos, C. Antiradical–antimicrobial activity and phenolic profile of pomegranate (Punica granatum L.) juices from different cultivars: A comparative study. RSC Adv. 2015, 5, 2602–2614. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.; Proestos, C. Characterization of the antioxidant and antiradical activity of pomegranate (Punica granatum L.) extracts. Anal. Lett. 2016, 49, 969–978. [Google Scholar] [CrossRef]
- Hanson, P.M.; Yang, R.Y.; Tsou, S.C.S.; Ledesma, D.; Engle, L.; Lee, T.C. Diversity on eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. J. Food Compos. Anal. 2006, 19, 594–600. [Google Scholar] [CrossRef]
- Raigón, M.D.; Prohens, J.; Muñoz-Falcón, J.E.; Nuez, F. Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. J. Food Compos. Anal. 2008, 21, 370–376. [Google Scholar] [CrossRef]
- Niño-Medina, G.; Muy-Rangel, D.; Gardea-Béjar, A.; González-Aguilar, G.; Heredia, B.; Baéz-Sañudo, M.; Siller-Cepeda, J.; Velez-De La Rocha, R. Nutritional and nutraceutical components of commercial eggplant types grown in Sinaloa, Mexico. Not. Bot. Horti Agrobot. Cluj Napoca 2014, 42, 538–544. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 32, 637–646. [Google Scholar] [CrossRef]
- García-Salas, P.; Gómez-Caravaca, A.M.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Identification and quantification of phenolic compounds in diverse cultivars of eggplant grown in different seasons by high-performance liquid chromatography coupled to diode array detector and electrospray quadrupole-time of flight-mass spectrometry. Food Res. Int. 2014, 57, 114–122. [Google Scholar] [CrossRef]
- Chumyam, A.; Whangchai, K.; Jungklang, J.; Faiyue, B.; Saengnil, K. Effects of heat treatments on antioxidant capacity and total phenolic content of four cultivars of purple skin eggplants. Sci. Asia 2013, 39, 246–251. [Google Scholar] [CrossRef]
- Okmen, B.; Sigva, H.O.; Mutlu, S.; Doganlar, S.; Yemenicioglu, A.; Frary, A. Total antioxidant activity and total phenolic contents in different Turkish eggplant (Solanum melongena L.) cultivars. Int. J. Food Prop. 2009, 12, 616–624. [Google Scholar] [CrossRef]
- Plazas, M.; Lopez-Gresa, M.P.; Vilanova, S.; Torres, C.; Hurtado, M.; Gramazio, P.; Prohens, J. Diversity and relationships in key traits for functional and apparent quality in a collection of eggplant: Fruit phenolics content, antioxidant activity, polyphenol oxidase activity, and browning. J. Agric. Food Chem. 2013, 61, 8871–8879. [Google Scholar] [CrossRef]
- Chang, C.C.; Lien, Y.C.; Liu, K.C.C.; Lee, S.S. Lignans from Phyllanthus urinaria. Phytochemistry 2003, 63, 825–833. [Google Scholar] [CrossRef]
- Wang, X.; Perumalsamy, H.; Kwon, H.W.; Na, Y.E.; Ahn, Y.J. Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer’s disease. Sci. Rep. 2015, 5, 16127. [Google Scholar] [CrossRef]
- Olennikov, D.; Chirikova, N.; Okhlopkova, Z.; Zulfugarov, I. Chemical composition and antioxidant activity of Tánara Ótó (Dracocephalum palmatum Stephan), a medicinal plant used by the North-Yakutian nomads. Molecules 2013, 18, 14105–14121. [Google Scholar] [CrossRef]
- Li, J.; Zhou, B.; Li, C.; Chen, Q.; Wang, Y.; Li, Z.; Yang, Z. Lariciresinol-4-O-β-D-glucopyranoside from the root of Isatis indigotica inhibits influenza A virus-induced pro-inflammatory response. J. Ethnopharmacol. 2015, 174, 379–386. [Google Scholar] [CrossRef]
- Liu, D.; Deng, J.; Joshi, S.; Liu, P.; Zhang, C.; Yu, Y.; Zhang, R.; Fan, D.; Yang, H.; D′Souza, D.H. Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiol. 2018, 76, 346–353. [Google Scholar] [CrossRef]
- Singh, A.P.; Wang, Y.; Olson, R.M.; Luthria, D.; Banuelos, G.S.; Pasakdee, S.; Vorsa, N.; Wilson, T. LC-MS-MS Analysis and the Antioxidant Activity of Flavonoids from Eggplant Skins Grown in Organic and Conventional Environments. Food Nutr. Sci. 2017, 8, 873–888. [Google Scholar] [CrossRef]
- Mokhtar, M.; Soukup, J.; Donato, P.; Cacciola, F.; Dugo, P.; Riazi, A.; Jandera, P.; Mondello, L. Determination of the polyphenolic content of a Capsicum annuum L. extract by liquid chromatography coupled to photodiode array and mass spectrometry detection and evaluation of its biological activity. J. Sep. Sci. 2015, 38, 171–178. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Tsiaka, T.; Proestos, C.; Zoumpoulakis, P. Total phenolic content, antioxidant capacity and phytochemical profiling of grape and pomegranate wines. RSC Adv. 2015, 5, 101683–101692. [Google Scholar] [CrossRef]
- Bouhafsoun, A.; Yilmaz, M.A.; Boukeloua, A.; Temel, H.; Harche, M.K. Simultaneous quantification of phenolic acids and flavonoids in Chamaerops humilis L. using LC–ESI-MS/MS. Food Sci. Technol. 2018, 38, 242–247. [Google Scholar] [CrossRef]
- Morales-Soto, A.; Gómez-Caravaca, A.M.; García-Salas, P.; Segura-Carretero, A.; Fernández-Gutiérrez, A. High-performance liquid chromatography coupled to diode array and electrospray time-of-flight mass spectrometry detectors for a comprehensive characterization of phenolic and other polar compounds in three pepper (Capsicum annuum L.) samples. Food Res. Int. 2013, 51, 977–984. [Google Scholar] [CrossRef]
- Sentandreu, E.; Cerdán-Calero, M.; Sendra, J.M. Phenolic profile characterization of pomegranate (Punica granatum) juice by high-performance liquid chromatography with diode array detection coupled to an electrospray ion trap mass analyzer. J. Food Compos. Anal. 2013, 30, 32–40. [Google Scholar] [CrossRef]
- Kivilompolo, M.; Obůrka, V.; Hyötyläinen, T. Comparison of GC–MS and LC–MS methods for the analysis of antioxidant phenolic acids in herbs. Anal. Bioanal. Chem. 2007, 388, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F.; Leng, J.; Xu, Y.M.; Feng, M.L. Identification and determination of major constituents in a traditional Chinese medicine compound recipe Xiong dankaiming tablet using HPLC-PDA/ESI-MS n and HPLC-UV/ELSD. J. Zhejiang Univ. Sci. B 2013, 14, 604–614. [Google Scholar] [CrossRef] [Green Version]
- Ağalar, H.G.; Çiftçi, G.A.; Göger, F.; Kırımer, N. Activity Guided Fractionation of Arum italicum Miller Tubers and the LC/MS-MS Profiles. Rec. Nat. Prod. 2018, 12, 64–75. [Google Scholar] [CrossRef]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Vallverdú-Queralt, A.; Jáuregui, O.; Di Lecce, G.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Screening of the polyphenol content of tomato-based products through accurate-mass spectrometry (HPLC–ESI-QTOF). Food Chem. 2011, 129, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.Y.; Jin, J.S.; Cho, Y.A.; Lee, J.H.; Park, S.; Jeong, S.W.; Kim, Y.-H.; Lim, C.-S.; Abd El-Aty, A.M.; Kim, G.-S.; et al. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. J. Sep. Sci. 2011, 34, 2967–2974. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liang, Y.; Peng, C.; Xie, H.; Pan, M.; Zhang, T.; Ito, Y. Preparative Isolation and Purification of Chemical Constituents of Belamcanda by MPLC, HSCCC, and prep-HPLC. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 241–257. [Google Scholar] [CrossRef]
- Koley, T.K.; Khan, Z.; Oulkar, D.; Singh, B.K.; Maurya, A.; Singh, B.; Banerjee, K. High resolution LC-MS characterization of phenolic compounds and the evaluation of antioxidant properties of a tropical purple radish genotype. Arab. J. Chem. 2017. [Google Scholar] [CrossRef]
- Hofmann, T.; Nebehaj, E.; Albert, L. Antioxidant properties and detailed polyphenol profiling of European hornbeam (Carpinus betulus L.) leaves by multiple antioxidant capacity assays and high-performance liquid chromatography/multistage electrospray mass spectrometry. Ind. Crop Prod. 2016, 87, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Simirgiotis, M.; Quispe, C.; Areche, C.; Sepúlveda, B. Phenolic compounds in Chilean Mistletoe (Quintral, Tristerix tetrandus) analyzed by UHPLC–Q/Orbitrap/MS/MS and its antioxidant properties. Molecules 2016, 21, 245. [Google Scholar] [CrossRef] [Green Version]
No | RT (min) | Compound (Tentative Identification) | [M−H]− | MS2 [M−H]− | IR Heated Greenhouse | Conventionally Heated Greenhouse | References |
---|---|---|---|---|---|---|---|
1 | 0.484 | Caffeic acid-hexoside | 341 | 179, 161, 135 | + | + | [31,32] |
2 | 0.542 | Quinic acid | 191 | 173, 129, 111, 93, 85 | + | + | [33,34] |
3 | 0.803 | l-malic acid | 133 | 115, 87, 71 | + | + | [35] |
4 | 0.987 | Chlorogenic acid | 353 | 191, 179, 161, 135, 93 | + | + | [36] |
5 | 1.057 | Myricetin-3-O-glucoside | 479 | 354, 317, 191, 179 | + | + | [14] |
6 | 1.512 | Isochlorogenic acid | 515 | 408, 395, 353, 191, 179 | + | + | [37] |
7 | 1.691 | p-Hydroxybenzoic acid | 137 | 109, 93 | + | + | [38,39] |
8 | 2.035 | Catechin hexoside | 451 | 289, 245, 179, 167 | + | + | [40] |
9 | 3.196 | Dihydroxycinnamoyl amide | 470 | 334, 309, 191, 179, 135 | + | + | [30] |
10 | 3.556 | Feruloylquinic acid | 367 | 279, 193, 191, 173 | + | + | [41] |
11 | 3.607 | N1,N4-Dicaffeoyl spermidine | 468 | 332, 306, 291, 276, 161 | + | [30,40] | |
12 | 3.662 | 5-O-caffeoylshikimic acid | 335 | 179, 173, 161, 135, 93 | + | + | [42] |
13 | 3.709 | Ellagic acid-hexoside | 463 | 301, 300, 257 | + | [14] | |
14 | 3.942 | 3-acetyl-5-caffeoylquinic acid | 395 | 353, 233, 191, 179 | + | [30] | |
15 | 3.957 | Rutin (Quercetin O-rhamnosyl-O-hexoside) | 609 | 463, 343, 301, 285 | + | [43] | |
16 | 3.999 | Lariciresinol glucopyranoside | 521 | 359, 341, 329, 187, 160 | + | [44] | |
17 | 4.021 | 6-Prenyl-naringenin | 340 | 323 | + | + | [45] |
18 | 4.167 | Dihydrokaempferol-hexoside | 449 | 431, 287 | + | [14] | |
19 | 4.533 | Gallic acid monohydrate | 187 | 169, 125, 97 | + | + | [38,40] |
20 | 5.584 | Caffeic acid | 179 | 135, 91 | + | + | [14,38,39] |
21 | 5.682 | Dimeric procyanidin | 577 | 451, 425, 289, 202 | + | [14,39] | |
22 | 6.320 | Epigallocatechin or Gallocatechin | 305 | 261, 219, 191, 179, 125 | + | [39] | |
23 | 6.497 | Brevifolin carboxylic acid | 291 | 247, 203 | + | + | [14,35] |
24 | 6.598 | Galloyl hexoside | 331 | 211, 169, 151, 125 | + | + | [46] |
25 | 6.626 | Vanillic acid-4-O-hexoside | 329 | 293, 284, 269, 209, 181, 167 | + | + | [14,34] |
26 | 6.741 | Dihydrokaempferol | 287 | 269, 259, 243, 201, 125 | + | [40] | |
27 | 6.843 | Cosmosiin | 431 | 271, 225, 153, 125 | + | + | [37] |
28 | 6.984 | Trihydroxy-octadecadienoic acid isomer | 327 | 206 | + | [42] | |
29 | 7.151 | 1-O-Caffeoyl-2-O-glucosylglycerol | 415 | 253, 179, 161, 135 | + | [40] | |
30 | 8.029 | Quercetin 3,7-di-O-α-l-rhamnopyranoside | 593 | 498, 432, 414, 316, 278, 241, 224, 153 | + | + | [34] |
31 | 8.447 | p-hydroxy benzoic acid hexoside | 299 | 255, 162 | + | [34] | |
32 | 8.799 | Naringenin | 271 | 254, 226, 177, 151 | + | + | [39,47] |
33 | 9.540 | Ferulic acid-hexoside | 355 | 265, 217, 193, 175 | + | [14,43] | |
34 | 10.365 | Acacetin | 283 | 270, 242 | + | + | [37] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinanoglou, V.J.; Kavga, A.; Strati, I.F.; Sotiroudis, G.; Lantzouraki, D.; Zoumpoulakis, P. Effects of Infrared Radiation on Eggplant (Solanum melongena L.) Greenhouse Cultivation and Fruits’ Phenolic Profile. Foods 2019, 8, 630. https://doi.org/10.3390/foods8120630
Sinanoglou VJ, Kavga A, Strati IF, Sotiroudis G, Lantzouraki D, Zoumpoulakis P. Effects of Infrared Radiation on Eggplant (Solanum melongena L.) Greenhouse Cultivation and Fruits’ Phenolic Profile. Foods. 2019; 8(12):630. https://doi.org/10.3390/foods8120630
Chicago/Turabian StyleSinanoglou, Vassilia J., Angeliki Kavga, Irini F. Strati, Georgios Sotiroudis, Dimitra Lantzouraki, and Panagiotis Zoumpoulakis. 2019. "Effects of Infrared Radiation on Eggplant (Solanum melongena L.) Greenhouse Cultivation and Fruits’ Phenolic Profile" Foods 8, no. 12: 630. https://doi.org/10.3390/foods8120630
APA StyleSinanoglou, V. J., Kavga, A., Strati, I. F., Sotiroudis, G., Lantzouraki, D., & Zoumpoulakis, P. (2019). Effects of Infrared Radiation on Eggplant (Solanum melongena L.) Greenhouse Cultivation and Fruits’ Phenolic Profile. Foods, 8(12), 630. https://doi.org/10.3390/foods8120630