Growth Performance, Carcass Characteristics, and Meat Quality of Lambs Fed a High-Forage, Low-Starch, High-Oil Diet
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Slaughter, Carcass Evaluation and Sampling
2.3. Analytical Determination
2.3.1. Feed Chemical Composition
2.3.2. Chemical Composition, Physical and Sensory Properties of Meat
2.3.3. Colour and Lipid Stability of Meat
2.4. Statistical Analysis
3. Results
3.1. Growth Performance and Feed Intake
3.2. Carcass and Meat Quality Traits
3.3. Meat Colour and Lipid Stability
3.4. Fatty Acid Composition of Intramuscular Fat
4. Discussion
4.1. Growth Performance and Feed Intake
4.2. Carcass Traits
4.3. Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADF | Acid detergent fibre |
| ADG | Average daily gain |
| ADL | Acid detergent lignin |
| BCFA | Branched-chain fatty acids |
| BH | Ruminal biohydrogenation |
| BHI | Ruminal biohydrogenation intermediates |
| DM | Dry matter |
| DMA | Dimethyl acetals |
| FA | Fatty acid |
| FRAP | Ferric reducing antioxidant power |
| LC-SFA | Linear chain saturated fatty acids |
| LL | Longissimus lomborum |
| LT | Longissimus thoracis |
| MDA | Malondialdehyde |
| MUFA | Monounsaturated fatty acids |
| NDF | Neutral detergent fibre |
| OBCFA | Odd- and branched-chain fatty acids |
| PUFA | Polyunsaturated fatty acids |
| SFA | Saturated fatty acids |
| TAE | Tannic acid equivalents |
| TEAC | Trolox equivalent antioxidant capacity |
| TBARS | Thiobarbituric acid reactive substances |
References
- Campo, M.M.; Mur, L.; Fugita, C.A.; Sañudo, C. Current strategies in lamb production in Mediterranean areas. Anim. Front. 2016, 6, 31–36. [Google Scholar] [CrossRef]
- Bessa, R.J.B.; Alves, S.P.; Santos-Silva, J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. Eur. J. Lipid Sci. Technol. 2015, 117, 1325–1344. [Google Scholar] [CrossRef]
- Aldai, N.; de Renobales, M.; Barron, L.J.R.; Kramer, J.K.G. What are the trans fatty acids issues in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable oils, and synthetic supplements. Eur. J. Lipid Sci. Technol. 2013, 115, 1378–1401. [Google Scholar] [CrossRef]
- Alves, S.P.; Vahmani, P.; Mapiye, C.; McAllister, T.A.; Bessa, R.J.B.; Dugan, M.E.R. Trans-10 18:1 in ruminant meats: A review. Lipids 2021, 56, 539–562. [Google Scholar] [CrossRef] [PubMed]
- Dugan, M.E.R.; Salazar, V.; Rolland, D.C.; Vahmani, P.; Aalhus, J.L.; López-Campos, Ó.; Prieto, N.; Juárez, M. Retail lamb fat composition in western Canada. Can. J. Anim. Sci. 2019, 99, 971–974. [Google Scholar] [CrossRef]
- Vahmani, P.; Xu, Y.; Dugan, M.E.R.; Hackmann, T.J. Trans-10 shifted ruminal biohydrogenation and its implications for ruminant milk and meat fat content and quality. Can. J. Anim. Sci. 2024, 99, 1–10. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Francisco, A.; Alves, S.P.; Portugal, P.; Dentinho, T.; Almeida, J.; Soldado, D.; Jerónimo, E.; Bessa, R.J.B. Effect of dietary neutral detergent fibre source on lambs growth, meat quality and biohydrogenation intermediates. Meat Sci. 2019, 147, 28–36. [Google Scholar] [CrossRef] [PubMed]
- European Union. Diretive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Sauvant, D.; Perez, J.M.; Tran, G. Tables de Composition et de Valeur Nutritive des Matières Premières Destinées aux Animaux d’Élevage: Porcs, Volailles, Bovins, Ovins, Caprins, Lapins, Chevaux, Poisons; INRA Éditions: Paris, France, 2002. [Google Scholar]
- European Commission. Community Scale for the Classification of Carcases of Ovine Animals; Office of Official Publications of European Communities: Luxembourg, 2011. [Google Scholar]
- ISO 6496; Animal Feeding Stuffs—Determination of Moisture and the Other Volatile Matter Content. International Organization for Standardization: Geneva, Switzerland, 1999.
- ISO 5984; Animal Feeding Stuffs—Determination of Crude Ash. International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO 6492; Animal Feeding Stuffs—Determination of Fat Content. International Organization for Standardization: Geneva, Switzerland, 1999.
- ISO 5983; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Kjeldhal Method. International Organization for Standardization: Geneva, Switzerland, 1997.
- Clegg, K.M. The application of the anthrone reagent to the estimation of starch in cereals. J. Sci. Food Agric. 1956, 7, 40–44. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage fiber analyses (apparatus, reagents, procedures, and some applications). In USDA-ARS Agricultural Handbook; U.S. Department of Agriculture, Economic Research, Statistical Reporting, Agricultural Research, Foreign Agricultural Services: Washington, DC, USA, 1970. [Google Scholar]
- Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage. A Laboratory Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2003. [Google Scholar]
- Luciano, G.; Vasta, V.; Monahan, F.J.; López-Andrés, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Vítor, A.C.M.; Francisco, A.E.; Silva, J.; Pinho, M.; Huws, S.A.; Santos-Silva, J.; Bessa, R.J.B.; Alves, S.P. Freeze-dried Nannochloropsis oceanica biomass protects eicosapentaenoic acid (EPA) from metabolization in the rumen of lambs. Sci. Rep. 2021, 11, 21878. [Google Scholar] [CrossRef]
- ISO 1442; Meat and Meat Products—Determination of Moisture Content. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 2917; Meat and Meat Products. Measurement of pH—Reference Method. International Organization for Standardization: Geneva, Switzerland, 1999.
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Cruz-Hernandez, C.; Deng, Z.; Zhou, J.; Hill, A.R.; Yurawecz, M.P.; Delmonte, P.; Mossoba, M.M.; Dugan, M.E.R.; Kramer, J.K.G. Methods for analysis of conjugated linoleic acids and trans-18:1 isomers in dairy fats by using a combination of gas chromatography, silver-ion thin-layer chromatography/gas ghromatography, and silver-ion liquid chromatography. J. AOAC Int. 2004, 87, 545–562. [Google Scholar] [CrossRef]
- ISO 8586-1:1993; Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors. International Organization for Standardization: Geneva, Switzerland, 1993.
- Grau, A.; Guardiola, F.; Boatella, J.; Barroeta, A.; Codony, R. Measurement of 2-thiobarbituric acid values in dark chicken meat through derivative spectrophotometry: Influence of various parameters. J. Agric. Food Chem. 2000, 48, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Mendes, I.A.; Portugal, P.V.; Bessa, R.J.B. Effect of particle size and soybean oil supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs. Livest. Prod. Sci. 2004, 90, 79–88. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, F.; Li, F.; Wang, Z.; Guo, L.; Weng, X.; Sun, X.; He, Z.; Meng, X.; Liang, Z.; et al. Influence of dietary forage neutral detergent fiber on ruminal fermentation, chewing activity, nutrient digestion, and ruminal microbiota of Hu sheep. Animals 2025, 15, 314. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.W.; Moss, G.E.; Rule, D.C. A decade of developments in the area of fat supplementation research with beef cattle and sheep. J. Anim. Sci. 2008, 86, E188–E204. [Google Scholar] [CrossRef]
- Jenkins, T.C. Lipid Metabolism in the Rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Manso, T.; Bodas, R.; Castro, T.; Jimeno, V.; Mantecon, A.R. Animal performance and fatty acid composition of lambs fed with different vegetable oils. Meat Sci. 2009, 83, 511–516. [Google Scholar] [CrossRef]
- Jerónimo, E.; Alves, S.P.; Martins, S.V.; Prates, J.A.M.; Bessa, R.J.B.; Santos-Silva, J. Effect of sodium bentonite and vegetable oil blend supplementation on growth, carcass quality and intramuscular fatty acid composition of lambs. Anim. Feed Sci. Technol. 2010, 158, 136–145. [Google Scholar] [CrossRef]
- Boles, J.A.; Kott, R.W.; Hatfield, P.G.; Bergman, J.W.; Flynn, C.R. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb. J. Anim. Sci. 2005, 83, 2175–2181. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition. Meat Sci. 2017, 123, 166–172. [Google Scholar] [CrossRef]
- Forbes, J.M. Voluntary Food Intake and Diet Selection in Farm Animals, 2nd ed.; CABI International: Cambridge, MA, USA; Wallingford, UK, 2007. [Google Scholar]
- Francisco, A.E.; Janíček, M.; Dentinho, T.; Portugal, A.P.V.; Almeida, J.M.; Alves, S.P.; Fialho, L.; Jerónimo, E.; Bessa, R.J.B.; Santos-Silva, J. Effects of alfalfa particle size and starch content in diets on feeding behaviour, intake, rumen parameters, animal performance and meat quality of growing lambs. Meat Sci. 2020, 161, 107964. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Daly, C.C.; Devine, C.E. The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Sci. 1996, 42, 67–78. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Hegarty, R.S.; Walker, P.J.; Pethick, D.W. Relationship between animal age, intramuscular fat, cooking loss, pH, shear force and eating quality of aged meat from sheep. J. Aust. J. Exp. Agric. 2006, 46, 879–884. [Google Scholar] [CrossRef]
- Starkey, C.P.; Geesink, G.H.; Oddy, V.H.; Hopkins, D.L. Explaining the variation in lamb longissimus shear force across and within ageing periods using protein degradation, sarcomere length and collagen characteristics. Meat Sci. 2015, 105, 32–37. [Google Scholar] [CrossRef]
- Shanks, B.C.; Wulf, D.M.; Maddock, R.J. Technical note: The effect of freezing on Warner-Bratzler shear force values of beef longissimus steaks across several postmortem aging periods. J. Anim. Sci. 2002, 80, 2122–2125. [Google Scholar] [CrossRef]
- Luciano, G.; Monahan, F.J.; Vasta, V.; Pennisi, P.; Bella, M.; Priolo, A. Lipid and colour stability of meat from lambs fed fresh herbage or concentrate. Meat Sci. 2009, 82, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Khliji, S.; van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Abril, M.; Campo, M.M.; Önenç, A.; Sañudo, C.; Albertí, P.; Negueruela, A.I. Beef colour evolution as a function of ultimate pH. Meat Sci. 2001, 58, 69–78. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Inserra, L.; Luciano, G.; Bella, M.; Scerra, M.; Cilione, C.; Basile, P.; Lanza, M.; Priolo, A. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork. Meat Sci. 2015, 100, 256–261. [Google Scholar] [CrossRef]
- Scerra, M.; Bognanno, M.; Foti, F.; Caparra, P.; Cilione, C.; Mangano, F.; Natalello, A.; Chies, L. Influence of almond hulls in lamb diets on animal performance and meat quality. Meat Sci. 2022, 192, 108903. [Google Scholar] [CrossRef] [PubMed]
- Natalello, A.; Priolo, A.; Valenti, B.; Codini, M.; Mattioli, S.; Pauselli, M.; Puccio, M.; Lanza, M.; Stergiadis, S.; Luciano, G. Dietary pomegranate by-product improves oxidative stability of lamb meat. Meat Sci. 2020, 162, 108037. [Google Scholar] [CrossRef]
- Ripoll, G.; Joy, M.; Muñoz, F. Use of dietary vitamin E and selenium (Se) to increase the shelf life of modified atmosphere packaged light lamb meat. Meat Sci. 2011, 87, 88–93. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Alves, S.P.; Francisco, A.; Almeida, J.; Alfaia, C.M.; Martins, S.V.; Prates, J.A.M.; Santos-Silva, J.; Doran, O.; Bessa, R.J.B. The reduction of starch in finishing diets supplemented with oil does not prevent the accumulation of trans-10 18:1 in lamb meat1. J. Anim. Sci. 2017, 95, 3745–3761. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Galisteo, O.O.; Ramírez, C.A.; Blanco, F.P.; Angel de la Fuente, M.; Sánchez, N.N.; Marín, A.L.M. Intramuscular fatty acid profile of feedlot lambs fed concentrates with alternative ingredients. J. Anim. Prod. Sci. 2019, 59, 914–920. [Google Scholar] [CrossRef]
- Harfoot, C.; Hazelwood, G. Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem; Elsevier: London, UK, 1997; pp. 382–426. [Google Scholar]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Fievez, V.; Colman, E.; Castro-Montoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Griinari, J.M.; Corl, B.A.; Lacy, S.H.; Chouinard, P.Y.; Nurmela, K.V.V.; Bauman, D.E. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Daniel, Z.C.T.R.; Wynn, R.J.; Salter, A.M.; Buttery, P.J. Differing effects of forage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: The role of stearoyl-CoA desaturase. J. Anim. Sci. 2004, 82, 747–758. [Google Scholar] [CrossRef]
- Gonzalez-Soto, M.; Mutch, D.M. Diet regulation of long-chain PUFA synthesis: Role of macronutrients, micronutrients, and polyphenols on Δ-5/Δ-6 desaturases and elongases 2/5. Adv. Nutr. 2021, 12, 980–994. [Google Scholar] [CrossRef]
- Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients 2020, 12, 2555. [Google Scholar] [CrossRef]
- FAO. Fats and Fatty Acids in Human Nutrition. In FAO—Report of an Expert Consultation; FAO: Rome, Italy, 2010. [Google Scholar]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of omega-6 polyunsaturated fatty acids (PUFAs) versus deficiency of omega-3 PUFAs in modern-day diets: The disturbing factor for their “balanced antagonistic metabolic functions” in the Human body. J. Lipids 2021, 221, 8848161. [Google Scholar] [CrossRef] [PubMed]
- Jerónimo, E.; Alves, S.P.; Prates, J.A.M.; Santos-Silva, J.; Bessa, R.J.B. Effect of dietary replacement of sunflower oil with linseed oil on intramuscular fatty acids of lamb meat. Meat Sci. 2009, 83, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.L.; Sinclair, L.A.; Wilkinson, R.G.; Hallett, K.G.; Enser, M.; Wood, J.D. Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs. J. Anim. Sci. 2004, 82, 1461–1470. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Hernández-García, P.A.; Chay-Canul, A.J.; Díaz Galván, C.; Razo Ortíz, P.B. Microalgae as a dietary additive for lambs: A meta-analysis on growth performance, meat quality, and meat fatty acid profile. Small Rumin. Res. 2023, 227, 107072. [Google Scholar] [CrossRef]
- European Union. Directive 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data. Off. J. Eur. Union 2016, 119, 1–88. [Google Scholar]
- Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público. Código de Ética e Conduta 2022–2025, 3rd ed.; Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público: Oeiras, Portugal, 2022. [Google Scholar]


| Ingredients | g/kg |
|---|---|
| Maize | 86 |
| Wheat | 90 |
| Dehydrated citrus pulp | 55 |
| Dehydrated sugar beet pulp | 60 |
| Soybean hulls | 60 |
| Soybean meal | 30 |
| Sunflower meal | 110 |
| Soybean oil | 60 |
| Dehydrated lucerne | 400 |
| Calcium Carbonate | 13 |
| Sodium bicarbonate | 9 |
| Dicalcium phosphate | 20 |
| Salt | 4 |
| Premix 1 | 3 |
| Diets | ||
|---|---|---|
| Control | Experimental | |
| Chemical composition (g/kg dry matter) | ||
| Dry matter 1 (DM) | 896 | 919 |
| Crude protein | 177 | 150 |
| Ether extract | 18.9 | 77.0 |
| Crude fibre | 34.5 | 168 |
| NDF 2 | 180 | 343 |
| ADF 3 | 61.5 | 224 |
| ADL 4 | 9.79 | 44.9 |
| Sugar | 77.4 | 64.2 |
| Starch | 509 | 173 |
| Ash | 69.2 | 105 |
| Total fatty acids | 23.1 | 60.7 |
| Metabolizable energy (kcal/kg DM) 5 | 2838 | 2224 |
| Total phenols (g TAE/kg DM) 6 | 2.22 | 5.68 |
| Antioxidant activity | ||
| FRAP 7 | 13.1 | 70.9 |
| TEAC 8 | 11.4 | 65.1 |
| Fatty acid profile (g/100 g total fatty acids) | ||
| 14:0 | 0.61 | 0.18 |
| 16:0 | 34.9 | 15.0 |
| 18:0 | 3.99 | 4.48 |
| c9–18:1 | 33.9 | 23.3 |
| c11–18:1 | 1.02 | 1.51 |
| 18:2n-6 | 23.3 | 48.0 |
| 18:3n-3 | 1.17 | 6.44 |
| Diets | SEM 1 | p Values | ||
|---|---|---|---|---|
| Control | Experimental | |||
| Growth performance | ||||
| Initial live weight (kg) 2 | 21.5 | 21.0 | 0.398 | - |
| Slaughter live weight (kg) 2,3 | 31.8 | 31.1 | 0.41 | 0.228 |
| Average daily gain (g/d) 2 | 341 | 325 | 12.2 | 0.384 |
| Feed conversion ratio 4,5 | 3.61 | 4.72 | 0.108 | 0.002 |
| Feed cost/kg of weight gain (€) 4 | 1.73 | 2.09 | 0.048 | 0.006 |
| Daily intake (g/day) 4 | ||||
| Dry matter | 1089 | 1354 | 18.5 | <0.001 |
| Crude protein | 193 | 203 | 3.0 | 0.031 |
| Ether extract | 20.6 | 104 | 1.05 | <0.001 |
| Crude fibre | 37.6 | 228 | 2.29 | <0.001 |
| NFD 6 | 196 | 465 | 5.14 | <0.001 |
| ADF 7 | 67.0 | 304 | 3.10 | <0.001 |
| ADL 8 | 10.7 | 60.8 | 0.61 | <0.001 |
| Sugar | 84.3 | 86.9 | 1.32 | 0.184 |
| Starch | 555 | 235 | 7.0 | <0.001 |
| Ash | 75.4 | 143 | 1.66 | <0.001 |
| Metabolizable energy (kcal/day) | 3091 | 3010 | 47.1 | 0.240 |
| Total phenols | 2.40 | 7.69 | 0.081 | <0.001 |
| Fatty acids | ||||
| 14:0 | 0.15 | 0.15 | 0.002 | 0.456 |
| 16:0 | 8.77 | 12.3 | 0.160 | <0.001 |
| 18:0 | 1.01 | 3.68 | 0.038 | <0.001 |
| c9–18:1 | 8.52 | 19.2 | 0.214 | <0.001 |
| c11–18:1 | 0.26 | 1.24 | 0.013 | <0.001 |
| 18:2n-6 | 5.84 | 39.4 | 0.395 | <0.001 |
| 18:3n-3 | 0.37 | 5.28 | 0.052 | <0.001 |
| Rumen pH | 5.60 | 6.93 | 0.097 | <0.001 |
| Diets | SEM 1 | p Values | ||
|---|---|---|---|---|
| Control | Experimental | |||
| Carcass traits 2 | ||||
| Hot carcass weight (kg) 3 | 15.4 | 15.6 | 0.24 | 0.586 |
| Cold carcass weight (kg) 3 | 14.9 | 15.1 | 0.25 | 0.589 |
| Dressing (%) 4 | 48.2 | 48.8 | 0.71 | 0.252 |
| Kidney knob channel fat (%) 5 | 1.82 | 2.50 | 0.104 | <0.001 |
| Shoulder composition (g/kg) 2 | ||||
| Muscle 5 | 600 | 576 | 12.4 | 0.240 |
| Bone 5 | 221 | 223 | 10.5 | 0.912 |
| Subcutaneous fat 5 | 72 | 84 | 10.6 | 0.476 |
| Intermuscular fat 5 | 104 | 111 | 11.5 | 0.697 |
| Meat chemical and physical characteristics 2 | ||||
| Dry matter (g/kg) | 245 | 243 | 4.5 | 0.713 |
| Crude protein (g/kg) | 207 | 206 | 3.0 | 0.846 |
| Intramuscular fat (g/kg) | 12.3 | 12.3 | 0.93 | 0.977 |
| pH | 5.66 | 5.49 | 0.035 | 0.032 |
| Shear force (N) 6 | 33.6 | 40.2 | 4.59 | 0.355 |
| Cooking loss (g/100 g) 6 | 29.8 | 31.2 | 1.18 | 0.470 |
| Meat sensory attributes 2 | ||||
| Juiciness | 4.83 | 4.81 | 0.199 | 0.830 |
| Tenderness | 5.34 | 5.04 | 0.161 | 0.121 |
| Odour intensity | 2.29 | 2.40 | 0.303 | 0.430 |
| Flavour intensity | 2.25 | 2.32 | 0.404 | 0.704 |
| Flavour acceptability | 5.44 | 5.37 | 0.109 | 0.380 |
| Overall acceptability | 5.34 | 5.23 | 0.098 | 0.308 |
| Diet | SEM 1 | Time (Days) | SEM 1 | p Values | |||||
|---|---|---|---|---|---|---|---|---|---|
| Control | Experimental | 0 | 4 | 7 | Diet | Time | |||
| Colour parameters 2,3 | |||||||||
| L* | 45.8 | 45.6 | 0.59 | 44.9 | 46.2 | 46.0 | 0.56 | 0.801 | 0.113 |
| a* | 14.8 | 13.7 | 0.37 | 15.0 b | 14.6 b | 13.1 a | 0.38 | 0.084 | <0.001 |
| b* | 10.0 | 9.66 | 0.162 | 7.19 a | 11.2 b | 11.1 b | 0.198 | 0.120 | <0.001 |
| C* | 18.0 | 16.9 | 0.28 | 16.7 a | 18.4 b | 17.3 b | 0.32 | 0.052 | <0.001 |
| H* | 33.8 | 35.4 | 0.76 | 25.5 a | 37.6 b | 40.7 c | 0.87 | 0.230 | <0.001 |
| ∆E | 4.96 | 4.94 | 0.347 | - | 4.72 | 5.18 | 0.308 | 0.981 | 0.215 |
| Lipid oxidation 2 | |||||||||
| TBARS 4 | 0.60 | 0.68 | 0.094 | 0.03 a | 0.64 b | 1.25 c | 0.085 | 0.606 | <0.001 |
| Diets | SEM 1 | p Values | ||
|---|---|---|---|---|
| Control | Experimental | |||
| Fatty acid profile (mg/g total fatty acids) 2 | ||||
| LC-SFA 3 | ||||
| 10:0 | 0.88 | 0.81 | 0.064 | 0.525 |
| 12:0 | 1.24 | 1.08 | 0.137 | 0.453 |
| 14:0 | 22.5 | 19.8 | 1.23 | 0.194 |
| 15:0 | 4.09 | 2.63 | 0.204 | 0.007 |
| 16:0 | 226 | 211 | 4.1 | 0.058 |
| 17:0 | 15.5 | 7.21 | 0.702 | 0.001 |
| 18:0 | 166 | 165 | 4.9 | 0.891 |
| 20:0 | 1.13 | 1.16 | 0.052 | 0.750 |
| 22:0 | 0.58 | 0.64 | 0.061 | 0.532 |
| BCFA 4 | ||||
| iso-14:0 | 0.22 | 0.26 | 0.046 | 0.568 |
| iso-15:0 | 0.40 | 0.56 | 0.023 | 0.006 |
| iso-16:0 | 0.68 | 0.75 | 0.036 | 0.255 |
| iso-17:0 | 1.80 | 1.44 | 0.106 | 0.073 |
| iso-18:0 | 0.71 | 0.46 | 0.031 | <0.001 |
| anteiso-15:0 | 0.65 | 0.80 | 0.040 | 0.064 |
| anteiso-17:0 | 3.17 | 2.24 | 0.202 | 0.031 |
| cis-MUFA 5 | ||||
| c9–14:1 | 0.51 | 0.31 | 0.057 | 0.065 |
| c7–16:1 | 2.75 | 2.36 | 0.085 | 0.030 |
| c9–16:1 | 13.6 | 6.46 | 0.766 | 0.003 |
| c9–17:1 | 9.13 | 3.16 | 0.354 | <0.001 |
| c9–18:1 | 343 | 243 | 8.0 | <0.001 |
| c11–18:1 | 16.4 | 12.2 | 0.93 | 0.033 |
| c19–19:1 | 0.62 | 0.47 | 0.036 | 0.024 |
| n-6 PUFA 6 | ||||
| 18:2n-6 | 60.9 | 112 | 7.23 | 0.007 |
| 18:3n-6 | 0.67 | 0.40 | 0.058 | 0.032 |
| 20:2n-6 | 0.50 | 0.93 | 0.086 | 0.023 |
| 20:3n-6 | 2.19 | 1.69 | 0.212 | 0.175 |
| 20:4n-6 | 21.5 | 18.3 | 2.37 | 0.403 |
| 22:4n-6 | 1.99 | 1.79 | 0.356 | 0.713 |
| 22:5n-6 | 0.49 | 0.61 | 0.092 | 0.324 |
| n-3 PUFA 7 | ||||
| 18:3n-3 | 3.92 | 6.95 | 0.205 | <0.001 |
| 20:5n-3 | 2.38 | 1.33 | 0.171 | 0.012 |
| 22:5n-3 | 4.38 | 3.48 | 0.389 | 0.179 |
| 22:6n-3 | 1.06 | 0.53 | 0.049 | 0.002 |
| 20:3n-9 | 3.22 | 1.79 | 0.195 | 0.007 |
| Dimethyl acetals (DMA) | ||||
| DMA 16:0 | 1.19 | 1.22 | 0.291 | 0.931 |
| DMA 18:0 | 0.67 | 0.85 | 0.156 | 0.440 |
| DMA 18:1 | 1.17 | 1.17 | 0.142 | 0.994 |
| Partial sums and ratios | ||||
| LC-SFA3 | 438 | 409 | 6.5 | 0.034 |
| iso-BCFA4 | 3.72 | 3.45 | 0.201 | 0.361 |
| anteiso-BCFA 4 | 3.82 | 3.04 | 0.241 | 0.082 |
| BCFA 4 | 7.54 | 6.49 | 0.403 | 0.081 |
| cis-MUFA 4 | 393 | 308 | 7.2 | <0.001 |
| trans-MUFA 5 | 41.7 | 92.1 | 1.08 | <0.001 |
| MUFA 5 | 435 | 400 | 6.8 | 0.023 |
| n-6 PUFA 6 | 88.0 | 136 | 10.37 | 0.031 |
| n-6 LC-PUFA 8 | 26.5 | 23.0 | 3.12 | 0.473 |
| n-3 PUFA 7 | 11.7 | 12.3 | 0.69 | 0.599 |
| n-3 LC -PUFA 9 | 7.82 | 5.35 | 0.554 | 0.034 |
| PUFA 10 | 108 | 171 | 11.1 | 0.016 |
| SCDi-17 11 | 29.7 | 30.2 | 3.23 | 0.950 |
| Diets | SEM 1 | p Values | ||
|---|---|---|---|---|
| Control | Experimental | |||
| Fatty acid profile of biohydrogenation intermediate (mg/g total fatty acids) 2 | ||||
| 18:1 isomers | ||||
| t4–18:1 | 0.07 | 0.44 | 0.026 | <0.001 |
| t5–18:1 | 0.22 | 0.67 | 0.026 | <0.001 |
| t6-/t7-/t8–18:1 | 2.97 | 6.58 | 0.145 | <0.001 |
| t9–18:1 | 3.05 | 5.27 | 0.101 | <0.001 |
| t10–18:1 | 26.6 | 28.4 | 4.31 | 0.783 |
| t11–18:1 | 4.01 | 31.6 | 3.95 | 0.008 |
| t12–18:1 | 3.66 | 11.0 | 0.390 | <0.001 |
| t15–18:1 | 1.30 | 4.02 | 0.670 | 0.034 |
| t16–18:1 3 | 0.69 | 2.97 | 0.216 | 0.002 |
| c12–18:1 | 4.89 | 33.1 | 2.516 | 0.001 |
| c13–18:1 | 1.12 | 0.85 | 0.110 | 0.166 |
| c15–18:1 | 0.44 | 1.11 | 0.042 | <0.001 |
| c16–18:1 | 0.66 | 4.17 | 0.270 | <0.001 |
| 18:2 isomers | ||||
| c9,t13-/c9,t14–18:2 4 | 1.13 | 3.56 | 0.480 | 0.023 |
| t8,c13-/c9,t15–18:2 | 0.54 | 1.82 | 0.459 | 0.124 |
| c9,t12–18:2 | 0.65 | 1.16 | 0.079 | 0.011 |
| t9,c12–18:2 | 0.90 | 2.17 | 0.144 | 0.003 |
| t11,c15–18:2 5 | 0.71 | 2.90 | 0.231 | 0.003 |
| c9,t11–18:2 6 | 1.94 | 9.66 | 1.076 | 0.007 |
| BHI 18:1 | 41.5 | 90.9 | 1.03 | <0.001 |
| BHI 18:2 | 5.43 | 21.3 | 1.275 | <0.001 |
| t10–18:1/t11–18:1ratio | 7.98 | 1.17 | 1.078 | 0.011 |
| Diets | SEM 1 | p Value | ||
|---|---|---|---|---|
| Control | Experimental | |||
| Fatty acid composition (mg/100 g muscle) 2 | ||||
| 14:0 | 23.7 | 22.4 | 2.23 | 0.691 |
| 16:0 | 232 | 237 | 19.7 | 0.857 |
| 18:0 | 174 | 185 | 14.8 | 0.635 |
| c9–16:1 | 13.7 | 7.21 | 1.308 | 0.025 |
| c9–18:1 | 356 | 274 | 28.6 | 0.112 |
| t10–18:1 | 24.8 | 34.0 | 6.23 | 0.357 |
| t11–18:1 | 4.50 | 34.9 | 4.39 | 0.008 |
| c9,t11–18:2 | 2.22 | 10.7 | 1.19 | 0.007 |
| 18:2n-6 | 56.2 | 120 | 2.24 | <0.001 |
| 20:4n-6 | 19.7 | 18.2 | 0.84 | 0.259 |
| 18:3n-3 | 4.07 | 7.74 | 0.276 | <0.001 |
| 20:5n-3 | 2.43 | 1.52 | 0.160 | 0.016 |
| 22:5n-3 | 4.26 | 3.79 | 0.158 | 0.107 |
| 22:6n-3 | 1.08 | 0.58 | 0.038 | <0.001 |
| Partial sums and indices | ||||
| LC-SFA 3 | 453 | 459 | 37.0 | 0.922 |
| BCFA 4 | 7.86 | 7.23 | 0.778 | 0.601 |
| cis-MUFA 5 | 406 | 345 | 31.9 | 0.248 |
| trans-MUFA 5 | 40.3 | 104 | 4.71 | <0.001 |
| MUFA 5 | 446 | 449 | 36.2 | 0.955 |
| n-6 PUFA 6 | 81.1 | 143 | 3.25 | <0.001 |
| n-6 LC-PUFA 7 | 24.9 | 23.3 | 1.27 | 0.429 |
| n-3 PUFA 8 | 11.8 | 13.6 | 0.54 | 0.077 |
| n-3 LC-PUFA 9 | 7.76 | 5.89 | 0.309 | 0.013 |
| n-6 PUFA/n-3 PUFA 6,8 | 7.62 | 11.2 | 0.667 | 0.020 |
| PUFA 10 | 102 | 183 | 3.9 | <0.001 |
| HH 11 | 1.91 | 2.02 | 0.061 | 0.264 |
| Atherogenicity index 12 | 0.58 | 0.51 | 0.017 | 0.037 |
| Thrombogenicity index 12 | 1.40 | 1.30 | 0.038 | 0.127 |
| Health-promoting index 13 | 1.72 | 1.98 | 0.056 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jerónimo, E.; Guerreiro, O.; Silva, A.; Lage, P.; Alves, H.; Almeida, J.M.; Alves, S.P.; Bessa, R.J.B.; Santos-Silva, J. Growth Performance, Carcass Characteristics, and Meat Quality of Lambs Fed a High-Forage, Low-Starch, High-Oil Diet. Foods 2026, 15, 193. https://doi.org/10.3390/foods15020193
Jerónimo E, Guerreiro O, Silva A, Lage P, Alves H, Almeida JM, Alves SP, Bessa RJB, Santos-Silva J. Growth Performance, Carcass Characteristics, and Meat Quality of Lambs Fed a High-Forage, Low-Starch, High-Oil Diet. Foods. 2026; 15(2):193. https://doi.org/10.3390/foods15020193
Chicago/Turabian StyleJerónimo, Eliana, Olinda Guerreiro, Andreia Silva, Patrícia Lage, Hélder Alves, João M. Almeida, Susana P. Alves, Rui J. B. Bessa, and José Santos-Silva. 2026. "Growth Performance, Carcass Characteristics, and Meat Quality of Lambs Fed a High-Forage, Low-Starch, High-Oil Diet" Foods 15, no. 2: 193. https://doi.org/10.3390/foods15020193
APA StyleJerónimo, E., Guerreiro, O., Silva, A., Lage, P., Alves, H., Almeida, J. M., Alves, S. P., Bessa, R. J. B., & Santos-Silva, J. (2026). Growth Performance, Carcass Characteristics, and Meat Quality of Lambs Fed a High-Forage, Low-Starch, High-Oil Diet. Foods, 15(2), 193. https://doi.org/10.3390/foods15020193

