Optimization of Biotechnological Vinegar Production from an Algerian Date Variety Using Indigenous Strains and Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Date Fruits and Microbiological Materials
2.2. Chemicals and Culture Media
2.3. Extraction and Preparation of Date Juice for Fermentation
2.4. Yeast Isolation and Identification
2.5. Acetic Acid Bacteria Isolation and Selection
2.6. Optimization of the Fermentation Process
2.6.1. Alcoholic Fermentation
2.6.2. Acetic Fermentation and Response Surface Design
2.6.3. Acetic Fermentation Procedure
2.7. Date Juice Characterization
2.8. Fermentation Analyses
2.9. Polyphenols and Antioxidant Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics of Date Juice as a Fermentation Medium
3.2. Molecular Identification PCR Analysis
3.3. Optimization of Acetic Fermentation by Central Composite Design (CCD)
3.3.1. CCD Experimental Design and Model Adequacy
3.3.2. Response Surface Model Fitting and Statistical Validation
3.3.3. Effect of Initial Alcoholic Degree and Yeast Extract on Acetic Acid Production
3.3.4. Effect of Process Variables on Residual Ethanol Consumption
3.3.5. Fermentation Efficiency and Acetic Acid Productivity
3.4. Validation and Functional Properties of Optimized Date Vinegar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kourouma, M.C.; Mbengue, M.; Thioye, A.; Kane, C.T. Response Surface Methodology as an Approach for Optimization of Vinegar Fermentation Conditions Using Three Different Thermotolerant Acetic Acid Bacteria. Food Nutr. Sci. 2023, 14, 638–656. [Google Scholar] [CrossRef]
- Hamden, Z.; El-Ghoul, Y.; Alminderej, F.M.; Saleh, S.M.; Majdoub, H. High-quality bioethanol and vinegar production from Saudi Arabia dates: Characterization and evaluation of their value and antioxidant efficiency. Antioxidants 2022, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Cantadori, E.; Brugnoli, M.; Centola, M.; Uffredi, E.; Colonello, A.; Gullo, M. Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages. Foods 2022, 11, 1972. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Products: Algeria, Dates, Production Quantity 2023. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 2 March 2025).
- Allam, A.; Djafri, K.; Bergouia, M.; Khemissat, E.-H.; Tama, M.; Taleb, B. Morphological and physicochemical characterisation of date palm cultivars from Ghardaïa (Southeast Algeria). J. Appl. Life Sci. Environ. 2012, 54, 12–24. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Jain, S.M.; Johnson, D.V. (Eds.) The Date Palm Genome, Volume 2: Omics and Molecular Breeding; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Nosratabadi, L.; Kavousi, H.-R.; Hajimohammadi-Farimani, R.; Balvardi, M.; Yousefian, S. Estamaran date vinegar: Chemical and microbial dynamics during fermentation. Braz. J. Microb. 2024, 55, 1265–1277. [Google Scholar] [CrossRef]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological Processes in Fruit Vinegar Production. Foods 2021, 10, 945. [Google Scholar] [CrossRef]
- Kaniawati Rosada, K. Streamlining the Fermentation Process Using Mixed Cultures. In New Advances on Fermentation Processes; Martínez-Espinosa, R.M., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Palavecino Prpich, N.Z.; Castro, M.P.; Cayré, M.E.; Garro, O.A.; Vignolo, G.M. Indigenous Starter Cultures to Improve Quality of Artisanal Dry Fermented Sausages from Chaco (Argentina). Int. J. Food Sci. 2015, 2015, 931970. [Google Scholar] [CrossRef]
- Acourène, S.; Ammouche, A.; Djafri, K. Valorisation des rebuts de dattes par la production de la levure boulangère, de l’alcool et du vinaigre. Sci. Technol. C Biotechnol. 2008, 38–45. [Google Scholar]
- Chen, G.-L.; Zheng, F.-J.; Sun, J.; Li, Z.-C.; Lin, B.; Li, Y.-R. Production and Characteristics of High-Quality Vinegar from Sugarcane Juice. Sugar Tech. 2015, 17, 89–93. [Google Scholar] [CrossRef]
- Mamen, D.; Abdessemed, D. Optimization of Fermentation Factors for Vinegar Production from Prickly Pears using Response Surface Methodology (RSM). Asian J. Dairy Food Res. 2024, 43, 425–432. [Google Scholar] [CrossRef]
- Halladj, F.; Boukhiar, A.; Amellal, H.; Benamara, S. Optimization of Traditional Date Vinegar Preparation Using Full Factorial Design. J. Am. Soc. Brew. Chem. 2016, 74, 137–144. [Google Scholar] [CrossRef]
- Djafri, K.; Khemissat, E.; Bergouia, M.; Hafouda, S. Valorisation technologique des dattes de faible valeur marchande par la production du sirop. Rech. Agron. 2021, 19, 97–114. [Google Scholar]
- Ould El Hadj, M.D.; Cheick, M.; Hamdi, W.; Sayah, Z.; Bouaziz, S. Etude comparative de la production d’éthanol brut à partir de trois variétés de dattes communes de la cuvette de Ouargla. Alger. J. Arid Environ. 2012, 2, 78–87. [Google Scholar]
- Nisiotou, A.A.; Panago, E.Z.; Nychas, G.-J.E. Candida olivae sp. Nov., a novel yeast species from ‘Greek-style’ black olive fermentation. Int. J. Syst. Evol. Microbiol. 2010, 60, 1219–1223. [Google Scholar] [CrossRef]
- Harrison, K.; Curtin, C. Microbial Composition of SCOBY Starter Cultures Used by Commercial Kombucha Brewers in North America. Microorganisms 2021, 9, 1060. [Google Scholar] [CrossRef]
- Sharafi, S.M.; Rasooli, I.; Beheshti-Maal, K. Isolation, characterization and optimization of indigenous acetic acid bacteria and evaluation of their preservation methods. Iran. J. Microbiol. 2010, 2, 38. [Google Scholar]
- Al-Malki, F.A.; Al-Kharousi, Z.S.; Guizani, N.; Al-Bulushi, I.M.; Al-Sadi, A.M. Fermentative microbiota and chemical characterization of traditional date vinegar with promising biotechnological applications. Front. Sustain. Food Syst. 2023, 7, 1142152. [Google Scholar] [CrossRef]
- Stevenson, K.; McVey, A.F.; Clark, I.B.N.; Swain, P.S.; Pilizota, T. General calibration of microbial growth in microplate readers. Sci. Rep. 2016, 6, 38828. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Audigie, C.I.; Figarella, J.; Zonszani, F. Manipulation of Biochemical Analyze; Doin Éditeurs: Paris, France, 1984; 211p. [Google Scholar]
- El-Sohaimy, S.A.; Hafez, E.E. Biochemical and Nutritional Characterizations of Date Palm Fruits (Phoenix dactylifera L.). J. Appl. Sci. Res. 2010, 6, 1060–1067. [Google Scholar]
- Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Ghafoor, K.; Babiker, E.E.; Mohamed Ahmed, I.A. Bioactive properties, fatty acid compositions, and phenolic compounds of some date palm (Phoenix dactylifera L.) cultivars. J. Food Process. Preserv. 2020, 44, e14432. [Google Scholar] [CrossRef]
- Sriariyanun, M.; Mutrakulcharoen, P.; Tepaamorndech, S.; Cheenkachorn, K.; Rattanaporn, K. A Rapid Spectrophotometric Method for Quantitative Determination of Ethanol in Fermentation Products. Orient. J. Chem. 2019, 35, 744–750. [Google Scholar] [CrossRef]
- Akdoğan, A.; Baltacı, C. Validation Study on Spectrophotometric Measurement of Ethanol from Beer and Non-Alcoholic Beer Samples Distilled by Micro Steam Distillation Method. Turk. J. Anal. Chem. 2024, 6, 32–39. [Google Scholar] [CrossRef]
- Mehaia, M.A.; Cheryan, M. Fermentation of date extracts to ethanol and vinegar in batch and continuous membrane reactors. Enzym. Microb. Technol. 1991, 13, 257–261. [Google Scholar] [CrossRef]
- Kerbab, K.; Sanah, I.; Djeghim, F.; Belattar, N.; Santoro, V.; D’Elia, M.; Rastrelli, L. Nutritional Composition, Physicochemical Properties, Antioxidant Activity, and Sensory Quality of Matricaria chamomilla-Enriched Wheat Bread. Foods 2025, 14, 838. [Google Scholar] [CrossRef]
- Ben Hammouda, M.; Mahfoudhi, A.; Gharsallah, H.; El Hatmi, H.; Attia, H.; Azabou, S. Traditional homemade Tunisian vinegars: Phytochemical profile, biological, physicochemical and microbiological properties. LWT 2021, 152, 112293. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Al-Hooti, S.N.; Sidhu, J.S.; Al-Saqer, J.M.; Al-Othman, A. Chemical composition and quality of date syrup as affected by pectinase/cellulase enzyme treatment. Food Chem. 2002, 79, 215–220. [Google Scholar] [CrossRef]
- Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int. 2011, 44, 1812–1822. [Google Scholar] [CrossRef]
- Elleuch, M.; Besbes, S.; Roiseux, O.; Blecker, C.; Deroanne, C.; Drira, N.-E.; Attia, H. Date flesh: Chemical composition and characteristics of the dietary fibre. Food Chem. 2008, 111, 676–682. [Google Scholar] [CrossRef]
- Yamina, M.; Atika, B.; Hafsia, B. Bioactive Metabolite Composition and Biological Properties of Date Syrups of Four Cultivars. J. Food Nutr. Res. 2023, 11, 158–167. [Google Scholar] [CrossRef]
- Benmeddour, Z.; Mehinagic, E.; Meurlay, D.L.; Louaileche, H. Phenolic composition and antioxidant capacities of ten Algerian date (Phoenix dactylifera L.) cultivars: A comparative study. J. Funct. Foods 2013, 5, 346–354. [Google Scholar] [CrossRef]
- Dbeibia, A.; Khiari, R.; Mihoubi, D.; Zeghonda, N.; Boudhrioua, N. Drying Kinetics of Deglet Enour Date Seeds, Antioxidant, Antibacterial, Antidiabetic and Bio-preservative Potencies. Waste Biomass Valoriz. 2025, 16, 4381–4397. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Tranchant, C.C.; Al-u’dAtt, D.; Gammoh, S.; Alrosan, M.; Bani-Melhem, K.; Aldughpassi, A.; Alkandari, D.; AbuJalban, D. Date palm (Phoenix dactylifera) bioactive constituents and their applications as natural multifunctional ingredients in health-promoting foods and nutraceuticals: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70084. [Google Scholar] [CrossRef]
- Guizani, C.; Escudero Sanz, F.J.; Salvador, S. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 2014, 116, 310–320. [Google Scholar] [CrossRef]
- Hamad, I.; AbdElgawad, H.; Al Jaouni, S.; Zinta, G.; Asard, H.; Hassan, S.; Hegab, M.; Hagagy, N.; Selim, S. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules 2015, 20, 13620–13641. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.-A.; Park, G.-G.; Jang, J.-K.; Park, Y.-S. Semi-Continuous Fermentation of Onion Vinegar and Its Functional Properties. Molecules 2017, 22, 1313. [Google Scholar] [CrossRef]
- Saithong, P.; Nitipan, S.; Permpool, J. Optimization of Vinegar Production from Nipa (Nypa fruticans Wurmb.) Sap Using Surface Culture Fermentation Process. Appl. Food Biotechnol. 2019, 6, 193–200. [Google Scholar]
- Alminderej, F.M.; Hamden, Z.; El-Ghoul, Y.; Hammami, B.; Saleh, S.M.; Majdoub, H. Impact of Calcium and Nitrogen Addition on Bioethanol Production by S. cerevisiae Fermentation from Date By-Products: Physicochemical Characterization and Technical Design. Fermentation 2022, 8, 583. [Google Scholar] [CrossRef]
- Al-Kharousi, Z.S.; Al-Ramadhani, Z.; Al-Malki, F.A.; Al-Habsi, N. Date Vinegar: First Isolation of Acetobacter and Formulation of a Starter Culture. Foods 2024, 13, 1389. [Google Scholar] [CrossRef]
- Hua, S.; Wang, Y.; Wang, L.; Zhou, Q.; Li, Z.; Liu, P.; Wang, K.; Zhu, Y.; Han, D.; Yu, Y. Regulatory mechanisms of acetic acid, ethanol and high temperature tolerances of acetic acid bacteria during vinegar production. Microb. Cell Factories 2024, 23, 324. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Ho, C.W.; Lazim, A.; Fazry, S.; Hussain Zaki, U.K.H.; Massa, S.; Lim, S.J. Alcoholic fermentation of soursop (Annonamuricata) juice via an alternative fermentation technique. J. Sci. Food Agric. 2020, 100, 1012–1021. [Google Scholar] [CrossRef] [PubMed]







| Parameter | Unit | Value |
|---|---|---|
| Water content | % (FW) | 76.00 ± 0.02 |
| pH | – | 5.31 ± 0.10 |
| Titratable acidity | % (FW) * | 0.95 ± 0.02 |
| Reducing sugars | % (FW) | 10.13 ± 0.12 |
| Sucrose | % (FW) | 12.80 ± 0.22 |
| Total sugars | % (FW) | 25.61 ± 0.03 |
| Proteins | % (FW) | 0.24 ± 0.03 |
| Ash | % (FW) | 2.21 ± 0.04 |
| Sodium (Na) | mg/100 mL | 295.00 |
| Potassium (K) | mg/100 mL | 280.00 |
| Calcium (Ca) | mg/100 mL | 310.00 |
| Magnesium (Mg) | mg/100 mL | 55.00 |
| Iron (Fe) | mg/100 mL | 2.10 |
| Zinc (Zn) | mg/100 mL | 0.28 |
| Copper (Cu) | mg/100 mL | 0.05 |
| Manganese (Mn) | mg/100 mL | 0.07 |
| Total phenolic content | mg GAE/100 g (DW) | 572.0 ± 3.41 |
| Run | Factors | Responses | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| ADG | YE | Acetic Acid Content (%; w/v) ± SD | Residual Alcohol (%; v/v) ± SD | |||||||
| 4j | 8j | 12j | 16j | 4j | 8j | 12j | 16j | |||
| 1 | 7.00 | 0.20 | 1.66 ± 0.03 | 6.48 ± 0.02 | 6.48 ± 0.21 | 6.48 ± 0.02 | 5.0 ± 0.00 | 0.25 ± 0.02 | 0.00 | 0.00 |
| 2 | 7.00 | 0.20 | 1.68 ± 0.01 | 6.50 ± 0.01 | 6.50 ± 0.00 | 6.50 ± 0.01 | 5.0 ± 0.02 | 0.25 ± 0.02 | 0.00 | 0.00 |
| 3 | 5.00 | 0.30 | 2.50 ± 0.01 | 4.00 ± 0.01 | 4.20 ± 0.02 | 4.2 ± 0.062 | 2.0 ± 0.00 | 0.5 ± 0.01 | 0.00 | 0.00 |
| 4 | 7.00 | 0.05 | 1.08 ± 0.00 | 5.00 ± 0.10 | 6.00 ± 0.04 | 6.00 ± 0.03 | 5.7 ± 0.01 | 1.00 ± 0.03 | 0.25 ± 0.06 | 0.00 |
| 5 | 7.00 | 0.20 | 1.66 ± 0.07 | 6.00 ± 0.05 | 6.00 ± 0.08 | 6.25 ± 0.02 | 5.0 ± 0.05 | 0.25 ± 0.06 | 0.00 | 0.00 |
| 6 | 7.00 | 0.20 | 1.68 ± 0.04 | 6.25 ± 0.03 | 6.25 ± 0.06 | 6.25 ± 0.07 | 5.4 ± 0.02 | 0.20 ± 0.04 | 0.20 ± 0.04 | 0.00 |
| 7 | 9.00 | 0.10 | 0.36 ± 0.02 | 1.86 ± 0.01 | 3.90 ± 0.16 | 5.03 ± 0.01 | 7.0 ± 0.01 | 4.20 ± 0.01 | 1.00 ± 0.02 | 0.5 ± 0.02 |
| 8 | 7.00 | 0.20 | 1.68 ± 0.06 | 5.94 ± 0.15 | 6.00 ± 0.09 | 6.00 ± 0.02 | 5.4 ± 0.02 | 0.20 ± 0.01 | 0.00 | 0.00 |
| 9 | 5.00 | 0.10 | 2.00 ± 0.02 | 4.00 ± 0.02 | 4.15 ± 0.03 | 4.80 ± 0.01 | 2.5± 0.05 | 0.50 ± 0.00 | 0.25 ± 0.06 | 0.00 |
| 10 | 4.17 | 0.20 | 2.30 ± 0.00 | 3.00 ± 0.01 | 3.5± 0.04 | 4.00 ± 0.02 | 1.0 ± 0.03 | 0.53 ±0.01 | 0.20 ± 0.01 | 0.00 |
| 11 | 9.82 | 0.20 | 0.12 ± 0.02 | 0.90 ± 0.08 | 2.00 ± 0.06 | 4.00 ± 0.03 | 7.0 ± 0.02 | 5.50 ± 0.01 | 1.50 ± 0.01 | 0.5 ± 0.01 |
| 12 | 9.00 | 0.30 | 0.40 ± 0.01 | 2.40 ± 0.05 | 2.90 ± 0.03 | 4.74 ± 0.026 | 7.0 ± 0.01 | 3.50 ±0.01 | 1.00 ± 0.03 | 0.00 |
| 13 | 7.00 | 0.34 | 1.66 ± 0.05 | 5.00 ± 0.20 | 5.0 ± 0.02 | 5.00 ± 0.033 | 5.0 ± 0.02 | 0.90 ± 0.01 | 0.5 ± 0.088 | 0.00 |
| Fermentation Time | Polynomial Equation |
|---|---|
| 4 days | Y = 0.180 + 0.475X1 + 11.52X2 − 0.0562X12 − 14.47X22 − 0.575X1X2 |
| 8 days | Y = −20.39 + 7.301X1 + 24.73X2 − 0.5611X12 − 72.00X22 + 0.675X1X2 |
| 12 days | Y = −17.67 + 6.446X1 + 24.53X2 − 0.4581X12 − 45.70X22 − 1.313X1X2 |
| 16 days | Y = −8.81 + 4.039X1 + 10.90X2 − 0.2906X12 − 41.24X22 + 0.387X1X2 |
| Order | Alcoholic Degree (v/v; %) | Yast Extract (g/L) | Factors | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| EF (%) | AAP (g/L/Day) | |||||||||
| 4 d | 8 d | 12 d | 16 d | 4 d | 8 d | 12 d | 16 d | |||
| 1 | 7.00 | 0.200 | 56.02 ± 1.410 | 71.40 ± 0.538 | 68.85 ± 2.820 | 68.85 ± 0.269 | 3.65 ± 0.09 | 7.85 ± 0.031 | 5.23 ± 0.214 | 3.93 ± 0.015 |
| 2 | 7.00 | 0.200 | 56.80 ± 1.166 | 71.63 ± 0.399 | 69.07 ± 0.000 | 69.07 ± 0.134 | 3.7 ± 0.031 | 7.88 ± 0.015 | 5.25 ± 0.000 | 3.94 ± 0.008 |
| 3 | 5.00 | 0.300 | 58.84 ± 0.313 | 64.81 ± 0.385 | 61.40 ± 0.376 | 61.40 ± 1.166 | 5.75 ± 0.031 | 4.75 ± 0.015 | 3.33 ± 0.020 | 2.50 ± 0.047 |
| 4 | 7.00 | 0.058 | 51.95 ± 0.489 | 61.40 ± 1.943 | 65.95 ± 1.275 | 63.59 ± 0.403 | 2.2 ± 0.000 | 6.00 ± 0.153 | 4.83 ± 0.041 | 3.63 ± 0.023 |
| 5 | 7.00 | 0.200 | 56.13 ± 5.011 | 65.95 ± 1.414 | 63.59 ± 1.074 | 66.33 ± 0.269 | 3.65 ± 0.214 | 7.25 ± 0.077 | 4.83 ± 0.082 | 3.78 ± 0.015 |
| 6 | 7.00 | 0.200 | 71.03 ± 3.438 | 68.29 ± 0.907 | 68.29 ± 1.321 | 66.33 ± 0.940 | 3.7 ± 0.122 | 7.56 ± 0.046 | 5.04 ± 0.061 | 3.78 ± 0.054 |
| 7 | 9.00 | 0.100 | 6.14 ± 0.978 | 26.54 ± 0.264 | 35.50 ± 1.989 | 43.61 ± 0.236 | 0.4 ± 0.061 | 2.08 ± 0.015 | 3.08 ± 0.163 | 3.02 ± 0.008 |
| 8 | 7.00 | 0.200 | 71.04 ± 4.613 | 64.79 ± 2.190 | 63.59 ± 1.208 | 63.59 ± 0.269 | 3.7 ± 0.184 | 7.18 ± 0.230 | 4.83 ± 0.092 | 3.63 ± 0.015 |
| 9 | 5.00 | 0.100 | 55.29 ± 2.107 | 64.81 ± 0.418 | 63.84 ± 1.581 | 70.61 ± 0.188 | 4.5 ± 0.061 | 4.75 ± 0.031 | 3.29 ± 0.031 | 2.88 ± 0.008 |
| 10 | 4.17 | 0.200 | 50.85 ± 0.589 | 59.04 ± 0.457 | 63.80 ± 1.144 | 69.94 ± 0.451 | 5.25 ± 0.000 | 3.50 ± 0.015 | 2.75 ± 0.041 | 2.38 ± 0.015 |
| 11 | 9.82 | 0.200 | 0.00 ± 0.000 | 12.44 ± 1.776 | 16.60 ± 0.702 | 31.29 ± 0.344 | 0 ± 0.000 | 0.88 ± 0.122 | 1.50 ± 0.061 | 2.38 ± 0.023 |
| 12 | 9.00 | 0.300 | 7.68 ± 0.517 | 30.70 ± 0.923 | 25.90 ± 0.471 | 38.71 ± 0.272 | 0.5 ± 0.031 | 2.75 ± 0.077 | 2.25 ± 0.031 | 2.84 ± 0.020 |
| 13 | 7.00 | 0.341 | 56.05 ± 3.037 | 60.39 ± 3.203 | 56.69 ± 1.229 | 52.63 ± 0.443 | 3.65 ± 0.153 | 6.00 ± 0.306 | 4.00 ± 0.020 | 3.00 ± 0.025 |
| Sample | Total Phenolics (mg GAE/100 mL) | Antioxidant Activity (DPPH, % RSA) |
|---|---|---|
| Date juice | 57.5 ± 0.34 a | 69.4 ± 1.47 a |
| Date vinegar | 62.0 ± 0.09 b | 78.0 ± 1.28 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Djafri, K.; Chouana, T.; Khemissat, E.H.; Bergouia, M.; Abekhti, A.; D’Elia, M.; Rastrelli, L. Optimization of Biotechnological Vinegar Production from an Algerian Date Variety Using Indigenous Strains and Response Surface Methodology. Foods 2026, 15, 518. https://doi.org/10.3390/foods15030518
Djafri K, Chouana T, Khemissat EH, Bergouia M, Abekhti A, D’Elia M, Rastrelli L. Optimization of Biotechnological Vinegar Production from an Algerian Date Variety Using Indigenous Strains and Response Surface Methodology. Foods. 2026; 15(3):518. https://doi.org/10.3390/foods15030518
Chicago/Turabian StyleDjafri, Kaouthar, Toufik Chouana, El Hayfa Khemissat, Meriem Bergouia, Abdelkader Abekhti, Maria D’Elia, and Luca Rastrelli. 2026. "Optimization of Biotechnological Vinegar Production from an Algerian Date Variety Using Indigenous Strains and Response Surface Methodology" Foods 15, no. 3: 518. https://doi.org/10.3390/foods15030518
APA StyleDjafri, K., Chouana, T., Khemissat, E. H., Bergouia, M., Abekhti, A., D’Elia, M., & Rastrelli, L. (2026). Optimization of Biotechnological Vinegar Production from an Algerian Date Variety Using Indigenous Strains and Response Surface Methodology. Foods, 15(3), 518. https://doi.org/10.3390/foods15030518

