Genetic Modulation of ATF1 in Saccharomyces cerevisiae for Enhanced Acetate Ester Production and Flavor Profile in a Sour Meat Model System
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials, Strains and Plasmids
2.2. Chemicals
2.3. Knockout and Overexpression of the ATF1 Gene
2.4. Strains and Culture Conditions
2.5. Preparation of the Sour Meat Model System
2.6. The Determination of pH, TBARS, Protein Concentration, and TCA-Soluble Peptide Content
2.7. Determination of Fatty Acids
2.8. The Determination of Amino Acids and Electronic Tongue
2.9. Determination of Volatile Compounds
2.10. Transcriptomics Sequencing
2.11. Statistical Analysis
3. Results and Discussion
3.1. Changes in pH and TBARS in the Sour Meat Model System
3.2. Changes in Protein Concentration and TCA Content in the Sour Meat Model System
3.3. Changes in Free Fatty Acid Content in the Sour Meat Model System
3.4. Changes in Free Amino Acid Content and Electronic Tongue Analysis in the Sour Meat Model System
3.5. Changes in Volatile Compounds in the Sour Meat Model System
3.6. Transcriptomic and Major Metabolic Pathway Analysis of the Sour Meat Model System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, D.; Zhao, L.; Zhu, Y.; Sun, L.; Li, M.; Wu, H.; Liang, D.; Liu, Y.; Ma, Y.; Zhao, G.; et al. Analysis of structural composition and antioxidant activity of traditional fermented sour meat peptides. Food Chem. 2024, 460, 140697. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Xu, W.; Ji, C.; Liang, H.; Li, S.; Yang, Z.; Zhang, S.; Lin, X. Relationships between the bacterial diversity and metabolites of a Chinese fermented pork product, sour meat. Int. J. Food Sci. Technol. 2021, 56, 2742–2750. [Google Scholar] [CrossRef]
- Shang, H.; Yue, Y.; Guo, B.; Ji, C.; Zhang, S.; Dong, L.; Ferrocino, I.; Cocolin, L.S.; Lin, X. The effects of Lactiplantibacillus plantarum 3-19 and Pediococcus pentosaceus 18-1 on preventing the accumulation of biogenic amines and promoting the production of volatile organic compounds during sour meat fermentation. Int. J. Food Microbiol. 2024, 421, 110806. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Wu, Q.; Jiang, C.; Chen, Y.; Dai, Y.; Ji, C.; Zhang, S.; Dong, L.; Liang, H.; Lin, X. Inoculation of Yarrowia lipolytica promotes the growth of lactic acid bacteria, Debaryomyces udenii and the formation of ethyl esters in sour meat. Food Microbiol. 2024, 119, 104447. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, P.; Xie, Y.; Wang, X. Co-fermentation with Lactobacillus curvatus LAB26 and Pediococcus pentosaceus SWU73571 for improving quality and safety of sour meat. Meat Sci. 2020, 170, 108240. [Google Scholar] [CrossRef]
- Lv, J.; Lin, X.; Liu, M.; Yan, X.; Liang, H.; Ji, C.; Li, S.; Zhang, S.; Chen, Y.; Zhu, B. Effect of Saccharomyces cerevisiae LXPSC1 on microorganisms and metabolites of sour meat during the fermentation. Food Chem. 2022, 402, 134213. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Dai, L.; Dong, J.; Liu, Y.; Guo, X.; Xiao, D. Effects of overexpression of the alcohol acetyltransferase-encoding gene ATF1 and disruption of the esterase-encoding gene IAH1 on the flavour profiles of Chinese yellow rice wine. Int. J. Food Sci. Technol. 2012, 47, 2590–2596. [Google Scholar] [CrossRef]
- Lilly, M.; Bauer, F.F.; Lambrechts, M.G.; Swiegers, J.H.; Cozzolino, D.; Pretorius, I.S. The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 2006, 23, 641–659. [Google Scholar] [CrossRef]
- van Wyk, N.; Kroukamp, H.; Espinosa, M.I.; von Wallbrunn, C.; Wendland, J.; Pretorius, I.S. Blending wine yeast phenotypes with the aid of CRISPR DNA editing technologies. Int. J. Food Microbiol. 2020, 324, 108615. [Google Scholar] [CrossRef]
- Philippe, M.; Marine, T.; Rémy, V.; Lucas, H.; Sabine, G.; Benoit, C.; Warren, A.; JeanChristophe, B. Metabolic, Organoleptic and transcriptomic impact of Saccharomyces cerevisiae genes involved in the biosynthesis of linear and substituted esters. Int. J. Mol. Sci. 2021, 22, 4026. [Google Scholar] [CrossRef]
- Shi, W.; Li, J.; Chen, Y.; Liu, X.; Chen, Y.; Guo, X.; Xiao, D. Metabolic engineering of Saccharomyces cerevisiae for ethyl acetate biosynthesis. ACS Synth. Biol. 2021, 10, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, Y.; Qi, Y.; Zhang, J.; Dai, L.; Lin, X.; Xiao, D. Increased esters and decreased higher alcohols production by engineered brewer’s yeast strains. Eur. Food Res. Technol. 2013, 236, 1009–1014. [Google Scholar] [CrossRef]
- Dong, J.; Xu, H.; Zhao, L.; Chen, Y.; Zhang, C.; Guo, X.; Hou, X.; Chen, D.; Zhang, C.; Xiao, D. Enhanced acetate ester production of Chinese liquor yeast by overexpressing ATF1 through precise and seamless insertion of PGK1 promoter. J. Ind. Microbiol. Biotechnol. 2014, 41, 1823–1828. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Yu, W.; Gao, N.; Zhai, X.; Zhou, Y.J. Expanding the neutral sites for integrated gene expression in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2022, 369, fnac081. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, H.; Cao, X.; Kong, S.; Zhu, B.; Lin, X.; Zhou, Y.J. Construction and optimization of nonclassical isoprenoid biosynthetic pathways in yeast peroxisomes for (+)-valencene production. J. Agric. Food Chem. 2023, 71, 11124–11130. [Google Scholar] [CrossRef]
- Cano-García, L.; Rivera-Jiménez, S.; Belloch, C.; Flores, M. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chem. 2014, 151, 364–373. [Google Scholar] [CrossRef]
- Li, S.; Guo, X.; Shen, Y.; Pan, J.; Dong, X. Effects of oxygen concentrations in modified atmosphere packaging on pork quality and protein oxidation. Meat Sci. 2022, 189, 108826. [Google Scholar] [CrossRef]
- Cheng, W.; Sørensen, K.M.; Engelsen, S.B.; Sun, D.-W.; Pu, H. Lipid oxidation degree of pork meat during frozen storage investigated by near-infrared hyperspectral imaging: Effect of ice crystal growth and distribution. J. Food Eng. 2019, 263, 311–319. [Google Scholar] [CrossRef]
- Wang, W.; Xia, W.; Gao, P.; Xu, Y.; Jiang, Q. Proteolysis during fermentation of Suanyu as a traditional fermented fish product of China. Int. J. Food Prop. 2017, 20, S166–S176. [Google Scholar] [CrossRef]
- Pei, Q.; Guo, B.; Yue, Y.; Zhang, X.; Zhang, S.; Ji, C.; Ferrocino, I.; Cocolin, L.; Lin, X. Exploring the synergistic effect of Lactiplantibacillus plantarum 1–24-LJ and lipase on improving Quality, Flavor, and safety of Suanzharou. Food Res. Int. 2025, 200, 115432. [Google Scholar] [CrossRef]
- Zhai, Y.; Luan, A.; Yang, Z.; Rong, Z.; Liu, Y.; Wang, F.; Li, X. The impacts of cold plasma on the taste and odor formation of dried silver carp products. Food Chem. 2024, 454, 139775. [Google Scholar] [CrossRef]
- Liu, A.; Yan, X.; Shang, H.; Ji, C.; Zhang, S.; Liang, H.; Chen, Y.; Lin, X. Screening of Lactiplantibacillus plantarum with high stress tolerance and high esterase activity and their effect on promoting protein metabolism and flavor formation in Suanzhayu, a Chinese fermented fish. Foods 2022, 11, 1932. [Google Scholar] [CrossRef]
- Liu, M.; Lin, X.; Yang, J.; Yan, X.; Ji, C.; Liang, H.; Zhang, S.; Dong, L. Effects of salt and rice flour concentration on microbial diversity and the quality of sour meat, a Chinese traditional meat. Food Sci. Hum. Wellness 2024, 13, 2790–2798. [Google Scholar] [CrossRef]
- Li, X.-A.; Kong, B.; Wen, R.; Wang, H.; Li, M.; Chen, Q. Flavour compensation role of yeast strains in reduced-salt dry sausages: Taste and odour profiles. Foods 2022, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Paludan-Müller, C.; Madsen, M.; Sophanodora, P.; Gram, L.; Møller, P.L. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. Int. J. Food Microbiol. 2002, 73, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Campagnol, P.C.B.; dos Santos, B.A.; Wagner, R.; Terra, N.N.; Pollonio, M.A.R. The effect of yeast extract addition on quality of fermented sausages at low NaCl content. Meat Sci. 2011, 87, 290–298. [Google Scholar] [CrossRef]
- Chen, Q.; Kong, B.; Han, Q.; Xia, X.; Xu, L. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT—Food Sci. Technol. 2017, 77, 389–396. [Google Scholar] [CrossRef]
- Chaves-López, C.; Paparella, A.; Tofalo, R.; Suzzi, G. Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system. Int. J. Food Microbiol. 2011, 150, 50–58. [Google Scholar] [CrossRef]
- Gao, P.; Wang, W.; Xia, W.; Xu, Y.; Jiang, Q. Lipolysis and lipid oxidation caused by Staphylococcus xylosus 135 and Saccharomyces cerevisiae 31 isolated from Suan yu, a traditional Chinese low-salt fermented fish. Int. J. Food Sci. Technol. 2016, 51, 419–426. [Google Scholar] [CrossRef]
- Özyurt, G.; Gökdoğan, S.; Şimşek, A.; Yuvka, I.; Ergüven, M.; Boga, E.K. Fatty acid composition and biogenic amines in acidified and fermented fish silage: A comparison study. Arch. Anim. Nutr. 2016, 70, 72–86. [Google Scholar] [CrossRef]
- Ji, L.; Wang, S.; Zhou, Y.; Nie, Q.; Zhou, C.; Ning, J.; Ren, C.; Tang, C.; Zhang, J. Effects of Saccharomyces cerevisiae and Kluyveromyces marxianus on the physicochemical, microbial, and flavor changes of sauce meat during storage. Foods 2024, 13, 396. [Google Scholar] [CrossRef]
- Sentandreu, M.A.; Stoeva, S.; Aristoy, M.C.; Laib, K.; Voelter, W.; Toldrá, E. Identification of small peptides generated in Spanish dry-cured ham. J. Food Sci. 2003, 68, 64–69. [Google Scholar] [CrossRef]
- Minorsky, P.V. Frontiers of Plant Cell Biology: Signals and pathways, system-based approaches 22nd Symposium in Plant Biology (University of California—Riverside). Plant Physiol. 2003, 132, 428–435. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mi, R.; Chen, X.; Xiong, S.; Qi, B.; Li, J.; Qiao, X.; Chen, W.; Qu, C.; Wang, S. Predominant yeasts in Chinese Dong fermented pork (Nanx Wudl) and their aroma-producing properties in fermented sausage condition. Food Sci. Hum. Wellness 2021, 10, 231–240. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Flores, M. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat Sci. 2011, 87, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.; Flores, M.; Gianelli, M.P. Key aroma components of a dry-cured sausage with high fat content (Sobrassada). Food Sci. Technol. Int. 2011, 17, 63–71. [Google Scholar] [CrossRef]
- Nie, X.; Jia, X.; Kang, X.; Pu, H.; Ling, Z.; Wang, X.; Yu, X.; Zhang, Y.; Liu, D.; Zhao, Z. Effects of isolated Saccharomyces cerevisiae on the metabolites and volatile organic compounds of Chinese-style sausage. Food Res. Int. 2024, 197, 115269. [Google Scholar] [CrossRef]
- Zhong, A.; Chen, W.; Duan, Y.; Li, K.; Tang, X.; Tian, X.; Wu, Z.; Li, Z.; Wang, Y.; Wang, C. The potential correlation between microbial communities and flavors in traditional fermented sour meat. LWT—Food Sci. Technol. 2021, 149, 111873. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Yu, Z.; Zhu, Y.; Zhao, K. Effect of inoculating mixed starter cultures of Lactobacillus and Staphylococcus on bacterial communities and volatile flavor in fermented sausages. Food Sci. Hum. Wellness 2023, 12, 200–211. [Google Scholar] [CrossRef]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of curing salts and probiotic cultures on the evolution of flavor compounds in dry-fermented sausages during ripening. Food Chem. 2016, 201, 334–338. [Google Scholar] [CrossRef]
- van Wyk, N.; Michling, F.; Bergamo, D.; Brezina, S.; Pretorius, I.S.; von Wallbrunn, C.; Wendland, J. Effect of isomixing on grape must fermentations of ATF1–overexpressing wine yeast strains. Foods 2020, 9, 717. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Zhang, H.; Wang, Y.; Chen, Q.; Kong, B. Physicochemical properties and flavour profile of fermented dry sausages with a reduction of sodium chloride. LWT—Food Sci. Technol. 2020, 124, 109061. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Liu, Q.; Wang, Y.; Chen, Q.; Kong, B. The potential correlation between bacterial diversity and the characteristic volatile flavour of traditional dry sausages from Northeast China. Food Microbiol. 2020, 91, 103505. [Google Scholar] [CrossRef]
- Li, P.; Ge, J.; Gao, Y.; Wang, J.; Zhang, C.; Xiao, D. A seamless gene deletion method and its application for regulation of higher alcohols and ester in Baijiu Saccharomyces cerevisiae. BioMed Res. Int. 2019, 2019, 6723849. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, Y.; Chen, C.; Xie, T.; Li, P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Res. Int. 2020, 135, 109247. [Google Scholar] [CrossRef]
- Richter, C.L.; Hirst, M.B. Review of aroma formation through metabolic pathways of Saccharomyces cerevisiae in beverage fermentations. Am. J. Enol. Vitic. 2016, 67, 361–370. [Google Scholar] [CrossRef]
- McCammon, M.T. Mutants of Saccharomyces cerevisiae with defects in acetate metabolism: Isolation and characterization of Acn− mutants. Genetics 1996, 144, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Pigeau, G.M.; Inglis, D.L. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation. J. Appl. Microbiol. 2007, 103, 1576–1586. [Google Scholar] [CrossRef]
- Li, P.; Li, T.; Zhang, C.-Y.; Xiao, D.-g. Effect of ILV2 deletion and ILV3 or/and ILV5 overexpression in Saccharomyces uvarum on diacetyl and higher alcohols metabolism during wine fermentation. Eur. Food Res. Technol. 2020, 246, 563–572. [Google Scholar] [CrossRef]
- Dong, J.; Wang, P.; Fu, X.; Dong, S.; Li, X.; Xiao, D. Increase ethyl acetate production in Saccharomyces cerevisiae by genetic engineering of ethyl acetate metabolic pathway. J. Ind. Microbiol. Biotechnol. 2019, 46, 801–808. [Google Scholar] [CrossRef]
- Cui, D.-Y.; Wei, Y.-N.; Lin, L.-C.; Chen, S.-J.; Feng, P.-P.; Xiao, D.-G.; Lin, X.; Zhang, C.-Y. Increasing Yield of 2,3,5,6-Tetramethylpyrazine in Baijiu through Saccharomyces cerevisiae metabolic engineering. Front. Microbiol. 2020, 11, 596306. [Google Scholar] [CrossRef]
- Verstrepen, K.J.; Van Laere, S.D.M.; Vercammen, J.; Derdelinckx, G.; Dufour, J.; Pretorius, I.S.; Winderickx, J.; Thevelein, J.M.; Delvaux, F.R. The Saccharomyces cerevisiae alcohol acetyl transferase Atf1p is localized in lipid particles. Yeast 2004, 21, 367–377. [Google Scholar] [CrossRef]
- Heit, C.; Martin, S.; Yang, F.; Inglis, D. Osmoadaptation of wine yeast (Saccharomyces cerevisiae) during Icewine fermentation leads to high levels of acetic acid. J. Appl. Microbiol. 2018, 124, 1506–1520. [Google Scholar] [CrossRef]





| Strains and Plasmids | Genotype or Sequence | Source | |
|---|---|---|---|
| Strains | Saccharomyces cerevisiae SC | MATa; MAL2-8c; SUC2; his 3△1; ura3-52; gal80△;XI-5::PTEF1-Cas9-TCYC1 | Yongjin Zhou’s lab; Dalian Institute of Chemical Physics, CAS |
| S. cerevisiae SCdA | MATa; MAL2-8c; SUC2; his3△1; ura3-52; gal80△; XI-5::PTEF1-Cas9-TCYC1; △atf1 | This research | |
| S.cerevisiae SCpA | MATa; MAL2-8c; SUC2; his3△1; ura3-52; gal80△; XI-5::PTEF1-Cas9-TCYC1; X3::PTPI1-ATF1-TCYC1 | This research | |
| Escherichia coli DH5a | F-, φ80d/lacZ△M15,△(lacZYA-argF) U169, deoR, recAl, endAl, hsdR17(rk, mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1 | Takara | |
| Plasmid | pgRNA-X3 | URA3, 2 µm, AmpR, gRNA1-X3, gRNA2-X3 | This research |
| pgRNA-ATF1 | URA3, 2 µm, AmpR, gRNA1-ATF1 gRNA2-ATF1 | This research | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, N.; Yue, Y.; Yin, S.; Liu, H.; Jia, X.; Wang, N.; Ji, C.; Dai, Y.; Yin, L.; Liang, H.; et al. Genetic Modulation of ATF1 in Saccharomyces cerevisiae for Enhanced Acetate Ester Production and Flavor Profile in a Sour Meat Model System. Foods 2026, 15, 378. https://doi.org/10.3390/foods15020378
Zhao N, Yue Y, Yin S, Liu H, Jia X, Wang N, Ji C, Dai Y, Yin L, Liang H, et al. Genetic Modulation of ATF1 in Saccharomyces cerevisiae for Enhanced Acetate Ester Production and Flavor Profile in a Sour Meat Model System. Foods. 2026; 15(2):378. https://doi.org/10.3390/foods15020378
Chicago/Turabian StyleZhao, Ning, Ying Yue, Shufeng Yin, Hao Liu, Xiaohan Jia, Ning Wang, Chaofan Ji, Yiwei Dai, Liguo Yin, Huipeng Liang, and et al. 2026. "Genetic Modulation of ATF1 in Saccharomyces cerevisiae for Enhanced Acetate Ester Production and Flavor Profile in a Sour Meat Model System" Foods 15, no. 2: 378. https://doi.org/10.3390/foods15020378
APA StyleZhao, N., Yue, Y., Yin, S., Liu, H., Jia, X., Wang, N., Ji, C., Dai, Y., Yin, L., Liang, H., & Lin, X. (2026). Genetic Modulation of ATF1 in Saccharomyces cerevisiae for Enhanced Acetate Ester Production and Flavor Profile in a Sour Meat Model System. Foods, 15(2), 378. https://doi.org/10.3390/foods15020378

