Microalgae Nutraceuticals
Abstract
:1. Introduction
- (a)
- Quality control, a problem involving the whole food supplements market.
- (b)
- The specificity of use and claim, since the derived products in food supplements are still not sufficiently tailored in terms of possible utilization.
- (c)
- The real need of microalgae for mankind, in particular as nutraceuticals.
2. The Evolution of Food Supplements
3. Aquatic Autotrophics
4. Cyanobacteria in Nutraceuticals
5. Spiralated Cianobacteria
5.1. Spirulina
6. Algae in Environmental Niches
6.1. Alga Klamath
6.2. Chlorella
7. Quality Control in Microalgae
8. The Importance of Microalgae in Food Supplements
9. Conclusions
Conflicts of Interest
References
- Food and Agriculture Organization. FAO Statistical Yearbook 2012; FAO: Rome, Italy, 2013. [Google Scholar]
- Food and Agriculture Organization; International Fund for Agricultural Development; World Food Program. The State of Food Insecurity in the World 2014. Strengthening the Enabling Environment for Food Security and Nutrition; FAO: Rome, Italy, 2015. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed]
- James, R. Obesity, Prevention and Treatment; Book News, Inc.: Portland, OR, USA, 2012. [Google Scholar]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Zeisel, S.H. Regulation of “nutraceuticals”. Science 1999, 285, 1853–1855. [Google Scholar] [CrossRef] [PubMed]
- SANCO. Directorate General European Commission the Use of Substances with Nutritional Effect Other than Vitamins and Minerals in Food Supplements; Study undertaken for European Advisory Services (EAS); SANCO: Brussel, Belgium, 2007. [Google Scholar]
- Kalra, E.K. Nutraceutical–definition and introduction. AAPS PharmSci. 2003, 5, E25. [Google Scholar] [CrossRef] [PubMed]
- Eskin, N.A.M.; Tamir, S. Dictionary of Nutraceuticals and Functional Foods; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Nicoletti, M. Nutraceuticals and botanicals: Overview and perspectives. Int. J. Food Sci. Nutr. 2012, 63, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, A.; Sivagnanam, G.; Xavier, R. Nutraceuticals as therapeutic agents: A review. Res. J. Pharm. Technol. 2008, 1, 328–340. [Google Scholar]
- Nicoletti, M. Nutraceuticals and botanicals appeal for new analytical solutions. J. Chromatogr. Sep. Tech. 2012, 3, e103. [Google Scholar] [CrossRef]
- Hardy, G. Nutraceuticals and functional foods: Introduction and meaning. Nutrition 2000, 16, 688–689. [Google Scholar] [CrossRef]
- El Schaimy, E. Functional foods and nutraceuticals—Modern approach. World Appl. Sci. J. 2012, 20, 691–708. [Google Scholar]
- Christaki, E.; Florou-Paneri, P.; Bonos, E. Microalgae: A novel ingredient in nutrition. Int. J. Food Sci. Nutr. 2011, 62, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Tramroy, P. Microalgae Market Outlook Report Website. CBDM.T—Market and Business Intelligence. 2011. Available online: http://www.microalgae-market.com/ (accessed on 24 August 2011).
- Benkouider, C. The world’s emerging markets. Funct. Foods Nutraceuticals 2005, 44, 8–11. [Google Scholar]
- Bishop, W.M.; Zubeck, H.M. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J. Nutr. Food Sci. 2012, 2, 147. [Google Scholar] [CrossRef]
- Lunn, J. Superfoods. Nutr. Bull. 2006, 31, 171–172. [Google Scholar] [CrossRef]
- Nadis, S. The cells that rule the seas. Sci. Am. 2013, 289, 52–53. [Google Scholar] [CrossRef]
- Guiry, M.D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ponnuswamy, I.; Madhavan, S.; Shabudeen, S. Isolation and Characterization of Green Microalgae for Carbon Sequestration, Waste Water Treatment and Bio-fuel Production. Int. J. BioSci. BioTechnol. 2013, 5, 17–23. [Google Scholar]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A.; Joannis-Cassan, D.; Isambert, I. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintana, N.; Van der Kooy, F.; Van de Rhee, M.D.; Voshol, G.P.; Verpoorte, R. Renewable energy from Cyanobacteria: Energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 2011, 91, 471–490. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2008, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Komárek, J.; Kaštovský, J.; Mareš, J.; Johansen, J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 2014, 86, 295–335. [Google Scholar]
- Singh, N.K.; Dolly, W.D. phylogenetic relatedness among spirulina and related cyanobacterial genera. World J. Microbiol. Biotechnol. 2011, 27, 941–951. [Google Scholar] [CrossRef]
- Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551–578. [Google Scholar] [PubMed]
- Campanella, L.; Russo, M.V.; Avino, P. Free and total amino acid composition in blue-green algae. Ann. Chim. 2002, 92, 343–352. [Google Scholar] [PubMed]
- Habib, M.A.B.; Parvin, M.; Huntington, T.C.; Hasan, M.R. A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Nyenje, M.E.; Ndip, R.K. The Challenges of foodborne pathogens and antimicrobial chemotherapy: A global perspective. Afric. J. Microb. 2013, 7, 1158–1172. [Google Scholar]
- Del Castillo, B. The Discovery and Conquest of Mexico, 1517–1521; Routledge: London, UK, 1928; p. 300. [Google Scholar]
- Capelli, B.; Cysewski, G.R. Potential Health Benefits of Spirulina Microalgae: A Review of the Existing Literature; Cyanotech Corporation: Kailua-Kona, HI, USA, 2010. [Google Scholar]
- Juarez-Oropeza, M.A.; Mascher, D.; Torres-Durán, P.V.; Farias, J.M.; Paredes-Carbajal, M.C. Effects of Spirulina on vascular reactivity. J. Med. Food 2009, 12, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Hirahashi, T.; Matsumoto, M.; Hazeki, K.; Saeki, Y.; Ui, M.; Seya, T. Activation of the human innate immune system by Spirulina: Augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. Immunopharmacol. 2002, 2, 423–434. [Google Scholar] [CrossRef]
- Ku, C.S.; Pham, T.X.; Park, Y.; Kim, B.; Shin, M.; Kang, I.; Lee, J. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes. Biochim. Biophys. Acta 2013, 1830, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Mišurcová, L.; Škrovánková, S.A.; Samek, D.A.; Ambrožová, J.; Machů, L. Health benefits of algal polysaccharides in human nutrition. Adv. Food Nutr. Res. 2012, 6, 75–145. [Google Scholar]
- Mosulishvili, L.M.; Kirkesali, E.I.; Beiokobylsky, A.I.; Khizanishvili, A.I. Experimental substantion of the possibility of developing selenium and iodine containing pharmaceuticals based on blue-green algae spirulina platensis. J. Pharm. Biomed. Anal. 2012, 30, 87–97. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Drapeau, C.; Anderson, D.M. Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. variflos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. J. Appl. Phycol. 2000, 12, 585–595. [Google Scholar]
- Saker, M.L.; Jungblut, A.-D.; Neilan, B.A.; Rawn, D.F.K.; Vasconcelos, V.M. Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 2005, 46, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Bertoldi, F.C.; Sant’anna, E.; Oliveira, J.L.B. Chlorophyll content and mineral profile in the microalgae Chlorella vulgaris cultivated in hydroponic wastewater. Cienc. Rural 2008, 38, 54–58. [Google Scholar] [CrossRef]
- Shoaf, W.T.; Lium, B.W. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol. Oceanogr. 1976, 21, 926–928. [Google Scholar] [CrossRef]
- Chia, M.A.; Lombardi, A.T.; Melao, M.D.A. Growth and biochemical composition of Chlorella vulgaris in different growth media. An. Acad. Bras. Ciênc. 2013, 85, 1428–1437. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, V.M.; Wiegand, C.; Pflugmacher, S. Dynamics of glutathione-S-transferases in Mytilus galloprovincialis exposed to toxic Microcystis aeruginosa cells, extracts and pure toxins. Toxicon 2007, 50, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.R.; Tracy, J.K.; Grattan, L.M. A critical review of the Pfiesteria hysteria hypothesis. Md. Med. J. 1998, 47, 133–136. [Google Scholar] [PubMed]
- Collier, D.N.; Burke, W.A. Pfiesteria complex organisms and human illness. South. Med. J. 2002, 95, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Lembeye, G. Harmful algal blooms in the austral Chilean channels and fjords. In Progress in the Oceanographic Knowledge of Chilean Interior Waters, from Puerto Mont to Cape Horn; Silva, N., Palma, S., Eds.; Comité Oceanográfico Nacional—Pontificia Universidad Católica de Valparaíso: Valparaíso, Chile, 2008; pp. 99–103. [Google Scholar]
- Anderson, D.M.; Garrison, D.J. The ecology and oceanography of harmful algal blooms. Limnol. Oceanogr. 1997, 42, 1009–1305. [Google Scholar] [CrossRef]
- Roelke, D.; Buyukates, Y. The diversity of harmful algal bloom-triggering mechanisms and the complexity of bloom initiation. Hum. Ecol. Risk Assess. 2001, 7, 1347–1362. [Google Scholar] [CrossRef]
- Craig, W.J. Health effects of vegan diets. Am. J. Clin. Nutr. 2009, 68, 1627S–1638S. [Google Scholar] [CrossRef] [PubMed]
- Francione, G. Animal Welfare, Happy Meat and Veganism as the Moral Baseline in David M. Kaplan; The Philosophy of Food, University of California Press: Berkeley, CA, USA, 2012; pp. 169–189. [Google Scholar]
- Appleby, P.N. The Oxford vegetarian study: An overview. Am. J. Clin. Nutr. 1999, 70, 525S–531S. [Google Scholar] [PubMed]
- Elorinne, A.L.; Alfthan, G.; Erlund, I.; Kivimaki, H.; Paju, A.; Salminen, I.; Turpeinen, U.; Voutilainen, S.; Laakso, J. Food and nutrient intake and nutritional state of finnish vegans and non-vegans. PLoS ONE 2016, 11, e0148235. [Google Scholar] [CrossRef] [PubMed]
- Chia-Wei, C.; Adams, G.B.; Perin, L.; Wei, M.; Zhou, X.; Lam, B.S.; Da Sacco, S.; Mirisola, M.; Quinn, D.I.; Dorff, T.B.; et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 2014, 14, 810–823. [Google Scholar]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Longo, V.D. Fasting vs. dietary restriction in cellular protection and cancer treatment: From model organisms to patients. Oncogene 2011, 30, 3305–3306. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Raffaghello, L.; Brandhorst, S.; Safdie, F.M.; Bianchi, G.; Martin-Montalvo, A.; Pistoia, V.; Wei, M.; Hwang, S.; Merlino, A.; et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 2012, 4, 124. [Google Scholar] [CrossRef] [PubMed]
- Brandhorst, S.; Choi, I.Y.; Wei, M.; Cheng, C.W.; Sedrakyan, S.; Navarrete, G.; Dubeau, L.; Yap, L.P.; Park, R.; Vinciguerra, M.; et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 2015, 22, 86–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.; Bhadouria, P.; Bisen, P.S. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005, 6, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Kulpys, J.; Paulauskas, E.; Pilipavičius, V.; Stankevičius, R. Influence of cyanobacteria Arthrospira (Spirulina) platensis biomass additive towards the body condition of lactation cows and biochemical milk indexes. Agron. Res. 2009, 7, 823–835. [Google Scholar]
- Heidarpour, A.; Fourouzandeh-Shahraki, A.-D.; Eghbalsaied, S. Effects of Spirulina platensis on performance, digestibility and serum biochemical parameters of Holstein calves. Afr. J. Agric. Res. 2011, 6, 5061–5065. [Google Scholar]
- Watanabe, F.; Katsura, H.; Takenaka, S.; Fujita, T.; Abe, K.; Tamura, Y.; Nakatsuka, T.; Nakano, Y. Pseudovitamin B(12) is the predominant cobamide of an algal health food, spirulina tablets. J. Agric. Food Chem. 1999, 47, 4736–4741. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. (Maywood) 2007, 232, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- American Dietetic Association; Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. J. Am. Diet. Assoc. 2003, 103, 748–765. [Google Scholar]
Prodrug | Active Substances |
---|---|
Glucosinolates | Isothiocyanates |
Alliin | Allicin, ajoenes |
Cumaroylglucoside | Coumarin |
Arbutin | Hydroquinone |
Salicin | Saligenin, salicylic acid |
Bi-desmosidic saponin | Mono-desmosidic saponins |
Ranunculin | Protoanemonin |
THC-A | THC |
Proto-vitamin B12 | Vitamin B12 |
Cyanogenic glucoside | HCN |
Rhein, sennosides | Antraquinonic aglucone |
Hennosides | Lawsone |
Vanilloside | Vanillin |
Gein | Eugenol |
Methylazoxymethanol | Cycasin |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, M. Microalgae Nutraceuticals. Foods 2016, 5, 54. https://doi.org/10.3390/foods5030054
Nicoletti M. Microalgae Nutraceuticals. Foods. 2016; 5(3):54. https://doi.org/10.3390/foods5030054
Chicago/Turabian StyleNicoletti, Marcello. 2016. "Microalgae Nutraceuticals" Foods 5, no. 3: 54. https://doi.org/10.3390/foods5030054
APA StyleNicoletti, M. (2016). Microalgae Nutraceuticals. Foods, 5(3), 54. https://doi.org/10.3390/foods5030054