Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures
Abstract
:1. Introduction
2. Experimental Section
2.1. Pepper Samples
2.2. Packaging and Storage Conditions
2.3. Capsaicin and Dihydrocapsaicin
2.4. Total Carotenoids
2.5. Ascorbic Acid
2.6. Total Phenolic Compounds
2.7. Statistical Analysis
3. Results and Discussion
3.1. Evolution of Capsaicinoids Contents
Source of variation | Degree freedom | Capsaicin | Dihydrocapsaicin | Total carotenoids | Ascorbic acid | Total phenolic compounds |
---|---|---|---|---|---|---|
Hybrid (H) | 2 | 2,537.866 ** | 937.711 ** | 16,090.310 ** | 1,068.297 ** | 13,753.680 ** |
Storage Period (S) | 3 | 87.174 ** | 51.529 ** | 2,306.240 ** | 845.790 ** | 1,064.536 ** |
Packaging (P) | 1 | 4.544 ** | 1.123 * | 78.313 ** | 39.681 ** | 22.633 ** |
Temperature (T) | 2 | 9.435 ** | 6.982 ** | 276.108 ** | 223.127 ** | 143.317 ** |
H × S | 6 | 0.461 * | 0.749 ** | 21.130 ** | 15.002 ** | 62.977 ** |
H × P | 2 | 0.007 NS | 0.020 NS | 5.870 NS | 0.292 NS | 0.176 NS |
H × T | 4 | 0.472 * | 0.127 NS | 10.700 * | 8.648 ** | 4.276 ** |
S × P | 3 | 0.696 ** | 0.226 NS | 13.888 * | 4.884 ** | 3.217 ** |
S × T | 6 | 1.215 ** | 0.874 ** | 76.090 ** | 44.643 ** | 18.147 ** |
P × T | 2 | 0.475 NS | 0.257 NS | 15.352 * | 0.592 NS | 1.139 NS |
H × S × P | 6 | 0.066 NS | 0.031 NS | 1.517 NS | 0.619 NS | 0.214 NS |
H × S × T | 12 | 0.333 * | 0.308 * | 3.909 NS | 3.195 ** | 1.988 ** |
H × P × T | 4 | 0.086 NS | 0.063 NS | 2.204 NS | 1.091 NS | 2.319 * |
S × P × T | 6 | 0.074 NS | 0.076 NS | 4.375 NS | 0.724 NS | 0.403 NS |
H × S × P × T | 12 | 0.039 NS | 0.026 NS | 5.063 NS | 0.615 NS | 0.474 NS |
Error | 144 | 0.171 | 0.166 | 3.693 | 0.622 | 0.781 |
Parameter (mg 100 g−1) | Polyethylene bag | Jute bag | ||||||
---|---|---|---|---|---|---|---|---|
Days | 20 °C | 25 °C | 30 °C | Days | 20 °C | 25 °C | 30 °C | |
Capsaicin | 0 | 26.9 ± 6.0 | 0 | 26.9 ± 6.0 | ||||
50 | 26.0 ± 5.7 | 25.8 ± 6.2 | 25.4 ± 6.1 | 50 | 25.8 ± 5.7 | 25.2 ± 5.9 | 24.9 ± 5.9 | |
100 | 25.2 ± 6.1 | 24.8 ± 6.0 | 24.5 ± 5.5 | 100 | 25.2 ± 6.0 | 24.1 ± 6.1 | 24.1 ± 5.8 | |
150 | 24.5 ± 6.1 | 24.1 ± 5.1 | 23.4 ± 6.0 | 150 | 24.4 ± 6.1 | 23.6 ± 6.0 | 23.1 ± 6.0 | |
▼ | 8.8% | 10.4% | 12.9% | ▼ | 9.2% | 12.2% | 14.0% | |
Dihydrocapsaicin | 0 | 16.6 ± 3.6 | 0 | 16.6 ± 3.6 | ||||
50 | 16.0 ± 3.8 | 15.5 ± 3.7 | 15.0 ± 3.4 | 50 | 15.8 ± 3.8 | 15.2 ± 3.5 | 15.3 ± 3.9 | |
100 | 15.4 ± 3.7 | 15.2 ± 3.7 | 14.4 ± 3.5 | 100 | 15.3 ± 3.5 | 14.6 ± 3.6 | 14.3 ± 3.6 | |
150 | 14.8 ± 3.4 | 14.5 ± 3.9 | 14.0 ± 3.6 | 150 | 14.9 ± 3.1 | 14.1 ± 3.7 | 13.9 ± 4.0 | |
▼ | 11.1% | 12.8% | 15.4% | ▼ | 10.0% | 14.9% | 16.0% | |
Total carotenoids | 0 | 95.5 ± 14.6 | 0 | 95.5 ± 14.6 | ||||
50 | 91.5 ± 14.2 | 89.6 ± 15.0 | 89.4 ± 13.6 | 50 | 90.9 ± 13.8 | 87.9 ± 15.3 | 88.1 ± 12.8 | |
100 | 87.4 ± 15.6 | 86.3 ± 15.4 | 86.7 ± 12.0 | 100 | 87.3 ± 15.1 | 83.9 ± 14.7 | 83.3 ± 15.2 | |
150 | 84.6 ± 15.0 | 80.2 ± 16.6 | 76.2 ± 16.2 | 150 | 84.3 ± 15.0 | 78.5 ± 16.6 | 73.7 ± 15.5 | |
▼ | 11.5% | 16.1% | 20.2% | ▼ | 11.7% | 17.8% | 22.9% | |
Ascorbic acid | 0 | 40.3 ± 4.5 | 0 | 40.3 ± 4.5 | ||||
50 | 38.2 ± 4.4 | 36.1 ± 3.7 | 35.7 ± 4.0 | 50 | 37.1 ± 4.7 | 35.6 ± 4.8 | 34.5 ± 4.1 | |
100 | 35.9 ± 4.4 | 34.6 ± 3.1 | 32.3 ± 2.8 | 100 | 35.3 ± 4.2 | 33.1 ± 3.9 | 31.4 ± 3.3 | |
150 | 35.4 ± 4.7 | 31.4 ± 3.0 | 29.2 ± 1.6 | 150 | 34.3 ± 4.1 | 29.7 ± 2.6 | 26.9 ± 3.1 | |
▼ | 12.2% | 22.1% | 27.6% | ▼ | 14.7% | 26.2% | 33.2% | |
Total phenolic compounds | 0 | 56.2 ± 13.6 | 0 | 56.2 ± 13.6 | ||||
50 | 54.3 ± 13.2 | 52.7 ± 14.2 | 51.7 ± 15.2 | 50 | 53.9 ± 13.6 | 51.9 ± 14.5 | 51.2 ± 14.6 | |
100 | 51.1 ± 13.3 | 49.4 ± 13.5 | 46.9 ± 15.1 | 100 | 50.7 ± 14.4 | 48.1 ± 13.0 | 45.7 ± 14.0 | |
150 | 48.2 ± 12.8 | 46.7 ± 14.2 | 44.6 ± 14.2 | 150 | 47.6 ± 13.9 | 45.5 ± 15.1 | 43.4 ± 13.7 | |
▼ | 14.1% | 16.9% | 20.5% | ▼ | 15.3% | 19.0% | 22.8% |
3.2. Evolution of Total Carotenoids
3.3. Evolution of Ascorbic Acid
3.4. Evolutions of Total Phenolic Compounds
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hervert-Hernandez, D.; Sayago-Ayerdi, S.G.; Goni, I. Bioactive compounds of four hot pepper varieties (Capsicum annuum L.), antioxidant capacity, and intestinal bioaccessibility. J. Agric. Food Chem. 2010, 58, 3399–3406. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.D.; Lee, Y.S.; Cho, J.Y.; Lee, Y.H.; Choi, K.J.; Lee, Y.; Han, T.H.; Lee, S.H.; Park, K.H.; Moon, J.H. Comparison of the content of bioactive substances and the inhibitory effects against rat plasma oxidation of conventional and organic hot peppers (Capsicum annuum L.). J. Agric. Food Chem. 2010, 58, 12300–12306. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nair, M.G. Non-pungent functional food components in the water extracts of hot peppers. Food Chem. 2010, 122, 731–736. [Google Scholar] [CrossRef]
- Daood, H.G.; Kapitany, J.; Biacs, P.; Albrecht, K. Drying temperature, endogenous antioxidants and capsaicinoids affect carotenoid stability in paprika (red pepper spice). J. Sci. Food Agric. 2006, 86, 2450–2457. [Google Scholar] [CrossRef]
- Iqbal, Q.; Amjad, M.; Asi, M.R.; Ariño, A. Characterization of capsaicinoids and antioxidants in hot peppers as influenced by hybrid and harvesting stage. Plant Foods Hum. Nutr. 2013, 68, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Munin, M.; Edwards-Levy, F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Welt, B.A.; Talcott, S.T. The impact of packaging materials on the antioxidant phytochemical stability of aqueous infusions of green tea (Camellia sinensis) and yaupon holly (Ilex vomitoria) during cold storage. J. Agric. Food Chem. 2011, 59, 4676–4683. [Google Scholar] [CrossRef] [PubMed]
- Talcott, S.T.; Howard, L.R.; Brenes, C.H. Antioxidant changes and sensory properties of carrot puree processed with and without periderm tissues. J. Agric. Food Chem. 2000, 48, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, K.; Selselet-Attou, G. Effect of heat treatment on polyphenol oxidase and peroxidase activities in Algerian stored dates. Afr. J. Biotechnol. 2007, 6, 790–794. [Google Scholar]
- Topuz, A.; Ozdemir, F. Influence of gamma radiation and storage on the capsaicinoids of sun-dried and dehydrated paprika. Food Chem. 2004, 86, 509–515. [Google Scholar] [CrossRef]
- Daood, H.G.; Vinkler, M.; Markus, F.; Hebshi, E.A.; Bicas, P.A. Antioxidant vitamin content of spice red pepper (paprika) as affected by technological and varietal factors. Food Chem. 1996, 15, 365–372. [Google Scholar] [CrossRef]
- Kalt, W. Effect of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 2005, 70, 11–19. [Google Scholar] [CrossRef]
- Perez-Galvez, A.; Hornero-Mendez, D.; Minguez-Mosquera, M.I. Stability of paprika without supplementary antioxidants during storage under industrial controlled conditions. J. Agric. Food Chem. 2009, 57, 4718–4723. [Google Scholar] [CrossRef] [PubMed]
- AACC (American Association of Cereal Chemists). Approved Methods of American Association of Cereal Chemists, 5th ed.; American Association for Cereal Chemistry: St. Paul, MN, USA, 2000. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Hill, T.; Lewicki, P. STATISTICS: Methods And Applications; StatSoft: Tulsa, OK, USA, 2007. [Google Scholar]
- Todd, P.H., Jr.; Bensinger, M.G.; Biftu, T. Determination of pungency due to capsicum by gas-liquid chromatography. J. Food Sci. 1977, 42, 660–680. [Google Scholar] [CrossRef]
- Russo, V.M.; Biles, C.L. Fertilizer rate and β-galactosidase and peroxidase activity in pepper fruit at different stages and years of harvest. Plant Foods Hum. Nutr. 2004, 58, 231–239. [Google Scholar] [CrossRef]
- Bae, H.; Jayaprakasha, G.K.; Jifon, J.; Patil, B.S. Variation of antioxidant activity and the levels of bioactive compounds in lipophilic and hydrophilic extracts from hot pepper (Capsicum spp.) cultivars. Food Chem. 2012, 134, 1912–1918. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, M.R.; Ochoa-Alejo, N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci. 2013, 14, 19025–19053. [Google Scholar] [CrossRef] [PubMed]
- Gnayfeed, M.H.; Daood, H.G.; Biacs, P.A.; Alcaraz, C.F. Content of bioactive compounds in pungent spice red pepper (paprika) as affected by ripening and genotype. J. Sci. Food Agric. 2001, 81, 1580–1585. [Google Scholar] [CrossRef]
- Lee, D.S.; Chung, S.K.; Yam, K.L. Carotenoid loss in dried red pepper products. Int J. Food Sci. Tech. 1992, 27, 179–185. [Google Scholar] [CrossRef]
- Schweiggert, U.; Kurz, C.; Schieber, A.; Carle, R. Effects of processing and storage on the stability of free and esterified carotenoids of red peppers (Capsicum annuum L.) and hot chilli peppers (Capsicum frutescens L.). Eur. Food Res. Tech. 2007, 225, 261–270. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Food carotenoids: Analysis, composition and alterations during storage and processing of foods. Forum Nutr. 2003, 56, 35–37. [Google Scholar] [PubMed]
- Ornelas-Paz, J. de J.; Zamudio-Flores, P.B.; Torres-Cisneros, C.G.; Holguín-Soto, R.; Ramos-Aguilar, O.P.; Ruiz-Cruz, S.; Guevara-Arauza, J.C.; Gonzalez-Aguilar, G.A.; Santana-Rodriguez, V. The barrier properties and potential use of recycled-LDPE films as a packaging material to preserve the quality of Jalapeño peppers by modified atmospheres. Sci. Hort. 2012, 135, 210–218. [Google Scholar] [CrossRef]
- Nascimento, P.L.A.; Nascimento, T.C.E.S.; Ramos, N.S.M.; Silva, G.R.; Galindo-Gomes, J.E.; Falcão, R.E.A.; Moreira, K.A.; Porto, A.L.F.; Silva, T.M.S. Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). Molecules 2014, 19, 5434–5447. [Google Scholar] [CrossRef] [PubMed]
- Nesci, A.; Marin, S.; Etcheverry, M.; Sanchis, V. Natural maize phytochemicals for control of maize mycoflora and aflatoxigenic fungi. World Mycotoxin J. 2009, 2, 305–312. [Google Scholar] [CrossRef]
- Iqbal, Q.; Amjad, M.; Asi, M.R.; Ariño, A. Assessment of hot peppers for aflatoxin and mold proliferation during storage. J. Food Prot. 2011, 74, 830–835. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, Q.; Amjad, M.; Asi, M.R.; Ariño, A.; Ziaf, K.; Nawaz, A.; Ahmad, T. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures. Foods 2015, 4, 51-64. https://doi.org/10.3390/foods4020051
Iqbal Q, Amjad M, Asi MR, Ariño A, Ziaf K, Nawaz A, Ahmad T. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures. Foods. 2015; 4(2):51-64. https://doi.org/10.3390/foods4020051
Chicago/Turabian StyleIqbal, Qumer, Muhammad Amjad, Muhammad Rafique Asi, Agustin Ariño, Khurram Ziaf, Aamir Nawaz, and Tanveer Ahmad. 2015. "Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures" Foods 4, no. 2: 51-64. https://doi.org/10.3390/foods4020051
APA StyleIqbal, Q., Amjad, M., Asi, M. R., Ariño, A., Ziaf, K., Nawaz, A., & Ahmad, T. (2015). Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures. Foods, 4(2), 51-64. https://doi.org/10.3390/foods4020051