Modeling and Optimization of Extruded Corn Product Fortification
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
- -
- Corn (Zea mays): cultivar NS 3022 (FAO 360), Institute of Field and Vegetable Crops, harvested in the year 2025, Novi Sad, Serbia.
- -
- Quinoa (Chenopodium quinoa Willd.): cultivar KVL 52, grown by local producer in Bačka Palanka, Serbia, cadastral no. 37/5, Bačka Palanka 2, harvested in the year 2025.
2.2. Sample Preparation
- A ratio of 10:0 = corn flour/quinoa flour;
- A ratio of 9:1 = corn flour/quinoa flour;
- A ratio of 8:2 = corn flour/quinoa flour;
- 7:3 = corn flour/quinoa flour.
2.3. Extrusion Process
2.4. Extruded Products Characterization
2.4.1. Bulk Density
2.4.2. Expansion Index
2.5. Texture Properties
2.6. Color Instrumental Analysis
2.7. Proximate Analysis
2.8. Minerals Analysis
2.9. Amino Acids
2.10. Fatty Acid Analysis
2.11. Descriptive Sensory Analysis (Color, Shape, Hardness, Crispiness, Expansion Perceptions, and Taste)
2.12. Methods of Statistical Analysis
2.12.1. Response Surface Methodology
2.12.2. Z-Score Analysis
3. Results and Discussion
4. Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| RSM | Response surface methodology |
| BD | Bulk density |
| EI | Expansion index |
| Har | Hardness |
| NF | Number of fractures |
| Crw | Crispier work |
References
- Tyl, C.; Bresciani, A.; Marti, A. Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks. Foods 2021, 10, 2024. [Google Scholar] [CrossRef] [PubMed]
- Suarez, D.N.; Quintero-Ramos, A.; Melendez-Pizarro, C.O.; Zazueta-Morales, J.J.; Delgado, F.P.; Ruiz-Gutierrez, M.G. Evaluation of the physicochemical properties of third-generation snacks made from blue corn, black beans, and sweet chard produced by extrusion. LWT 2021, 149, 111414. [Google Scholar] [CrossRef]
- El-Basuony, D.Z.; Rahma, E.H.; El-Beltagy, A.A. The Production of High-Protein Extruded Corn Snacks Formulated with Quinoa Seed and Moringa Leaf Powder. Menouf. J. Food Dairy Sci. 2023, 8, 45–60. [Google Scholar] [CrossRef]
- Ramos Diaz, J.M.; Sundarrajan, L.; Kariluoto, S.; Lampi, A.-M.; Tenitz, S.; Jouppila, K. Effect of Extrusion Cooking on Physical Properties and Chemical Composition of Corn-Based Snacks Containing Amaranth and Quinoa: Application of Partial Least Squares Regression. J. Food Process Eng. 2017, 40, e12320. [Google Scholar] [CrossRef]
- Mironeasa, S.; Coţovanu, I.; Mironeasa, C.; Ungureanu-Iuga, M. A review of the changes produced by extrusion cooking on the bioactive compounds from vegetal sources. Antioxidants 2023, 12, 1453. [Google Scholar] [CrossRef]
- Angeli, V.; Miguel Silva, P.; Crispim Massuela, D.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef]
- Muñoz-Pabon, K.S.; Roa-Acosta, D.F.; Hoyos-Concha, J.L.; Bravo-Gómez, J.E.; Ortiz-Gómez, V. Quinoa Snack Production at an Industrial Level: Effect of Extrusion and Baking on Digestibility, Bioactive, Rheological, and Physical Properties. Foods 2022, 11, 3383. [Google Scholar] [CrossRef]
- Muñoz-Pabon, K.S.; Roa-Acosta, D.F.; Bravo, J.E. Second-generation Snacks Prepared from Quinoa with Probiotic: Physicochemical Properties, In Vitro Digestibility, Antioxidant Activity and Consumer Acceptability. Heliyon 2024, 10, e36525. [Google Scholar] [CrossRef]
- Casalvara, R.F.A.; Ferreira, B.M.R.; Gonçalves, J.E.; Yamaguchi, N.U.; Bracht, A.; Bracht, L.; Comar, J.F.; de Sá-Nakanishi, A.B.; de Souza, C.G.M.; Castoldi, R.; et al. Biotechnological, Nutritional, and Therapeutic Applications of Quinoa (Chenopodium quinoa Willd.) and Its By-Products: A Review of the Past Five-Year Findings. Nutrients 2024, 16, 840. [Google Scholar] [CrossRef]
- Agarwal, A.; Rizwana; Tripathi, A.D.; Kumar, T.; Sharma, K.P.; Patel, S.K.S. Nutritional and Functional New Perspectives and Potential Health Benefits of Quinoa and Chia Seeds. Antioxidants 2023, 12, 1413. [Google Scholar] [CrossRef]
- Demin, M.; Milovanović, M.; Glamočlija, Đ.; Vucelić-Radović, B. Quinoa—A new high quality crop in Serbia. Zemljište Biljka 2012, 61, 107–117. [Google Scholar]
- Savić, S.; Czekus, B.; Gregorić, E.; Đuričin, S.; Matović, G. Production of Puno and Titicaca Quinoa Cultivars—Cost Benefit Analysis. Rom. Biotechnol. Lett. 2021, 26, 2953–2963. [Google Scholar] [CrossRef]
- Stikić, R.; Jovanović, Z.; Marjanović, M.; Slaviša, Đ. The Effect of Drought on Water Regime and Growth of Quinoa (Chenopodium quinoa Willd.). Ratar. Povrt. 2015, 52, 80–84. [Google Scholar] [CrossRef]
- Luo, S.; Koksel, F. Application of physical blowing agents in extrusion cooking of protein-enriched snacks: Effects on product expansion, microstructure, and texture. Trends Food Sci. Technol. 2023, 133, 49–64. [Google Scholar] [CrossRef]
- Delić, J.; Ikonić, P.; Jokanović, M.; Peulić, T.; Ikonić, B.; Banjac, V.; Vidosavljević, S.; Stojkov, V.; Hadnađev, M. Sustainable snack products: Impact of protein-and fiber-rich ingredients addition on nutritive, textural, physical, pasting and color properties of extrudates. Innov. Food Sci. Emerg. Technol. 2023, 87, 103419. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Narciso, J.; Guan, W.; Zhang, J.; Yuan, L.; Serventi, L.; Brennan, C.S. Correlations between the phenolic and fibre composition of mushrooms and the glycaemic and textural characteristics of mushroom enriched extruded products. LWT 2020, 118, 108730. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Rakita, S.; Spasevski, N.; Vidosavljević, S.; Tomičić, Z.; Savić, I.M.; Savić Gajić, I.M.; Đuragić, O.; Marjanović Jeromela, A. Valorization of Camelina Cake by Fractionation: Characterization of Nutritional and Functional Properties. Foods 2025, 14, 3437. [Google Scholar] [CrossRef]
- Ilić, P.; Rakita, S.; Spasevski, N.; Đuragić Olivera, O.; Marjanović-Jeromela, A.; Cvejić, S.; Zanetti, F. Nutritive value of Serbian camelina genotypes as an alternative feed ingredient. Food Feed Res. 2022, 49, 209–221. [Google Scholar] [CrossRef]
- Filipović, V.; Petković, M.; Filipović, J.; Đurović, I.; Miletic, N.; Radovanović, J.; Filipović, I. Nutritional attributes of wheat bread fortified with convectively dried chokeberry powder. Acta Agric. Serb. 2021, 26, 55–62. [Google Scholar] [CrossRef]
- ISO 6658:2017; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- ISO 4121:2003; Animal and Vegetable Fats and Oils—Determination of Iodine Value. International Organization for Standardization (ISO): Geneva, Switzerland, 2003.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- Teffane, M.; Boudries, H.; Bachir-Bey, M.; Kadi, A.; Taibi, A.; Boukhalfa, F.; Djoudi, W. Optimization of polyphenol extraction from Apricot Kernel Shells: Comparative study between Box-Behnken and central composite designs. Curr. Bioact. Compd. 2023, 19, 50–63. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, S.; Chen, H.; Zhuang, Y.; Liu, Q.; Xiao, S.; Brennan, C. Effect of Tricholoma matsutake Powder and Colored Rice Flour on Baking Quality and Volatile Aroma Compound of Cookie. Foods 2025, 14, 2182. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 61, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Blejan, A.M.; Nour, V.; Corbu, A.R.; Codină, G.G. Corn-Based Extruded Snacks Supplemented with Bilberry Pomace Powder: Physical, Chemical, Functional, and Sensory Properties. Appl. Sci. 2025, 15, 2468. [Google Scholar] [CrossRef]
- Ding, Q.B.; Ainsworth, P.; Plunkett, A.; Tucker, G.; Marson, H. The Effect of Extrusion Conditions on the Functional and Physical Properties of Wheat-Based Expanded Snacks. J. Food Eng. 2006, 73, 142–148. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Schmiele, M.; Lavado-Cruz, A.A.; Verona-Ruiz, A.L.; Mollá, C.; Peñas, E.; Frias, J.; Simpalo-Lopez, W.D.; Castillo-Martínez, W.E.; Martínez-Villaluenga, C. Andean Sprouted Pseudocereals to Produce Healthier Extrudates: Impact in Nutritional and Physicochemical Properties. Foods 2022, 11, 3259. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, P.; Zhao, Y.; Zhu, Y.; Xiao, X. The Effect of Protein–Starch Interaction on the Structure and Properties of Starch, and Its Application in Flour Products. Foods 2025, 14, 778. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Liu, H.; Yoon, A.; Rizvi, S.S.; Wang, Q. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Crit. Rev. Food. Sci. Nutr. 2019, 59, 3267–3280. [Google Scholar] [CrossRef]
- Zhu, F. Phenolic compounds in quinoa and amaranth grains: Composition, biological properties and processing effects. Food Chem. 2025, 495, 146592. [Google Scholar] [CrossRef] [PubMed]
- Dalbhagat, C.G.; Mahato, D.K.; Mishra, H.N. Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. Trends Food Sci. Technol. 2019, 85, 226–240. [Google Scholar] [CrossRef]
- Pejcz, E.; Tiupova, A.; Wojciechowicz-Budzisz, A.; Lachowicz-Wiśniewska, S.; Wiśniewski, R.; Harasym, R. A structure-function related changes in rheological properties of pigmented corn after low temperature extrusion. Innov. Food Sci. Emerg. Technol. 2025, 104, 104145. [Google Scholar] [CrossRef]
- Korkerd, S.; Wanlapa, S.; Puttanlek, C.; Uttapap, D.; Rungsardthon, V. Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products. J. Food Sci. Technol. 2016, 53, 561–570. [Google Scholar] [CrossRef]
- Ali, I.M.; Forsido, S.F.; Kuyu, C.G.; Ahmed, E.H.; Andersa, K.N.; Chane, K.T.; Regasa, T.K. Effects of extrusion process conditions on nutritional, anti-nutritional, physical, functional, and sensory properties of extruded snack: A review. Food Sci. Nutr. 2024, 12, 8755–8761. [Google Scholar] [CrossRef]
- Moreno, C.R.; Fernández, P.C.R.; Rodríguez, E.O.C.; Carrillo, J.M.; Rochín, S.M. Changes in Nutritional Properties and Bioactive Compounds in Cereals During Extrusion Cooking. In Extrusion of Metals, Polymers and Food Products; InTech: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Wang, B.; Dong, Y.; Fang, Y.; Gao, W.; Kang, X.; Liu, P.; Yan, S.; Cui, B.; El-Aty, A. Effects of different moisture contents on the structure and properties of corn starch during extrusion. Food Chem. 2022, 368, 130804. [Google Scholar] [CrossRef]
- Hussein, A.M.; Mostafa, S.; Ata, S.M.; Hegazy, N.A.; Abu-Reidah, I.M.; Zaky, A.A. Effect of Spirulina Microalgae Powder in Gluten-Free Biscuits and Snacks Formulated with Quinoa Flour. Processes 2025, 13, 625. [Google Scholar] [CrossRef]
- Huang, X.; Liu, H.; Ma, Y.; Mai, S.; Li, C. Effects of Extrusion on Starch Molecular Degradation, Order–Disorder Structural Transition and Digestibility—A Review. Foods 2022, 11, 2538. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Lee, S.A.; Jones, C.; Htoo, J.K.; Stein, H.H. Effects of extrusion on nutrient and energy digestibility in cereal grains fed to growing pigs. In Energy and Protein Metabolism and Nutrition; Wageningen Academic Publishers: Leiden, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Anton, A.; Fulcher, G.; Arntfield, S. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, M.J.; Maureira, H.; Martínez, E. Nutritional aspects of six quinoa (Chenopodium quinoa Willd.) ecotypes from three geographical areas in Chile. Chil. J. Agric. Res. 2012, 72, 175–181. [Google Scholar] [CrossRef]
- Day, L. Proteins from Land Plants—Potential Resources for Human Nutrition and Food Security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Singh, B.; Sekhon, K.S.; Singh, N. Effects of moisture, temperature, and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chem. 2007, 100, 198–202. [Google Scholar] [CrossRef]
- Nowak, V.; Du, J.; Charrondière, U.R. Review of food composition data for quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Olmos, E.; Roman-Garcia, I.; Reguera, M.; Mestanza, C.; Fernandez-Garcia, N. An update on the nutritional profiles of quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus spp.), and chia (Salvia hispanica L.), three key species with the potential to contribute to food security worldwide. JSFA Rep. 2022, 2, 591–602. [Google Scholar] [CrossRef]
- Mihafu, F.D.; Issa, J.Y.; Kamiyango, M.W. Implication of Sensory Evaluation and Quality Assessment in Food Product Development: A Review. Curr. Res. Nutr. Food Sci. 2020, 8, 690–702. [Google Scholar] [CrossRef]
- Moscicki, L. Extrusion-Cooking Techniques: Applications, Theory and Sustainability; Wiley-Blackwell: Hoboken, NJ, USA, 2021. [Google Scholar]



| Corn Flour | Quinoa Flour | |
|---|---|---|
| Chemical composition | ||
| Moisture (%) | 13.70 ± 0.14 | 10.61 ± 0.13 |
| Protein (% d.m) | 7.68 ± 0.09 | 17.14 ± 0.12 |
| Starch (% d.m) | 86.25 ± 0.96 | 72.26 ± 0.89 |
| Total sugars (% d.m) | 1.83 ± 0.01 | 1.71 ± 0.02 |
| Total carbohydrates (% d.m) | 90.93 ± 0.92 | 76.97 ± 0.90 |
| Lipids (% d.m) | 1.13 ± 0.03 | 4.10 ± 0.13 |
| Cellulose (% d.m) | 2.23 ± 0.03 | 2.62 ± 0.02 |
| Ash (% d.m) | 0.28 ± 0.01 | 1.60 ± 0.08 |
| Total dietary fiber (g/100 g) | 5.82 ± 0.06 | 7.30 ± 0.11 |
| Mineral matter composition | ||
| Zn (mg/kg) | 4.50 ± 0.06 | 10.5 ± 0.81 |
| Cu (mg/kg) | 0.46 ± 0.02 | 4.01 ± 0.39 |
| Fe (mg/kg) | 6.95 ± 0.06 | 32.06 ± 0.98 |
| K (mg/kg) | 1107.04 ± 17.06 | 5468.46 ± 39.84 |
| Mg (mg/kg) | 235.52 ± 1.84 | 1092.71 ± 10.09 |
| Ca (mg/kg) | 26.42 ± 0.24 | 105.63 ± 1.97 |
| Mn (mg/kg) | 1.72 ± 0.02 | 7.37 ± 0.91 |
| Na (mg/kg) | 227.76 ± 1.97 | 71.11 ± 1.08 |
| Particle size | ||
| >350 µm | 83.80 ± 1.81 | 88.19 ± 2.01 |
| 250–350 µm | 9.02 ± 0.57 | 6.34 ± 0.43 |
| 150–250 µm | 3.94 ± 0.20 | 3.44 ± 0.17 |
| <150 µm | 3.10 ± 0.21 | 2.38 ± 0.18 |
| Color characteristics | ||
| L* | 80.93 ± 2.99 | 73.74 ± 0.71 |
| a* | 4.24 ± 0.39 | 1.84 ± 0.21 |
| b* | 32.37 ± 2.84 | 14.09 ± 2.01 |
| Sample | Corn Flour (%) | Quinoa Flour (%) | Screw Speed (rpm) |
|---|---|---|---|
| 1 | 100 | 0 | 350 |
| 2 | 100 | 0 | 500 |
| 3 | 100 | 0 | 650 |
| 4 | 90 | 10 | 350 |
| 5 | 90 | 10 | 500 |
| 6 | 90 | 10 | 650 |
| 7 | 80 | 20 | 350 |
| 8 | 80 | 20 | 500 |
| 9 | 80 | 20 | 650 |
| 10 | 70 | 30 | 350 |
| 11 | 70 | 30 | 500 |
| 12 | 70 | 30 | 650 |
| Sample | Screw Speed (rpm) | BD (kg/m3) | EI | Har (N) | NF | Crw (Nmm) |
|---|---|---|---|---|---|---|
| Extruded products with 0% quinoa fortification | ||||||
| 1 | 350 | 21.11 ± 0.46 g | 2.22 ± 0.04 a | 85.63 ± 7.01 e | 11.4 ± 0.86 a | 11.74 ± 1.44 f |
| 2 | 500 | 15.36 ± 0.32 f | 2.51 ± 0.07 b–d | 66.23 ± 1.45 d | 20.17 ± 0.79 bc | 6.49 ± 0.55 e |
| 3 | 650 | 9.24 ± 0.25 c | 2.71 ± 0.08 d | 40.78 ± 1.02 ab | 24.5 ± 0.25 cd | 5.76 ± 0.82 de |
| Extruded products with 10% quinoa fortification | ||||||
| 4 | 350 | 16.26 ± 0.23 f | 2.39 ± 0.07 ab | 64.32 ± 5.62 cd | 16.5 ± 1.13 ab | 4.95 ± 0.82 c–e |
| 5 | 500 | 12.78 ± 0.31 e | 2.62 ± 0.14 b–d | 50.58 ± 8.88 bc | 31.6 ± 3.38 ef | 3.65 ± 0.70 a–d |
| 6 | 650 | 7.73 ± 0.30 b | 3.14 ± 0.12 e | 35.32 ± 4.38 ab | 37.14 ± 0.42 fg | 2.79 ± 067 ab |
| Extruded products with 20% quinoa fortification | ||||||
| 7 | 350 | 15.84 ± 0.83 f | 2.40 ± 0.09 a–c | 59.74 ± 5.35 cd | 21.33 ± 1.36 b–d | 4.72 ± 0.24 b–e |
| 8 | 500 | 10.78 ± 0.31 d | 2.68 ± 0.07 cd | 42.7 ± 2.62 ab | 32.83 ± 1.81 ef | 3.45 ± 0.64 a–c |
| 9 | 650 | 7.72 ± 0.16 b | 3.1 ± 0.13 e | 32.06 ± 6.92 a | 47.67 ± 0.83 h | 2.47 ± 0.29 s |
| Extruded products with 30% quinoa fortification | ||||||
| 10 | 350 | 13.9 ± 0.40 e | 2.59 ± 0.10 b–d | 43.29 ± 1.15 ab | 28.17 ± 2.64 de | 4.24 ± 0.59 a–d |
| 11 | 500 | 9.28 ± 0.2 c | 2.76 ± 0.11 d | 33.3 ± 7.55 a | 34.67 ± 4.82 ef | 3.03 ± 0.71 a–c |
| 12 | 650 | 6.25 ± 0.35 a | 3.25 ± 0.10 e | 28.49 ± 3.11 a | 43.83 ± 4.02 gh | 2.22 ± 0.38 s |
| Sample | Screw Speed (rpm) | L* | a* | b* | ΔE |
|---|---|---|---|---|---|
| Extruded products with 0% quinoa fortification | |||||
| 1 | 350 | 87.32 ± 0.31 ef | 0.49 ± 0.31 f | 36.09 ± 0.31 e | − |
| 2 | 500 | 87.76 ± 0.30 fg | 0.32 ± 0.14 f | 36.10 ± 0.27 e | 0.47 ± 0.07 a |
| 3 | 650 | 88.20 ± 0.06 gh | 0.19 ± 0.14 f | 36.72 ± 0.27 e | 1.12 ± 0.09 a |
| Extruded products with 10% quinoa fortification | |||||
| 4 | 350 | 86.20 ± 0.58 de | −0.41 ± 0.11 e | 33.26 ± 2.38 cd | 3.17 ± 0.52 ab |
| 5 | 500 | 86.87 ± 0.17 ef | −0.70 ± 0.08 b−e | 33.72 ± 0.30 d | 2.68 ± 0.28 ab |
| 6 | 650 | 88.55 ± 0.18 h | −0.98 ± 0.06 a−c | 33.28 ± 0.45 cd | 3.40 ± 0.44 ab |
| Extruded products with 20% quinoa fortification | |||||
| 7 | 350 | 85.09 ± 0.28 a−c | −0.51 ± 0.13 de | 31.93 ± 0.36 b−d | 4.82 ± 0.34 ab |
| 8 | 500 | 85.74 ± 0.12 b−d | −0.80 ± 0.05 a−f | 31.65 ± 0.39 a−d | 4.88 ± 0.45 ab |
| 9 | 650 | 86.37 ± 0.22 de | −0.86 ± 0.12 a−d | 31.41 ± 0.19 a−c | 4.96 ± 0.34 ab |
| Extruded products with 30% quinoa fortification | |||||
| 10 | 350 | 84.55 ± 0.05 a | −0.67 ± 0.06 c−e | 29.77 ± 0.53 ab | 6.99 ± 0.36 ab |
| 11 | 500 | 84.88 ± 0.12 ab | −1.14 ± 0.27 ab | 29.64 ± 0.26 a | 7.08 ± 0.13 ab |
| 12 | 650 | 85.80 ± 0.24 cd | −1.22 ± 0.10 a | 30.18 ± 0.45 ab | 6.33 ± 0.42 b |
| Sample | Screw Speed (rpm) | Moisture (%) | Proteins (% d.m.) | Starch (% d.m.) | Total Sugars (% d.m.) | Total Carbohydrates (% d.m) | Lipids (% d.m.) | Cellulose (% d.m.) | Ash (% d.m.) | Total Dietary Fiber (g/100 g) |
|---|---|---|---|---|---|---|---|---|---|---|
| Extruded products with 0% quinoa fortification | ||||||||||
| 1 | 350 | 9.54 ± 0.04 d | 7.50 ± 0.02 a | 82.36 ± 0.70 d | 1.83 ± 0.03 e | 83.03 ± 0.80 bc | 1.12 ± 0.02 a | 1.97 ± 0.01 a | 0.28 ± 0.00 a | 5.70 ± 0.05 bc |
| 2 | 500 | 9.22 ± 0.11 bc | 7.45 ± 0.03 a | 79.07 ± 0.06 c | 1.82 ± 0.02 e | 83.59 ± 0.12 c | 1.12 ± 0.01 a | 2.14 ± 0.02 b | 0.27 ± 0.01 a | 5.62 ± 0.08 a–c |
| 3 | 650 | 9.14 ± 0.06 bc | 7.35 ± 0.08 a | 74.06 ± 0.23 a | 1.75 ± 0.03 b–d | 83.34 ± 0.80 c | 1.13 ± 0.01 a | 2.14 ± 0.02 b | 0.28 ± 0.00 a | 5.48 ± 0.04 a |
| Extruded products with 10% quinoa fortification | ||||||||||
| 4 | 350 | 9.21 ± 0.08 c | 8.42 ± 0.06 b | 81.48 ± 0.59 d | 1.82 ± 0.01 e | 82.60 ± 0.99 a–c | 1.36 ± 0.02 b | 2.22 ± 0.02 cd | 0.50 ± 0.01 c | 5.73 ± 0.11 c |
| 5 | 500 | 9.09 ± 0.10 a–c | 8.62 ± 0.11 b | 78.50 ± 0.31 c | 1.81 ± 0.02 de | 82.37 ± 1.07 a–c | 1.40 ± 0.01 b | 2.20 ± 0.02 bc | 0.49 ± 0.00 bc | 5.68 ± 0.04 bc |
| 6 | 650 | 8.92 ± 0.13 ab | 8.34 ± 0.17 b | 76.01 ± 0.71 ab | 1.71 ± 0.01 ab | 82.28 ± 0.86 a–c | 1.38 ± 0.01 b | 2.23 ± 0.02 cd | 0.48 ± 0.01 b | 5.53 ± 0.04 ab |
| Extruded products with 20% quinoa fortification | ||||||||||
| 7 | 350 | 9.11 ± 0.11 c | 9.26 ± 0.12 de | 79.05 ± 0.64 c | 1.82 ± 0.01 e | 81.72 ± 0.45 a–c | 1.66 ± 0.02 c | 2.25 ± 0.04 cd | 0.56 ± 0.00 e | 6.20 ± 0.11 de |
| 8 | 500 | 9.08 ± 0.09 a–c | 8.96 ± 0.04 cd | 77.52 ± 0.63 bc | 1.80 ± 0.02 c–e | 81.45 ± 0.75 a–c | 1.63 ± 0.03 c | 2.28 ± 0.03 de | 0.57 ± 0.01 e | 6.18 ± 0.06 de |
| 9 | 650 | 8.93 ± 0.06 a | 8.88 ± 0.06 c | 75.50 ± 0.67 a | 1.70 ± 0.02 ab | 81.32 ± 0.61 a–c | 1.64 ± 0.02 c | 2.25 ± 0.03 cd | 0.54 ± 0.01 d | 6.15 ± 0.05 d |
| Extruded products with 30% quinoa fortification | ||||||||||
| 10 | 350 | 9.00 ± 0.13 a–c | 9.85 ± 0.19 g | 77.92 ± 0.46 bc | 1.78 ± 0.01 c–e | 80.40 ± 1.15 a | 2.25 ± 0.03 d | 2.34 ± 0.02 ef | 0.65 ± 0.01 f | 6.35 ± 0.08 e |
| 11 | 500 | 8.94 ± 0.17 ab | 9.49 ± 0.07 f | 76.54 ± 0.87 ab | 1.74 ± 0.01 a–c | 80.54 ± 1.47 ab | 2.35 ± 0.04 e | 2.36 ± 0.03 f | 0.70 ± 0.01 h | 6.32 ± 0.06 de |
| 12 | 650 | 8.95 ± 0.13 a–c | 9.35 ± 0.11 ef | 73.82 ± 1.03 a | 1.68 ± 0.02 a | 80.58 ± 0.80 ab | 2.29 ± 0.05 de | 2.35 ± 0.03 ef | 0.68 ± 0.01 g | 6.26 ± 0.08 de |
| Sample | Screw Speed (rpm) | Zn (mg/kg) | Cu (mg/kg) | Fe (mg/kg) | K (mg/kg) | Mg (mg/kg) | Ca (mg/kg) | Mn (mg/kg) | Na (mg/kg) |
|---|---|---|---|---|---|---|---|---|---|
| Extruded products with 0% quinoa fortification | |||||||||
| 1 | 350 | 4.30 ± 0.03 b | <1.25 ± 0.00 a | 6.21 ± 0.07 a | 968.88 ± 8.58 b | 220.31 ± 1.87 a | 26.01 ± 0.33 a | 1.24 ± 0.01 b | 170.68 ± 1.14 f |
| 2 | 500 | 4.02 ± 0.06 a | <1.25 ± 0.00 a | 6.06 ± 0.03 a | 898.10 ± 0.34 a | 229.30 ± 1.61 a | 25.85 ± 0.02 a | 1.13 ± 0.01 a | 183.51 ± 0.19 g |
| 3 | 650 | 4.22 ± 0.04 b | <1.25 ± 0.00 a | 6.77 ± 0.09 b | 945.06 ± 11.75 ab | 219.22 ± 0.74 a | 24.98 ± 0.27 a | 1.22 ± 0.01 ab | 168.62 ± 1.86 f |
| Extruded products with 10% quinoa fortification | |||||||||
| 4 | 350 | 5.72 ± 0.13 c | 1.31 ± 0.01 b | 9.62 ± 0.07 d | 1434.98 ± 14.84 c | 369.63 ± 3.47 c | 34.54 ± 0.20 bc | 2.21 ± 0.03 c | 150.69 ± 0.62 e |
| 5 | 500 | 6.01 ± 0.11 d | <1.25 ± 0.00 a | 9.05 ± 0.10 c | 1405.35 ± 10.73 c | 357.33 ± 5.53 b | 34.05 ± 0.49 b | 2.29 ± 0.02 cd | 145.14 ± 0.89 d |
| 6 | 650 | 6.26 ± 0.05 e | 1.34 ± 0.02 b | 9.86 ± 0.09 d | 1416.53 ± 11.11 c | 387.76 ± 1.31 d | 35.21 ± 0.24 c | 2.36 ± 0.02 d | 138.65 ± 1.53 c |
| Extruded products with 20% quinoa fortification | |||||||||
| 7 | 350 | 7.50 ± 0.02 f | 1.63 ± 0.01 e | 14.27 ± 0.07 ef | 1717.12 ± 24.11 d | 446.06 ± 4.78 f | 41.77 ± 0.64 d | 3.36 ± 0.02 e | 126.67 ± 1.26 b |
| 8 | 500 | 7.72 ± 0.09 g | 1.55 ± 0.03 d | 13.84 ± 0.08 e | 1888.34 ± 21.66 e | 441.82 ± 4.84 f | 42.17 ± 0.49 d | 3.47 ± 0.06 f | 137.50 ± 1.32 c |
| 9 | 650 | 7.85 ± 0.13 g | 1.46 ± 0.01 c | 14.55 ± 0.05 f | 1899.84 ± 30.20 e | 427.68 ± 6.81 e | 42.85 ± 0.43 d | 3.75 ± 0.01 g | 130.87 ± 1.34 b |
| Extruded products with 30% quinoa fortification | |||||||||
| 10 | 350 | 9.87 ± 0.10 j | 1.75 ± 0.00 fg | 17.47 ± 0.06 g | 2177.22 ± 15.10 g | 562.02 ± 6.94 i | 50.54 ± 0.35 e | 4.57 ± 0.07 i | 85.65 ± 1.35 a |
| 11 | 500 | 9.26 ± 0.07 h | 1.72 ± 0.03 f | 17.61 ± 0.19 g | 2225.50 ± 21.90 f | 513.27 ± 2.77 g | 51.14 ± 0.62 e | 4.36 ± 0.00 h | 90.21 ± 1.08 a |
| 12 | 650 | 9.57 ± 0.11 i | 1.78 ± 0.02 g | 18.20 ± 0.31 h | 2061.55 ± 29.62 g | 529.00 ± 5.96 h | 51.64 ± 0.60 e | 4.32 ± 0.02 h | 86.79 ± 0.38 a |
| Sample | Screw Speed (rpm) | Isoleucine (g/100 g of Protein) | Leucine (g/100 g of Protein) | Lysine (g/100 g of Protein) | Methionine + Cystine (g/100 g of Protein) | Phenylalanine + Tyrosine (g/100 g of Protein) | Threonine (g/100 g of Protein) | Tryptophan (g/100 g of Protein) | Valine (g/100 g of Protein) | Total Essential Amino Acids (g/100 g of Protein) |
|---|---|---|---|---|---|---|---|---|---|---|
| Extruded products with 0% quinoa fortification | ||||||||||
| 1 | 350 | 3.30 ± 0.01 a | 11.83 ± 0.10 d–f | 2.21 ± 0.02 a | 3.10 ± 0.03 ab | 8.24 ± 0.09 ab | 3.59 ± 0.04 a | 0.70 ± 0.01 a | 4.65 ± 0.04 a | 37.81 ± 0.41 a–c |
| 2 | 500 | 3.41 ± 0.03 ab | 12.05 ± 0.09 fg | 2.47 ± 0.03 b | 3.33 ± 0.06 c | 8.46 ± 0.08 b–d | 3.69 ± 0.03 a–d | 0.75 ± 0.01 bc | 4.73 ± 0.03 a–c | 39.10 ± 0.44 de |
| 3 | 650 | 3.46 ± 0.02 bc | 12.32 ± 0.13 g | 2.57 ± 0.03 c | 3.49 ± 0.03 d | 8.85 ± 0.12 e | 3.74 ± 0.04 b–d | 0.77 ± 0.00 cd | 4.81 ± 0.03 c–e | 40.01 ± 0.40 e |
| Extruded products with 10% quinoa fortification | ||||||||||
| 4 | 350 | 3.39 ± 0.04 ab | 11.42 ± 0.14 c | 2.41 ± 0.01 b | 3.11 ± 0.04 ab | 8.22 ± 0.15 ab | 3.61 ± 0.02 ab | 0.73 ± 0.01 b | 4.67 ± 0.03 ab | 37.19 ± 0.28 ab |
| 5 | 500 | 3.46 ± 0.02 bc | 11.63 ± 0.13 c–e | 2.61 ± 0.02 c | 3.21 ± 0.03 b | 8.43 ± 0.03 b–d | 3.69 ± 0.07 a–d | 0.78 ± 0.00 d | 4.75 ± 0.05 a–c | 38.91 ± 0.29 c–e |
| 6 | 650 | 3.55 ± 0.02 c–e | 11.88 ± 0.12 ef | 2.89 ± 0.02 e | 3.42 ± 0.05 cd | 8.77 ± 0.11 e | 3.79 ± 0.04 c–e | 0.81 ± 0.01 ef | 4.82 ± 0.05 c–e | 39.19 ± 0.37 de |
| Extruded products with 20% quinoa fortification | ||||||||||
| 7 | 350 | 3.49 ± 0.05 b–d | 10.84 ± 0.15 b | 2.60 ± 0.01 c | 3.04 ± 0.03 a | 8.18 ± 0.11 ab | 3.68 ± 0.02 a–c | 0.79 ± 0.00 de | 4.65 ± 0.09 a | 37.04 ± 0.42 ab |
| 8 | 500 | 3.58 ± 0.02 de | 11.37 ± 0.05 c | 2.81 ± 0.02 d | 3.20 ± 0.03 b | 8.37 ± 0.07 a–c | 3.75 ± 0.06 cd | 0.82 ± 0.01 f | 4.77 ± 0.05 a–e | 38.49 ± 0.54 cd |
| 9 | 650 | 3.61 ± 0.04 e | 11.49 ± 0.03 cd | 3.09 ± 0.03 f | 3.41 ± 0.02 cd | 8.70 ± 0.12 de | 3.82 ± 0.03 de | 0.86 ± 0.01 g | 4.87 ± 0.01 de | 38.99 ± 0.59 c–e |
| Extruded products with 30% quinoa fortification | ||||||||||
| 10 | 350 | 3.58 ± 0.03 de | 10.41 ± 0.11 a | 2.75 ± 0.04 d | 3.00 ± 0.03 a | 8.10 ± 0.15 a | 3.72 ± 0.02 a–d | 0.82 ± 0.02 f | 4.68 ± 0.04 sb | 36.81 ± 0.41 a |
| 11 | 500 | 3.62 ± 0.03 e | 10.89 ± 0.10 b | 3.18 ± 0.05 g | 3.11 ± 0.01 ab | 8.30 ± 0.09 ab | 3.79 ± 0.05 c–e | 0.86 ± 0.01 g | 4.79 ± 0.08 b–e | 38.07 ± 0.67 b–d |
| 12 | 650 | 3.75 ± 0.04 f | 10.99 ± 0.09 b | 3.38 ± 0.03 h | 3.37 ± 0.05 c | 8.67 ± 0.09 c–e | 3.89 ± 0.05 e | 0.91 ± 0.01 h | 4.88 ± 0.04 e | 38.51 ± 0.42 cd |
| Sample | Screw Speed (rpm) | Palmitic Acid (g/100 g of Fat) | Stearic Acid (g/100 g of Fat) | Oleic Acid (g/100 g of Fat) | Linoleic Acid (g/100 g of Fat) | Linolenic Acid (g/100 g of fat) | Total Fatty Acids (g/100 g of Fat) |
|---|---|---|---|---|---|---|---|
| Extruded products with 0% quinoa fortification | |||||||
| 1 | 350 | 10.61 ± 0.12 a | 2.40 ± 0.03 a | 26.41 ± 0.33 c | 51.03 ± 0.41 de | 0.58 ± 0.01 a | 91.19 ± 1.38 a |
| 2 | 500 | 10.90 ± 0.08 ab | 2.41 ± 0.02 a | 27.29 ± 0.35 d | 53.18 ± 0.47 fg | 0.55 ± 0.00 a | 94.07 ± 0.68 a–d |
| 3 | 650 | 10.95 ± 0.12 a–c | 2.49 ± 0.01 a | 27.68 ± 0.21 d | 54.91 ± 0.51 g | 0.64 ± 0.01 b | 96.99 ± 0.69 de |
| Extruded products with 10% quinoa fortification | |||||||
| 4 | 350 | 11.15 ± 0.07 b–d | 2.62 ± 0.05 bc | 26.01 ± 0.37 bc | 49.46 ± 0.24 cd | 1.00 ± 0.01 c | 92.59 ± 0.33 a–c |
| 5 | 500 | 11.30 ± 0.05 c–e | 2.60 ± 0.02 b | 26.11 ± 0.13 bc | 51.08 ± 0.24 de | 1.08 ± 0.02 d | 94.21 ± 1.21 b–e |
| 6 | 650 | 11.49 ± 0.18 de | 2.65 ± 0.02 bc | 26.43 ± 0.41 c | 52.65 ± 0.33 ef | 1.18 ± 0.02 e | 97.73 ± 0.59 f |
| Extruded products with 20% quinoa fortification | |||||||
| 7 | 350 | 11.68 ± 0.11 ef | 2.71 ± 0.04 cd | 25.72 ± 0.18 a–c | 46.75 ± 0.76 b | 1.50 ± 0.01 f | 92.99 ± 0.87 a–c |
| 8 | 500 | 11.98 ± 0.04 fg | 2.80 ± 0.03 de | 26.00 ± 0.33 bc | 48.06 ± 0.39 bc | 1.55 ± 0.02 g | 95.19 ± 0.88 c–f |
| 9 | 650 | 11.99 ± 0.15 fg | 2.85 ± 0.01 e | 26.13 ± 0.29 bc | 50.87 ± 0.50 de | 1.61 ± 0.01 h | 97.09 ± 0.99 ef |
| Extruded products with 30% quinoa fortification | |||||||
| 10 | 350 | 12.20 ± 0.05 gh | 2.99 ± 0.03 f | 25.07 ± 0.17 a | 44.28 ± 0.29 a | 2.00 ± 0.01 i | 92.09 ± 0.75 ab |
| 11 | 500 | 12.43 ± 0.25 h | 3.05 ± 0.00 fg | 25.17 ± 0.29 a | 46.44 ± 0.45 b | 2.01 ± 0.02 i | 94.41 ± 0.82 b–e |
| 12 | 650 | 12.48 ± 0.06 h | 3.10 ± 0.01 g | 25.43 ± 0.27 ab | 47.99 ± 0.47 bc | 2.13 ± 0.03 j | 98.19 ± 0.48 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Filipović, J.; Djalovic, I.; Košutić, M.; Nićetin, M.; Lončar, B.; Radosavljević, M.; Filipović, V. Modeling and Optimization of Extruded Corn Product Fortification. Foods 2026, 15, 208. https://doi.org/10.3390/foods15020208
Filipović J, Djalovic I, Košutić M, Nićetin M, Lončar B, Radosavljević M, Filipović V. Modeling and Optimization of Extruded Corn Product Fortification. Foods. 2026; 15(2):208. https://doi.org/10.3390/foods15020208
Chicago/Turabian StyleFilipović, Jelena, Ivica Djalovic, Milenko Košutić, Milica Nićetin, Biljana Lončar, Miloš Radosavljević, and Vladimir Filipović. 2026. "Modeling and Optimization of Extruded Corn Product Fortification" Foods 15, no. 2: 208. https://doi.org/10.3390/foods15020208
APA StyleFilipović, J., Djalovic, I., Košutić, M., Nićetin, M., Lončar, B., Radosavljević, M., & Filipović, V. (2026). Modeling and Optimization of Extruded Corn Product Fortification. Foods, 15(2), 208. https://doi.org/10.3390/foods15020208

