Deep Learning-Based Prediction of Fish Freshness and Purchasability Using Multi-Angle Image Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Imaging System and Lighting Conditions
2.3. Deep Learning Models
2.4. Modeling
- •
- The prediction is Excellent if the absolute error
- ○
- is ≤ 0.1 for L*, a*, and b*.
- •
- The prediction is Good if the absolute error
- ○
- is between 0.1 and 0.5 for L*,
- ○
- is between 0.1 and 0.3 for a* and b*.
- •
- The prediction is Medium if the absolute error
- ○
- is between 0.5 and 1.0 for L*,
- ○
- is between 0.3 and 0.6 for a* and b*.
- •
- The prediction is Acceptable if the absolute error
- ○
- is within 0–1.0 for L*,
- ○
- is within 0–0.6 for a* and b*.
- •
- The prediction is Reject if the absolute error
- ○
- exceeds 1.0 for L*,
- ○
- exceeds 0.6 for a* and b*.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ANN | Artificial Neural Network |
| BeFAQT | Blockchain-enabled Fish Assessment and Quality Tracking System |
| CNN | Convolutional Neural Network |
| ESF | “Extended Seafood Freshness” dataset name |
| HSI | Hyperspectral Imaging |
| HSV | Hue, Saturation, Value |
| IoT | Internet of Things |
| K-NN | K-Nearest Neighbors |
| k-value | A chemical freshness indicator based on the proportion of ATP degradation products in fish. |
| LR | Logistic Regression |
| ML | Machine Learning |
| MSE | Mean Squared Error |
| NB-IoT | Narrowband Internet of Things |
| RF | Random Forest |
| RFR | Random Forest Regression |
| SC | Supply Chain |
| SFM | Sydney Fish Market |
| SVM | Support Vector Machine |
| SVR | Support Vector Regression |
| SWIR | Short-Wave Infrared |
| TBA | Thiobarbituric Acid |
| TVB-N | Total Volatile Basic Nitrogen |
| UV | Ultraviolet |
| VGG | Visual Geometry Group |
| VIS-NIR | Visible–Near-Infrared |
| VNIR | Visible and Near-Infrared |
| XGBoost | Extreme Gradient Boosting |
Appendix A
| S. NO | Background | Angle No | Dataset Code | Sample Image |
|---|---|---|---|---|
| 1 | With background (WBG) | 1 | WBG_ANG_LF_01 | ![]() |
| 2 | 2 | WBG_ANG_LF_02 | ![]() | |
| 3 | 3 | WBG_ANG_LF_BK | ![]() | |
| 4 | 4 | WBG_ANG_RT_01 | ![]() | |
| 5 | 5 | WBG_ANG_RT_02 | ![]() | |
| 6 | 6 | WBG_ANG_RT_BK | ![]() | |
| 7 | 7 | WBG_UPS_LF_01 | ![]() | |
| 8 | 8 | WBG_UPS_RT_01 | ![]() | |
| 9 | Background-free (BGF) | 1 | BGF_ANG_LF_01 | ![]() |
| 10 | 2 | BGF_ANG_LF_02 | ![]() | |
| 11 | 3 | BGF_ANG_LF_BK | ![]() | |
| 12 | 4 | BGF_ANG_RT_01 | ![]() | |
| 13 | 5 | BGF_ANG_RT_02 | ![]() | |
| 14 | 6 | BGF_ANG_RT_BK | ![]() | |
| 15 | 7 | BGF_UPS_LF_01 | ![]() | |
| 16 | 8 | BGF_UPS_RT_01 | ![]() |
Appendix B
| Parameter | Rank | Datasets | Algorithm | Accuracy | Precision | Recall | F1_Score | Response Time (s) |
|---|---|---|---|---|---|---|---|---|
| Skin Glossiness | 1 | WBG_ANG_RT_02 | MobileNet | 0.894 | 0.903 | 0.902 | 0.902 | 0.89 |
| 2 | WBG_ANG_RT_01 | MobileNet | 0.851 | 0.853 | 0.844 | 0.844 | 0.97 | |
| 3 | WBG_ANG_RT_BK | DenseNet121 | 0.840 | 0.837 | 0.856 | 0.844 | 5.10 | |
| 4 | WBG_ANG_LF_01 | MobileNet | 0.840 | 0.845 | 0.856 | 0.850 | 1.22 | |
| 5 | WBG_ANG_LF_02 | MobileNet | 0.840 | 0.850 | 0.843 | 0.844 | 1.01 | |
| 6 | BGF_ANG_RT_01 | DenseNet121 | 0.830 | 0.831 | 0.853 | 0.830 | 4.78 | |
| 7 | WBG_UPS_RT_01 | DenseNet121 | 0.819 | 0.824 | 0.817 | 0.820 | 5.18 | |
| 8 | BGF_UPS_LF_01 | MobileNet | 0.819 | 0.855 | 0.778 | 0.793 | 1.03 | |
| 9 | BGF_UPS_RT_01 | MobileNet | 0.819 | 0.848 | 0.804 | 0.819 | 1.00 | |
| 10 | WBG_ANG_LF_BK | DenseNet121 | 0.809 | 0.823 | 0.807 | 0.806 | 6.01 | |
| Skin Mucus | 1 | BGF_ANG_LF_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.01 |
| 2 | WBG_ANG_LF_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.93 | |
| 3 | BGF_ANG_LF_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 3.70 | |
| 4 | WBG_ANG_LF_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.64 | |
| 5 | BGF_ANG_LF_BK | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 3.17 | |
| 6 | WBG_ANG_LF_BK | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.74 | |
| 7 | BGF_ANG_RT_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.67 | |
| 8 | WBG_ANG_RT_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.93 | |
| 9 | BGF_ANG_RT_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.38 | |
| 10 | WBG_ANG_RT_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.26 | |
| Scale Arrangement | 1 | BGF_ANG_LF_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 3.50 |
| 2 | WBG_ANG_LF_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.97 | |
| 3 | BGF_ANG_LF_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.46 | |
| 4 | WBG_ANG_LF_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 3.18 | |
| 5 | BGF_ANG_LF_BK | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.27 | |
| 6 | WBG_ANG_LF_BK | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.29 | |
| 7 | BGF_ANG_RT_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 3.09 | |
| 8 | WBG_ANG_RT_01 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.96 | |
| 9 | BGF_ANG_RT_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 2.63 | |
| 10 | WBG_ANG_RT_02 | EfficientNetB0 | 1.000 | 1.000 | 1.000 | 1.000 | 5.75 | |
| Skin Texture | 1 | WBG_ANG_RT_BK | DenseNet121 | 0.904 | 0.892 | 0.912 | 0.897 | 5.20 |
| 2 | WBG_ANG_RT_01 | MobileNet | 0.872 | 0.877 | 0.873 | 0.871 | 0.98 | |
| 3 | WBG_ANG_RT_02 | MobileNet | 0.872 | 0.882 | 0.874 | 0.864 | 0.89 | |
| 4 | WBG_ANG_RT_BK | VGG16 | 0.872 | 0.866 | 0.869 | 0.867 | 0.75 | |
| 5 | BGF_ANG_RT_02 | MobileNet | 0.862 | 0.872 | 0.867 | 0.868 | 1.10 | |
| 6 | BGF_ANG_RT_BK | DenseNet121 | 0.851 | 0.850 | 0.819 | 0.830 | 5.45 | |
| 7 | WBG_ANG_LF_BK | InceptionV3 | 0.851 | 0.841 | 0.848 | 0.844 | 3.18 | |
| 8 | BGF_ANG_RT_BK | InceptionV3 | 0.851 | 0.860 | 0.862 | 0.857 | 3.39 | |
| 9 | WBG_ANG_RT_BK | MobileNet | 0.851 | 0.835 | 0.853 | 0.835 | 0.81 | |
| 10 | WBG_ANG_RT_02 | VGG16 | 0.851 | 0.842 | 0.858 | 0.839 | 0.54 | |
| Skin Odor | 1 | BGF_ANG_LF_01 | DenseNet121 | 0.777 | 0.751 | 0.746 | 0.736 | 13.23 |
| 2 | WBG_ANG_RT_BK | DenseNet121 | 0.777 | 0.839 | 0.747 | 0.738 | 4.72 | |
| 3 | WBG_ANG_RT_02 | MobileNet | 0.766 | 0.753 | 0.746 | 0.746 | 0.90 | |
| 4 | WBG_ANG_RT_BK | MobileNet | 0.755 | 0.743 | 0.689 | 0.703 | 1.02 | |
| 5 | WBG_ANG_LF_BK | DenseNet121 | 0.734 | 0.741 | 0.710 | 0.712 | 5.54 | |
| 6 | WBG_ANG_LF_01 | MobileNet | 0.734 | 0.749 | 0.695 | 0.704 | 0.80 | |
| 7 | BGF_ANG_RT_BK | MobileNet | 0.734 | 0.690 | 0.663 | 0.670 | 0.86 | |
| 8 | WBG_ANG_LF_01 | DenseNet121 | 0.723 | 0.724 | 0.684 | 0.694 | 6.03 | |
| 9 | WBG_ANG_LF_BK | MobileNet | 0.723 | 0.747 | 0.676 | 0.667 | 0.98 | |
| 10 | WBG_ANG_RT_01 | MobileNet | 0.723 | 0.779 | 0.666 | 0.656 | 0.99 | |
| Gill Color | 1 | WBG_ANG_RT_02 | MobileNet | 0.894 | 0.920 | 0.861 | 0.870 | 1.36 |
| 2 | WBG_ANG_RT_01 | DenseNet121 | 0.883 | 0.892 | 0.853 | 0.857 | 4.85 | |
| 3 | BGF_ANG_RT_02 | MobileNet | 0.883 | 0.874 | 0.886 | 0.877 | 0.99 | |
| 4 | WBG_ANG_RT_02 | DenseNet121 | 0.862 | 0.852 | 0.853 | 0.852 | 5.19 | |
| 5 | BGF_ANG_RT_01 | MobileNet | 0.862 | 0.846 | 0.842 | 0.843 | 1.43 | |
| 6 | BGF_ANG_RT_02 | DenseNet121 | 0.851 | 0.864 | 0.814 | 0.814 | 5.34 | |
| 7 | WBG_ANG_RT_BK | MobileNet | 0.851 | 0.879 | 0.808 | 0.814 | 0.85 | |
| 8 | BGF_UPS_LF_01 | MobileNet | 0.851 | 0.848 | 0.856 | 0.849 | 1.01 | |
| 9 | WBG_ANG_LF_BK | DenseNet121 | 0.840 | 0.834 | 0.833 | 0.833 | 5.57 | |
| 10 | WBG_ANG_LF_02 | MobileNet | 0.840 | 0.856 | 0.853 | 0.841 | 0.96 | |
| Gill Mucus | 1 | WBG_ANG_RT_BK | DenseNet121 | 0.872 | 0.861 | 0.860 | 0.860 | 4.64 |
| 2 | WBG_ANG_LF_02 | MobileNet | 0.872 | 0.867 | 0.860 | 0.862 | 0.93 | |
| 3 | WBG_ANG_RT_01 | MobileNet | 0.862 | 0.850 | 0.849 | 0.849 | 0.99 | |
| 4 | WBG_ANG_RT_02 | MobileNet | 0.862 | 0.850 | 0.849 | 0.849 | 0.91 | |
| 5 | BGF_ANG_RT_02 | VGG16 | 0.862 | 0.867 | 0.836 | 0.840 | 0.53 | |
| 6 | WBG_ANG_LF_02 | DenseNet121 | 0.851 | 0.841 | 0.842 | 0.841 | 5.28 | |
| 7 | BGF_UPS_LF_01 | DenseNet121 | 0.851 | 0.858 | 0.852 | 0.848 | 4.39 | |
| 8 | WBG_ANG_RT_BK | InceptionV3 | 0.851 | 0.854 | 0.821 | 0.820 | 3.39 | |
| 9 | BGF_ANG_LF_BK | MobileNet | 0.851 | 0.841 | 0.842 | 0.841 | 1.00 | |
| 10 | WBG_ANG_RT_02 | DenseNet121 | 0.840 | 0.842 | 0.840 | 0.832 | 5.29 | |
| Gill Odor | 1 | BGF_ANG_RT_01 | MobileNet | 0.809 | 0.790 | 0.789 | 0.788 | 0.96 |
| 2 | WBG_ANG_RT_BK | MobileNet | 0.809 | 0.834 | 0.810 | 0.801 | 1.04 | |
| 3 | WBG_ANG_LF_01 | DenseNet121 | 0.798 | 0.795 | 0.771 | 0.773 | 8.33 | |
| 4 | WBG_ANG_RT_02 | DenseNet121 | 0.798 | 0.806 | 0.767 | 0.763 | 5.06 | |
| 5 | BGF_ANG_LF_BK | MobileNet | 0.798 | 0.808 | 0.784 | 0.778 | 1.00 | |
| 6 | WBG_ANG_LF_BK | DenseNet121 | 0.777 | 0.762 | 0.732 | 0.721 | 4.80 | |
| 7 | WBG_ANG_RT_02 | MobileNet | 0.777 | 0.794 | 0.736 | 0.734 | 0.89 | |
| 8 | WBG_ANG_LF_01 | MobileNet | 0.766 | 0.776 | 0.740 | 0.736 | 0.81 | |
| 9 | BGF_ANG_RT_02 | MobileNet | 0.766 | 0.766 | 0.761 | 0.752 | 0.98 | |
| 10 | WBG_UPS_RT_01 | MobileNet | 0.766 | 0.749 | 0.749 | 0.748 | 1.00 | |
| Total Score | 1 | WBG_ANG_LF_02 | MobileNet | 0.574 | 0.169 | 0.290 | 0.211 | 1.03 |
| 2 | BGF_ANG_RT_02 | DenseNet121 | 0.543 | 0.238 | 0.266 | 0.239 | 5.05 | |
| 3 | WBG_ANG_RT_BK | MobileNet | 0.543 | 0.304 | 0.325 | 0.283 | 0.84 | |
| 4 | WBG_ANG_RT_01 | DenseNet121 | 0.532 | 0.256 | 0.265 | 0.243 | 5.28 | |
| 5 | WBG_ANG_LF_BK | DenseNet121 | 0.521 | 0.165 | 0.246 | 0.195 | 4.95 | |
| 6 | BGF_ANG_RT_01 | DenseNet121 | 0.521 | 0.161 | 0.232 | 0.188 | 4.70 | |
| 7 | WBG_ANG_RT_BK | InceptionV3 | 0.511 | 0.278 | 0.257 | 0.235 | 3.38 | |
| 8 | BGF_UPS_RT_01 | MobileNet | 0.511 | 0.217 | 0.259 | 0.231 | 0.90 | |
| 9 | WBG_UPS_RT_01 | DenseNet121 | 0.500 | 0.162 | 0.219 | 0.180 | 5.22 | |
| 10 | BGF_ANG_RT_BK | InceptionV3 | 0.500 | 0.233 | 0.272 | 0.239 | 3.40 | |
| Purchasability | 1 | WBG_ANG_RT_BK | DenseNet121 | 0.989 | 0.992 | 0.985 | 0.988 | 4.83 |
| 2 | WBG_ANG_LF_BK | DenseNet121 | 0.979 | 0.971 | 0.984 | 0.977 | 5.40 | |
| 3 | WBG_ANG_RT_01 | MobileNet | 0.979 | 0.971 | 0.984 | 0.977 | 1.08 | |
| 4 | BGF_ANG_RT_02 | MobileNet | 0.979 | 0.977 | 0.977 | 0.977 | 0.97 | |
| 5 | WBG_ANG_RT_02 | VGG16 | 0.979 | 0.977 | 0.977 | 0.977 | 0.56 | |
| 6 | WBG_ANG_RT_02 | DenseNet121 | 0.968 | 0.968 | 0.962 | 0.965 | 5.82 | |
| 7 | WBG_ANG_LF_BK | InceptionV3 | 0.968 | 0.958 | 0.975 | 0.966 | 3.36 | |
| 8 | WBG_ANG_RT_02 | MobileNet | 0.968 | 0.958 | 0.975 | 0.966 | 0.86 | |
| 9 | WBG_ANG_LF_01 | DenseNet121 | 0.957 | 0.969 | 0.939 | 0.952 | 8.29 | |
| 10 | WBG_ANG_LF_02 | MobileNet | 0.957 | 0.946 | 0.967 | 0.954 | 1.01 |
References
- Saeed, R.H.; Feng, H.H.; Wang, X.; Zhang, X.S.; Fu, Z.T. Fish quality evaluation by sensor and machine learning: A mechanistic review. Food Control 2022, 137, 108902. [Google Scholar] [CrossRef]
- Yildiz, M.B.; Yasin, E.T.; Koklu, M. Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed mobile application. Eur. Food Res. Technol. 2024, 250, 1921–1932. [Google Scholar] [CrossRef]
- Issac, A.; Dutta, M.K.; Sarkar, B. Computer vision-based method for quality and freshness check for fish from segmented gills. Comput. Electron. Agric. 2017, 139, 10–21. [Google Scholar]
- Yasin, E.T.; Ozkan, I.A.; Koklu, M. Detection of fish freshness using artificial intelligence methods. Eur. Food Res. Technol. 2023, 249, 2089–2101. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Nasiri, A.; Banan, A.; Zhang, Y.-D. Smart deep learning-based approach for non-destructive freshness diagnosis of common carp fish. J. Food Eng. 2020, 278, 109930. [Google Scholar]
- Choudhury, T.; Aryan, A.; Mahdi, H.F.; Arunachalaeshwaran, V.R.; Sarkar, T. CNN-based freshness grading of Mourala fish (Amblypharyngodon mola). In Intelligent Sustainable Systems, Proceedings of the 6th World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4 2022), London, UK, 24–27 August 2022; Springer: Berlin/Heidelberg, Germany, 2023; Volume 2, pp. 123–134. [Google Scholar]
- Rahman, W.; Rahman, M.M.; Mozumder, M.A.I.; Sumon, R.I.; Chelloug, S.A.; Alnashwan, R.O.; Muthanna, M.S.A. A deep CNN-based salinity and freshwater fish identification and classification using deep learning and machine learning. Sustainability 2024, 16, 7933. [Google Scholar] [CrossRef]
- Ergün, E. SwinFishNet: A Swin Transformer-based approach for automatic fish species classification using transfer learning. PLoS ONE 2025, 20, e0304567. [Google Scholar]
- Banerjee, A.; Das, A.; Behra, S.; Bhattacharjee, D.; Srinivasan, N.T.; Nasipuri, M.; Das, N. Carp-DCAE: Deep convolutional autoencoder for carp fish classification. Comput. Electron. Agric. 2022, 196, 106891. [Google Scholar] [CrossRef]
- Setyagraha, M.R.M.; Nurqamaradillah, H.A.; Hermawan, L.M.; Pratama, N.R.; Novamizanti, L.; Wijaya, D.R. A portable real-time electronic nose for evaluating seafood freshness using machine learning. IEEE Access 2025, 13, 12345–12356. [Google Scholar] [CrossRef]
- Wijaya, D.R.; Syarwan, N.F.; Nugraha, M.A.; Ananda, D.; Fahrudin, T.; Handayani, R. Seafood quality detection using electronic nose and machine learning algorithms with hyperparameter optimization. IEEE Access 2023, 11, 12345–12356. [Google Scholar] [CrossRef]
- Grassi, S.; Benedetti, S.; Magnani, L.; Pianezzola, A.; Buratti, S. Seafood freshness: E-nose data for classification purposes. Food Control 2022, 138, 109033. [Google Scholar] [CrossRef]
- Kumaravel, B.; Amutha, A.L.; Mary, T.P.M.; Agrawal, A.; Singh, A.; Saran, S.; Govindarajan, N. Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors. Sci. Rep. 2025, 15, 456. [Google Scholar]
- Li, H.; Wang, Y.; Zhang, J.; Li, X.; Wang, J.; Yi, S.; Zhu, W.; Xu, Y.; Li, J. Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish. Food Chem. 2023, 402, 135234. [Google Scholar]
- Qin, J.; Vasefi, F.; Hellberg, R.S.; Akhbardeh, A.; Isaacs, R.B.; Yilmaz, A.G.; Hwang, C.; Baek, I.; Schmidt, W.F.; Kim, M.S. Detection of fish fillet substitution and mislabeling using multimode hyperspectral imaging techniques. Food Control 2020, 114, 107254. [Google Scholar] [CrossRef]
- Hardy, M.; Moser, B.; Haughey, S.A.; Elliott, C.T. Does the fish rot from the head? Hyperspectral imaging and machine learning for the evaluation of fish freshness. Chemom. Intell. Lab. Syst. 2024, 245, 105096. [Google Scholar] [CrossRef]
- Ortega, S.; Ageeva, T.N.; Kristoffersen, S.; Heia, K.; Nilsen, H.A. High throughput shelf life determination of Atlantic cod (Gadus morhua L.) by use of hyperspectral imaging. IEEE Trans. Multimed. 2025, 27, 1234–1245. [Google Scholar]
- Kashani Zadeh, H.; Hardy, M.; Sueker, M.; Li, Y.; Tzouchas, A.; MacKinnon, N.; Bearman, G.; Haughey, S.A.; Akhbardeh, A.; Baek, I.; et al. Rapid assessment of fish freshness for multiple supply-chain nodes using multi-mode spectroscopy and fusion-based artificial intelligence. Sensors 2023, 23, 5149. [Google Scholar]
- Dudnyk, I.; Janecek, E.R.; Vaucher-Joset, J.; Stellacci, F. Edible sensors for meat and seafood freshness. Sens. Actuators B Chem. 2018, 259, 1108–1113. [Google Scholar] [CrossRef]
- Wang, X.; Yu, G.; Liu, R.P.; Zhang, J.; Wu, Q.; Su, S.W.; He, Y.; Zhang, Z.J.; Yu, L.T.; Liu, T.P.; et al. Blockchain-enabled fish provenance and quality tracking system. IEEE Internet Things J. 2022, 9, 8125–8137. [Google Scholar]
- Ismail, S.; Nouman, M.; Reza, H.; Vasefi, F.; Zadeh, H.K. A blockchain-based fish supply chain framework for maintaining fish quality and authenticity. IEEE Trans. Serv. Comput. 2024, 17, 1121–1135. [Google Scholar] [CrossRef]
- Chiang, C.-T. A fish meat freshness detector for IoT-based seafood market applications. IEEE Sens. J. 2024, 24, 813–821. [Google Scholar] [CrossRef]
- Sengar, N.; Gupta, V.; Dutta, M.K.; Travieso, C.M. Image processing-based method for identification of fish freshness using skin tissue. In Proceedings of the 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 9–10 February 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Bonilla, A.C.; Sveinsdottir, K.; Martinsdottir, E. Development of Quality Index Method (QIM) scheme for fresh cod (Gadus morhua) fillets and application in shelf life study. Food Control 2007, 18, 352–358. [Google Scholar] [CrossRef]
- Hunter, R.S. Scales for the measurements of color difference. In The Measurement of Appearance; Wiley: New York, NY, USA, 1975; pp. 133–140. [Google Scholar]
- Fitria, M.; Candra, Y.; Al-Assad, M.H.; Roza, S.; Dawood, R. A deep learning-based model for classifying sweetness level of Sky Rocket melon: A preliminary result. In Proceedings of the 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), Banda Aceh, Indonesia, 2–3 August 2023; IEEE: New York, NY, USA, 2023; pp. 204–209. [Google Scholar]
- Liang, J. The Research of Background Removal Applied to Fashion Data: The Necessity Analysis of Background Removal for Fashion Data. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2022. [Google Scholar]
- Gatis, D. rembg; Version 2.0.66; GitHub: San Francisco, CA, USA, 2025; Available online: https://github.com/danielgatis/rembg (accessed on 4 October 2025).
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Kansal, K.; Chandra, T.B.; Singh, A. ResNet-50 vs. EfficientNet-B0: Multi-centric classification of various lung abnormalities using deep learning. Procedia Comput. Sci. 2024, 235, 70–80. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Last Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hasanah, S.A.; Pravitasari, A.A.; Abdullah, A.S.; Yulita, I.N.; Asnawi, M.H. A deep learning review of resnet architecture for lung disease Identification in CXR Image. Appl. Sci. 2023, 13, 13111. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Mascarenhas, S.; Agarwal, M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; IEEE: New York, NY, USA, 2021; Volume 1, pp. 96–99. [Google Scholar]
- Lu, Y.; Tao, X.; Jiang, F.; Du, J.; Li, G.; Liu, Y. Image recognition of rice leaf diseases using atrous convolutional neural network and improved transfer learning algorithm. Multimed. Tools Appl. 2024, 83, 12799–12817. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Zorgui, S.; Chaabene, S.; Bouaziz, B.; Batatia, H.; Chaari, L. A convolutional neural network for lentigo diagnosis. In Proceedings of the International Conference on Smart Homes and Health Telematics (ICOST 2020), Hammamet, Tunisia, 24–26 June 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 89–99. [Google Scholar]
- Sinha, D.; El-Sharkawy, M. Thin MobileNet: An enhanced MobileNet architecture. In Proceedings of the 2019 IEEE Conference on Computer Vision and Embedded Systems, Long Beach, CA, USA, 16–17 June 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Zhou, J.; Yang, X.; Zhang, L.; Shao, S.; Bian, G. Multisignal VGG19 Network with Transposed Convolution for Rotating Machinery Fault Diagnosis Based on Deep Transfer Learning. Shock. Vib. 2020, 2020, 8863388. [Google Scholar] [CrossRef]
- Meena, G.; Mohbey, K.K.; Indian, A.; Kumar, S. Sentiment Analysis from Images using VGG19 based Transfer Learning Approach. Procedia Comput. Sci. 2022, 204, 411–418. [Google Scholar] [CrossRef]
- Faghihi, A.; Fathollahi, M.; Rajabi, R. Diagnosis of skin cancer using VGG16 and VGG19 based transfer learning models. Multimed. Tools Appl. 2024, 83, 57495–57510. [Google Scholar] [CrossRef]
- Vakili, M.; Ghamsari, M.; Rezaei, M. Performance analysis and comparison of machine and deep learning algorithms for IoT data classification. arXiv 2020, arXiv:2001.09636. [Google Scholar] [CrossRef]
- Şahin, C.; Balcı, O.; Işık, M.; Gökenç, İ. Artificial neural networks approach for prediction of CIELab values for yarn after dyeing and finishing process. J. Text. Inst. 2023, 114, 1326–1335. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. Discuss. 2022, 2022, 5481–5487. [Google Scholar] [CrossRef]



| Quality Parameter | Score | Description |
|---|---|---|
| Skin Brightness | 0 | Iridescent |
| 1 | Slightly dull | |
| 2 | Dull | |
| Skin Mucus | 0 | Low and transparent |
| 1 | Excessive and yellowish | |
| Scale | 0 | Regular |
| 1 | Disordered | |
| Skin Texture | 0 | Firm |
| 1 | Slightly soft | |
| 2 | Very soft | |
| Skin Odor | 0 | Fresh and neutral |
| 1 | Algae-like | |
| 2 | Sour milk | |
| 3 | Acetic and ammonia-like | |
| Gill Color | 0 | Characteristic (bright red) |
| 1 | Slightly brown | |
| 2 | Dark brown | |
| Gill Mucus | 0 | No mucus |
| 1 | Slight mucus | |
| 2 | Heavy mucus | |
| Gill Odor | 0 | Fresh and neutral |
| 1 | Algae-like | |
| 2 | Sour milk | |
| 3 | Acetic and ammonia-like | |
| Total Score | 0–7 | Not Spoiled |
| 7–15 | Spoiled | |
| Purchasability | 1 | Yes |
| 2 | No |
| Code Component | Meaning | Values | Description |
|---|---|---|---|
| XXX | Background condition | WBG, BGF | WBG = with background BGF = background-free image |
| WWW | View type | ANG, UPS | ANG = angled view UPS = top (dorsal) view |
| YY | Fish side | RT, LF | RT = right side of the fish LF = left side of the fish |
| ZZ | Specific angle or gill condition | 01, 02, BK | 01 = front angle with gills open 02 = front angle with gills closed BK = back angle (dorsal direction) |
| Model Input | Model Algorithm | Model Output | |||||
|---|---|---|---|---|---|---|---|
| Classification | Regression | ||||||
| # | Dataset Code | # | Algorithm | # | Parameter | # | Parameter |
| 1 | BGF_ANG_LF_01 | 1 | EfficientNetB0 | 1 | Skin Brightness | 1 | Avg V_L |
| 2 | BGF_ANG_LF_02 | 2 | ResNet50 | 2 | Skin Mucus | 2 | Avg V_a |
| 3 | BGF_ANG_LF_BK | 3 | DenseNet121 | 3 | Scale | 3 | Avg V_b |
| 4 | BGF_ANG_RT_01 | 4 | VGG16 | 4 | Skin Texture | 4 | Avg V_Croma |
| 5 | BGF_ANG_RT_02 | 5 | InceptionV3 | 5 | Skin Odor | 5 | Avg V_Hue |
| 6 | BGF_ANG_RT_BK | 6 | MobileNet | 6 | Gill Color | 6 | Avg V_Whiteness |
| 7 | BGF_UPS_LF_01 | 7 | VGG19 | 7 | Gill Mucus | 7 | Avg D_L |
| 8 | BGF_UPS_RT_01 | 8 | Gill Odor | 8 | Avg D_a | ||
| 9 | WBG_ANG_LF_01 | 9 | Total Score | 9 | Avg D_b | ||
| 10 | WBG_ANG_LF_02 | 10 | Purchasability | 10 | Avg D_Croma | ||
| 11 | WBG_ANG_LF_BK | 11 | Avg D_Hue | ||||
| 12 | WBG_ANG_RT_01 | 12 | Avg D_Whiteness | ||||
| 13 | WBG_ANG_RT_02 | ||||||
| 14 | WBG_ANG_RT_BK | ||||||
| 15 | WBG_UPS_LF_01 | ||||||
| 16 | WBG_UPS_RT_01 | ||||||
| Parameter | Regression | Classification |
|---|---|---|
| Models Used | EfficientNetB0, ResNet50, DenseNet121, InceptionV3, MobileNet, VGG16, VGG19 | |
| Data Split | 80% train/20% validation-test (test_size = 0.2, random_state = 42) | |
| Cross-Validation | Not applied | |
| Data Augmentation | None | |
| Hardware | CPU | |
| Loss Function | MSE | Categorical Cross-Entropy |
| Optimizer | Adam (default settings), batch size 8, 10 epochs | |
| Metrics | MAE | Accuracy, Precision, Recall, F1-Score |
| Overfitting Control | Frozen pretrained CNN backbone; only small dense head trained; short epoch count | |
| Rank | Parameter | Accuracy | Algorithms | ||
|---|---|---|---|---|---|
| DenseNet121 | MobileNet | EfficientNetB0 | |||
| 1 | Skin Mucus | 1.0000 | ✔ | ||
| 2 | Scale | 1.0000 | ✔ | ||
| 3 | Purchasability | 0.9894 | ✔ | ||
| 4 | Skin Texture | 0.9043 | ✔ | ||
| 5 | Skin Brightness | 0.8936 | ✔ | ||
| 6 | Gill Color | 0.8936 | ✔ | ||
| 7 | Gill Mucus | 0.8723 | ✔ | ||
| 8 | Gill Odor | 0.8085 | ✔ | ||
| 9 | Skin Odor | 0.7766 | ✔ | ||
| 10 | Total Score | 0.5745 | ✔ | ||
| Count of being best model | 4 | 4 | 2 | ||
| Parameter | Data Sets | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| BGF_ANG_LF_01 | ![]() | WBG_ANG_RT_BK | ![]() | WBG_ANG_RT_02 | ![]() | BGF_ANG_RT_01 | ![]() | WBG_ANG_LF_02 | ![]() | |
| Skin Mucus | ✔ | |||||||||
| Scale | ✔ | |||||||||
| Purchasability | ✔ | |||||||||
| Skin Texture | ✔ | |||||||||
| Skin Brightness | ✔ | |||||||||
| Gill Color | ✔ | |||||||||
| Gill Mucus | ✔ | |||||||||
| Gill Odor | ✔ | |||||||||
| Skin Odor | ✔ | |||||||||
| Total Score | ✔ | |||||||||
| Count of being best | 3 | 3 | 2 | 1 | 1 | |||||
| Parameter | Rank | Dataset | Algorithm | MAE | Excellent | Good | Medium | Reject | Accept | Response Time (s) |
|---|---|---|---|---|---|---|---|---|---|---|
| Avg V_L | 1 | WBG_UPS_LF_01 | VGG16 | 2.849 | 2.128 | 11.702 | 12.766 | 73.404 | 26.596 | 0.576 |
| 2 | BGF_ANG_LF_BK | ResNet50 | 2.869 | 4.255 | 11.702 | 13.830 | 70.213 | 29.787 | 3.223 | |
| 3 | BGF_UPS_LF_01 | VGG16 | 2.877 | 2.128 | 8.511 | 9.574 | 79.787 | 20.213 | 0.801 | |
| 4 | BGF_UPS_LF_01 | VGG19 | 2.901 | 3.191 | 12.766 | 9.574 | 74.468 | 25.532 | 0.690 | |
| 5 | BGF_UPS_RT_01 | ResNet50 | 2.908 | 3.191 | 13.830 | 11.702 | 71.277 | 28.723 | 2.124 | |
| 6 | WBG_ANG_RT_01 | ResNet50 | 2.911 | 4.255 | 8.511 | 14.894 | 72.340 | 27.660 | 3.184 | |
| 7 | BGF_ANG_RT_02 | MobileNet | 2.912 | 1.064 | 11.702 | 14.894 | 72.340 | 27.660 | 0.980 | |
| 8 | BGF_ANG_RT_02 | VGG19 | 2.921 | 6.383 | 11.702 | 17.021 | 64.894 | 35.106 | 0.608 | |
| 9 | WBG_ANG_RT_BK | ResNet50 | 2.930 | 2.128 | 10.638 | 22.340 | 64.894 | 35.106 | 3.015 | |
| 10 | WBG_ANG_LF_01 | ResNet50 | 2.942 | 3.191 | 11.702 | 20.213 | 64.894 | 35.106 | 2.709 | |
| Avg V_a | 1 | WBG_ANG_RT_BK | MobileNet | 0.805 | 11.702 | 57.447 | 22.340 | 8.511 | 91.489 | 1.164 |
| 2 | WBG_ANG_LF_BK | MobileNet | 0.818 | 18.085 | 51.064 | 21.277 | 9.574 | 90.426 | 0.949 | |
| 3 | WBG_ANG_LF_BK | InceptionV3 | 0.818 | 14.894 | 51.064 | 23.404 | 10.638 | 89.362 | 3.315 | |
| 4 | WBG_ANG_LF_02 | MobileNet | 0.819 | 22.340 | 50.000 | 14.894 | 12.766 | 87.234 | 1.165 | |
| 5 | WBG_ANG_RT_BK | DenseNet121 | 0.822 | 12.766 | 57.447 | 18.085 | 11.702 | 88.298 | 6.547 | |
| 6 | BGF_ANG_RT_02 | MobileNet | 0.823 | 19.149 | 46.809 | 24.468 | 9.574 | 90.426 | 0.886 | |
| 7 | WBG_ANG_RT_02 | DenseNet121 | 0.826 | 17.021 | 51.064 | 22.340 | 9.574 | 90.426 | 6.103 | |
| 8 | BGF_ANG_RT_02 | DenseNet121 | 0.841 | 18.085 | 47.872 | 23.404 | 10.638 | 89.362 | 5.771 | |
| 9 | BGF_UPS_LF_01 | DenseNet121 | 0.846 | 13.830 | 52.128 | 22.340 | 11.702 | 88.298 | 4.943 | |
| 10 | WBG_ANG_LF_02 | DenseNet121 | 0.847 | 13.830 | 48.936 | 27.660 | 9.574 | 90.426 | 5.894 | |
| Avg V_b | 1 | WBG_ANG_LF_01 | MobileNet | 1.011 | 7.447 | 32.979 | 19.149 | 40.426 | 59.574 | 0.941 |
| 2 | WBG_ANG_LF_02 | MobileNet | 1.086 | 4.255 | 28.723 | 29.787 | 37.234 | 62.766 | 1.117 | |
| 3 | WBG_ANG_RT_BK | MobileNet | 1.113 | 7.447 | 25.532 | 23.404 | 43.617 | 56.383 | 1.126 | |
| 4 | WBG_ANG_RT_01 | MobileNet | 1.157 | 7.447 | 28.723 | 21.277 | 42.553 | 57.447 | 0.977 | |
| 5 | WBG_ANG_RT_02 | MobileNet | 1.172 | 8.511 | 20.213 | 23.404 | 47.872 | 52.128 | 0.902 | |
| 6 | BGF_ANG_LF_02 | InceptionV3 | 1.181 | 5.319 | 26.596 | 25.532 | 42.553 | 57.447 | 3.676 | |
| 7 | WBG_ANG_LF_BK | MobileNet | 1.202 | 9.574 | 22.340 | 19.149 | 48.936 | 51.064 | 0.949 | |
| 8 | BGF_ANG_RT_02 | InceptionV3 | 1.221 | 5.319 | 22.340 | 23.404 | 48.936 | 51.064 | 3.375 | |
| 9 | WBG_ANG_LF_01 | InceptionV3 | 1.235 | 3.191 | 27.660 | 21.277 | 47.872 | 52.128 | 3.591 | |
| 10 | BGF_ANG_RT_01 | DenseNet121 | 1.254 | 2.128 | 29.787 | 23.404 | 44.681 | 55.319 | 5.134 | |
| Avg D_L | 1 | BGF_ANG_LF_02 | MobileNet | 3.513 | 5.319 | 8.511 | 7.447 | 78.723 | 21.277 | 0.951 |
| 2 | BGF_UPS_RT_01 | MobileNet | 3.519 | 4.255 | 6.383 | 12.766 | 76.596 | 23.404 | 1.085 | |
| 3 | BGF_ANG_RT_BK | MobileNet | 3.551 | 2.128 | 9.574 | 13.830 | 74.468 | 25.532 | 0.885 | |
| 4 | WBG_UPS_LF_01 | MobileNet | 3.569 | 1.064 | 6.383 | 10.638 | 81.915 | 18.085 | 1.142 | |
| 5 | WBG_UPS_LF_01 | DenseNet121 | 3.613 | 3.191 | 7.447 | 13.830 | 75.532 | 24.468 | 4.924 | |
| 6 | BGF_ANG_LF_01 | MobileNet | 3.629 | 0.000 | 5.319 | 9.574 | 85.106 | 14.894 | 1.198 | |
| 7 | WBG_ANG_LF_BK | DenseNet121 | 3.662 | 4.255 | 8.511 | 10.638 | 76.596 | 23.404 | 5.615 | |
| 8 | WBG_ANG_LF_02 | InceptionV3 | 3.663 | 4.255 | 7.447 | 11.702 | 76.596 | 23.404 | 3.777 | |
| 9 | BGF_ANG_RT_BK | InceptionV3 | 3.673 | 4.255 | 5.319 | 12.766 | 77.660 | 22.340 | 3.422 | |
| 10 | BGF_UPS_LF_01 | VGG19 | 3.680 | 4.255 | 8.511 | 5.319 | 81.915 | 18.085 | 0.734 | |
| Avg D_a | 1 | WBG_ANG_RT_BK | MobileNet | 0.205 | 31.915 | 59.574 | 8.511 | 0.000 | 100.00 | 1.161 |
| 2 | WBG_ANG_LF_BK | MobileNet | 0.208 | 30.851 | 60.638 | 7.447 | 1.064 | 98.936 | 1.379 | |
| 3 | WBG_ANG_RT_01 | InceptionV3 | 0.212 | 36.170 | 57.447 | 5.319 | 1.064 | 98.936 | 3.450 | |
| 4 | WBG_ANG_LF_01 | DenseNet121 | 0.213 | 25.532 | 69.149 | 5.319 | 0.000 | 100.00 | 6.572 | |
| 5 | BGF_ANG_RT_02 | InceptionV3 | 0.219 | 27.660 | 68.085 | 3.191 | 1.064 | 98.936 | 3.646 | |
| 6 | WBG_ANG_RT_02 | InceptionV3 | 0.221 | 26.596 | 68.085 | 4.255 | 1.064 | 98.936 | 3.666 | |
| 7 | WBG_ANG_LF_01 | InceptionV3 | 0.221 | 38.298 | 54.255 | 6.383 | 1.064 | 98.936 | 4.330 | |
| 8 | WBG_ANG_LF_BK | VGG16 | 0.222 | 32.979 | 57.447 | 8.511 | 1.064 | 98.936 | 0.506 | |
| 9 | BGF_ANG_RT_02 | MobileNet | 0.223 | 37.234 | 52.128 | 9.574 | 1.064 | 98.936 | 0.978 | |
| 10 | BGF_ANG_RT_BK | VGG16 | 0.225 | 28.723 | 62.766 | 8.511 | 0.000 | 100.00 | 0.758 | |
| Avg D_b | 1 | WBG_ANG_LF_01 | MobileNet | 0.694 | 9.574 | 31.915 | 32.979 | 25.532 | 74.468 | 0.992 |
| 2 | WBG_ANG_RT_02 | MobileNet | 0.726 | 11.702 | 28.723 | 32.979 | 26.596 | 73.404 | 0.783 | |
| 3 | WBG_ANG_RT_BK | MobileNet | 0.744 | 13.830 | 24.468 | 29.787 | 31.915 | 68.085 | 1.160 | |
| 4 | WBG_ANG_RT_01 | MobileNet | 0.746 | 8.511 | 36.170 | 25.532 | 29.787 | 70.213 | 1.035 | |
| 5 | BGF_ANG_RT_01 | MobileNet | 0.793 | 6.383 | 34.043 | 30.851 | 28.723 | 71.277 | 0.976 | |
| 6 | WBG_ANG_RT_02 | InceptionV3 | 0.799 | 6.383 | 27.660 | 38.298 | 27.660 | 72.340 | 3.577 | |
| 7 | BGF_ANG_RT_02 | MobileNet | 0.810 | 8.511 | 31.915 | 32.979 | 26.596 | 73.404 | 0.956 | |
| 8 | WBG_ANG_RT_01 | InceptionV3 | 0.811 | 5.319 | 35.106 | 27.660 | 31.915 | 68.085 | 3.651 | |
| 9 | BGF_ANG_RT_BK | InceptionV3 | 0.812 | 9.574 | 25.532 | 40.426 | 24.468 | 75.532 | 3.352 | |
| 10 | BGF_ANG_LF_BK | InceptionV3 | 0.818 | 10.638 | 29.787 | 22.340 | 37.234 | 62.766 | 3.293 |
| Parameter | Rank | Data Set | Algorithm | MAE | Response Time (s) |
|---|---|---|---|---|---|
| Avg V_Whiteness | 1 | BGF_ANG_LF_02 | MobileNet | 3.160 | 0.964 |
| 2 | WBG_ANG_LF_01 | DenseNet121 | 3.200 | 5.922 | |
| 3 | BGF_ANG_RT_02 | MobileNet | 3.278 | 0.995 | |
| 4 | BGF_UPS_LF_01 | VGG16 | 3.287 | 0.799 | |
| 5 | BGF_ANG_RT_BK | DenseNet121 | 3.314 | 7.921 | |
| 6 | BGF_ANG_LF_BK | ResNet50 | 3.317 | 2.904 | |
| 7 | WBG_ANG_RT_BK | ResNet50 | 3.329 | 2.765 | |
| 8 | WBG_UPS_LF_01 | VGG16 | 3.331 | 0.522 | |
| 9 | WBG_ANG_RT_01 | DenseNet121 | 3.338 | 4.995 | |
| 10 | WBG_ANG_RT_01 | ResNet50 | 3.356 | 3.253 | |
| Avg V_Croma | 1 | WBG_ANG_RT_BK | MobileNet | 1.385 | 0.976 |
| 2 | WBG_ANG_LF_02 | MobileNet | 1.386 | 1.210 | |
| 3 | WBG_ANG_LF_01 | MobileNet | 1.435 | 0.964 | |
| 4 | WBG_ANG_RT_01 | MobileNet | 1.454 | 0.993 | |
| 5 | WBG_ANG_RT_02 | MobileNet | 1.496 | 0.837 | |
| 6 | BGF_ANG_LF_02 | MobileNet | 1.569 | 0.970 | |
| 7 | BGF_ANG_RT_01 | MobileNet | 1.571 | 1.014 | |
| 8 | BGF_ANG_RT_02 | InceptionV3 | 1.574 | 3.326 | |
| 9 | WBG_ANG_LF_BK | MobileNet | 1.582 | 0.972 | |
| 10 | WBG_ANG_LF_01 | InceptionV3 | 1.590 | 3.573 | |
| Avg V_Hue | 1 | WBG_ANG_RT_BK | MobileNet | 0.992 | 1.294 |
| 2 | WBG_ANG_LF_BK | MobileNet | 1.034 | 0.980 | |
| 3 | WBG_ANG_LF_BK | InceptionV3 | 1.053 | 3.418 | |
| 4 | BGF_UPS_LF_01 | MobileNet | 1.098 | 1.183 | |
| 5 | WBG_ANG_LF_01 | MobileNet | 1.108 | 0.960 | |
| 6 | BGF_ANG_RT_02 | DenseNet121 | 1.122 | 4.870 | |
| 7 | WBG_ANG_RT_01 | InceptionV3 | 1.124 | 3.397 | |
| 8 | BGF_ANG_RT_02 | MobileNet | 1.125 | 1.170 | |
| 9 | WBG_ANG_RT_02 | MobileNet | 1.126 | 0.886 | |
| 10 | WBG_ANG_LF_02 | DenseNet121 | 1.127 | 5.735 | |
| Avg D_Whiteness | 1 | BGF_ANG_LF_02 | MobileNet | 3.258 | 0.950 |
| 2 | BGF_UPS_RT_01 | MobileNet | 3.426 | 1.058 | |
| 3 | WBG_ANG_LF_02 | MobileNet | 3.458 | 1.019 | |
| 4 | BGF_ANG_RT_BK | MobileNet | 3.458 | 0.827 | |
| 5 | WBG_ANG_LF_01 | DenseNet121 | 3.510 | 5.962 | |
| 6 | BGF_ANG_LF_01 | MobileNet | 3.516 | 1.242 | |
| 7 | WBG_ANG_RT_01 | InceptionV3 | 3.516 | 3.346 | |
| 8 | BGF_ANG_RT_02 | MobileNet | 3.521 | 0.890 | |
| 9 | WBG_ANG_RT_01 | DenseNet121 | 3.545 | 4.984 | |
| 10 | WBG_ANG_RT_01 | MobileNet | 3.562 | 0.995 | |
| Avg D_Croma | 1 | BGF_ANG_RT_BK | MobileNet | 0.443 | 0.922 |
| 2 | WBG_ANG_LF_BK | VGG16 | 0.456 | 0.461 | |
| 3 | WBG_ANG_RT_BK | DenseNet121 | 0.464 | 4.986 | |
| 4 | WBG_ANG_RT_BK | VGG19 | 0.466 | 0.659 | |
| 5 | BGF_UPS_LF_01 | MobileNet | 0.466 | 0.983 | |
| 6 | WBG_ANG_LF_02 | MobileNet | 0.467 | 0.985 | |
| 7 | WBG_ANG_RT_BK | VGG16 | 0.469 | 0.386 | |
| 8 | WBG_ANG_LF_BK | VGG19 | 0.473 | 0.655 | |
| 9 | WBG_ANG_LF_02 | DenseNet121 | 0.474 | 5.614 | |
| 10 | WBG_UPS_LF_01 | InceptionV3 | 0.475 | 3.282 | |
| Avg D_Hue | 1 | WBG_ANG_LF_02 | MobileNet | 0.708 | 1.018 |
| 2 | WBG_UPS_RT_01 | DenseNet121 | 0.731 | 6.428 | |
| 3 | WBG_ANG_LF_01 | MobileNet | 0.735 | 0.946 | |
| 4 | BGF_ANG_RT_01 | MobileNet | 0.749 | 1.108 | |
| 5 | WBG_UPS_RT_01 | MobileNet | 0.750 | 0.848 | |
| 6 | BGF_ANG_LF_01 | MobileNet | 0.754 | 1.252 | |
| 7 | WBG_ANG_LF_BK | MobileNet | 0.762 | 1.001 | |
| 8 | BGF_ANG_RT_01 | DenseNet121 | 0.762 | 5.356 | |
| 9 | BGF_ANG_LF_BK | MobileNet | 0.762 | 0.943 | |
| 10 | WBG_UPS_RT_01 | InceptionV3 | 0.764 | 3.544 |
| Rank | Parameter | MAE | MobileNet | VGG16 |
|---|---|---|---|---|
| 1 | Avg D_a | 0.205 | ✔ | |
| 2 | Avg D_Croma | 0.443 | ✔ | |
| 3 | Avg D_b | 0.694 | ✔ | |
| 4 | Avg D_Hue | 0.708 | ✔ | |
| 5 | Avg V_a | 0.805 | ✔ | |
| 6 | Avg V_Hue | 0.992 | ✔ | |
| 7 | Avg V_b | 1.011 | ✔ | |
| 8 | Avg V_Croma | 1.385 | ✔ | |
| 9 | Avg V_L | 2.849 | ✔ | |
| 10 | Avg V_Whiteness | 3.160 | ✔ | |
| 11 | Avg D_Whiteness | 3.258 | ✔ | |
| 12 | Avg D_L | 3.513 | ✔ | |
| Count of being best model | 11 | 1 | ||
| Parameters | Data Sets | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| WBG_ANG_RT_BK | ![]() | BGF_ANG_LF_02 | ![]() | WBG_ANG_LF_01 | ![]() | BGF_ANG_RT_BK | ![]() | WBG_ANG_LF_02 | ![]() | WBG_UPS_LF_01 | ![]() | |
| Avg D_a | ✔ | |||||||||||
| Avg D_Croma | ✔ | |||||||||||
| Avg D_Hue | ✔ | |||||||||||
| Avg D_L | ✔ | |||||||||||
| Avg D_Whiteness | ✔ | |||||||||||
| Avg V_a | ✔ | |||||||||||
| Avg V_b | ✔ | |||||||||||
| Avg V_Croma | ✔ | |||||||||||
| Avg V_Hue | ✔ | |||||||||||
| Avg V_L | ✔ | |||||||||||
| Avg V_Whiteness | ✔ | |||||||||||
| Count of being best | 4 | 3 | 2 | 1 | 1 | 1 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hamidy, S.M.; Kuvvetli, Y.; Sakarya, Y.; Özkütük, S.T.; Özoğul, Y. Deep Learning-Based Prediction of Fish Freshness and Purchasability Using Multi-Angle Image Data. Foods 2026, 15, 68. https://doi.org/10.3390/foods15010068
Hamidy SM, Kuvvetli Y, Sakarya Y, Özkütük ST, Özoğul Y. Deep Learning-Based Prediction of Fish Freshness and Purchasability Using Multi-Angle Image Data. Foods. 2026; 15(1):68. https://doi.org/10.3390/foods15010068
Chicago/Turabian StyleHamidy, Sakhi Mohammad, Yusuf Kuvvetli, Yetkin Sakarya, Serya Tülin Özkütük, and Yesim Özoğul. 2026. "Deep Learning-Based Prediction of Fish Freshness and Purchasability Using Multi-Angle Image Data" Foods 15, no. 1: 68. https://doi.org/10.3390/foods15010068
APA StyleHamidy, S. M., Kuvvetli, Y., Sakarya, Y., Özkütük, S. T., & Özoğul, Y. (2026). Deep Learning-Based Prediction of Fish Freshness and Purchasability Using Multi-Angle Image Data. Foods, 15(1), 68. https://doi.org/10.3390/foods15010068




























