Occurrence, Sources, and Risk Assessment of PFAS in Soil–Mango Systems of the Chinese Tropical Nanfan District
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Preparation of Soil and Mango Bag Samples
2.4. Mango Sample Preparation
2.5. UPLC-MS/MS Experimental Condition
2.6. Quality Assurance and Quality Control
2.7. Bioaccumulation Factors of PFAS
2.8. Ecological Risk Assessment of Soil PFAS
2.9. Dietary Risk Assessment of PFASs
2.10. Data Analysis
3. Results and Discussion
3.1. Analysis of Pollution Characteristics of PFASs in Soil
3.2. Analysis of PFAS Pollution Characteristics in Mango
3.3. Bioaccumulation Characteristics of PFASs in Mango
3.4. Effects of Soil pH and Soil Organic Matter on PFAS Transport in Soil
3.5. Analysis of Possible Sources of PFAS Contamination in Soil
3.6. Analysis of Possible Sources of PFASs in Mango
3.7. Soil Ecological Risk Assessment
3.8. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barhoumi, B.; Sander, S.G.; Tolosa, I. A review on per-and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environ. Res. 2022, 206, 112595. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Esquivel, A.; Trujillo-Silva, D.J.; Cilia-López, V.G. Impact of environmental pollution on the obesogenic environment. Nutr. Rev. 2022, 80, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Djordjevic, A.B.; Saso, L. PFAS molecules: A major concern for the human health and the environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Stahl, T.; Riebe, R.A.; Falk, S.; Failing, K.; Brunn, H. Long-term lysimeter experiment to investigate the leaching of perfluoroalkyl substances (PFASs) and the carry-over from soil to plants: Results of a pilot study. J. Agric. Food Chem. 2013, 61, 1784–1793. [Google Scholar] [CrossRef]
- Xu, P.; Nian, M.; Xiang, J.; Zhang, X.H.; Cheng, P.; Xu, D.D.; Chen, Y.; Wang, X.F.; Chen, Z.J.; Lou, X.M.; et al. Emerging PFAS Exposure Is More Potent in Altering Childhood Lipid Levels Mediated by Mitochondrial DNA Copy Number. Environ. Sci. Technol. 2025, 59, 2484–2493. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, A.T.; Liu, H.; Zhong, Y.Y.; Yi, K.F. The effect and potential mechanisms of per-and polyfluoroalkyl substances (PFAS) exposure on kidney stone risk. Ecotoxicol. Environ. Saf. 2025, 294, 118087. [Google Scholar] [CrossRef]
- Bassler, J.; Ducatman, A.; Elliott, M.; Wen, S.J.; Wahlang, B.; Barnett, J.; Cave, M.C. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ. Pollut. 2019, 247, 1055–1063. [Google Scholar] [CrossRef]
- Mei, W.P.; Sun, H.; Song, M.K.; Jiang, L.F.; Li, Y.T.; Lu, W.S.; Ying, G.G.; Luo, C.L.; Zhang, G. Per-and polyfluoroalkyl substances (PFASs) in the soil–plant system: Sorption, root uptake, and translocation. Environ. Int. 2021, 156, 106642. [Google Scholar] [CrossRef]
- Adu, O.; Ma, X.M.; Sharma, V.K. Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. J. Hazard. Mater. 2023, 447, 130805. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Lu, Y.L.; Song, X.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Lu, X.T.; Su, C. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environ. Int. 2019, 127, 671–684. [Google Scholar] [CrossRef]
- Piva, E.; Fais, P.; Ioime, P.; Forcato, M.; Viel, G.; Cecchetto, G.; Pascali, J.P. Per-and polyfluoroalkyl substances (PFAS) presence in food: Comparison among fresh, frozen and ready-to-eat vegetables. Food Chem. 2023, 410, 135415. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, Y.; Chai, L.N.; Ma, F.J.; Yu, J.L.; Xiao, K.Q.; Gu, Q.B. Bio-accumulation and health risk assessments of per-and polyfluoroalkyl substances in wheat grains. Environ. Pollut. 2024, 356, 124351. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment-a review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Li, J.; Han, L.; Wu, W.P.; Chen, M.F. Human health risk-based soil generic assessment criteria of representative perfluoroalkyl acids (PFAAs) under the agricultural land use in typical Chinese regions. Environ. Pollut. 2023, 335, 122368. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.W.; Han, J.J.; Hall, D.R.; Sun, J.X.; Fu, J.; Kutarna, S.; Houck, K.A.; Lalone, C.A.; Doering, J.A.; Ng, C.A.; et al. Nontarget screening of per- and polyfluoroalkyl substances binding to human liver fatty acid binding protein. Environ. Sci. Technol. 2020, 54, 5676–5686. [Google Scholar] [CrossRef]
- Ma, D.H.; Zhong, H.F.; Lv, J.T.; Wang, Y.W.; Jiang, G.B. Levels, distributions, and sources of legacy and novel per-and perfluoroalkyl substances (PFAS) in the topsoil of Tianjin, China. J. Environ. Sci. 2022, 112, 71–81. [Google Scholar] [CrossRef]
- Cheng, Y.; An, Q.; Qi, H.S.; Li, R.; Liu, W.P.; Gu, B.J.; Liu, K. Temporal trends of legacy and emerging PFASs from 2011 to 2021 in agricultural soils of eastern China: Impacts of the Stockholm convention. Environ. Sci. Technol. 2023, 57, 9277–9286. [Google Scholar] [CrossRef]
- Li, H.; Koosaletse-Mswela, P. Occurrence, fate, and remediation of per-and polyfluoroalkyl substances in soils: A review. Curr. Opin. Environ. Sci. Health 2023, 34, 100487. [Google Scholar] [CrossRef]
- Zhu, J.C.; Fu, Y.; Hu, H.; Zhong, Y.S.; Ma, X.; Zhu, Y.L.; Zhou, F.; Pan, Y.T.; Ma, Y.X. Regulation of terrestrial input and ocean processes on the occurrence and transport of traditional and emerging per-and polyfluoroalkyl substances in the inner shelf of the East China Sea. Water Res. 2025, 268, 122606. [Google Scholar] [CrossRef]
- Saliu, T.D.; Liu, M.; Habimana, E.; Fontaine, J.; Dinh, Q.T.; Sauvé, S. PFAS profiles in biosolids, composts, and chemical fertilizers intended for agricultural land application in Quebec (Canada). J. Hazard. Mater. 2024, 480, 136170. [Google Scholar] [CrossRef]
- Oliver, D.P.; Li, Y.S.; Orr, R.; Nelson, P.; Barnes, M.; McLaughlin, M.J.; Kookana, R.S. Sorption behaviour of per-and polyfluoroalkyl substances (PFASs) in tropical soils. Environ. Pollut. 2020, 258, 113726. [Google Scholar] [CrossRef]
- Xie, S.W.; Lu, Y.L.; Wang, T.Y.; Liu, S.J.; Jones, K.; Sweetman, A. Estimation of PFOS emission from domestic sources in the eastern coastal region of China. Environ. Int. 2013, 59, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Liu, S.; Xiao, F.; Sweetman, A.J.; Cui, Q.Q.; Guo, H.; Xu, J.Y.; Luo, Z.Y.; Wang, M.X.; Zhong, L.L.; et al. Tissue-specific distribution and bioaccumulation of perfluoroalkyl acids, isomers, alternatives, and precursors in citrus trees of contaminated fields: Implication for risk assessment. J. Hazard. Mater. 2024, 465, 133184. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.F.; Chen, Y.B.; Zhang, Y.Y.; Xu, S.C. Spatial patterns of typhoon rainfall and associated flood characteristics over a mountainous watershed of a tropical island. J. Hydrol. 2022, 613, 128421. [Google Scholar] [CrossRef]
- Pancras, T.; Bentum, E.; Pagter, L.; Hoef, M.; Hoogenboom, R.; Berendsen, B.; Leeuwen, S.P.J. Large scale study on PFASs levels in fruits, vegetables and soil from allotments and gardens contaminated by atmospheric deposition from a Dutch fluorochemical production plant. Chemosphere 2024, 368, 143651. [Google Scholar] [CrossRef]
- Risk Assessment of Exposure to PFAS Through Food and Drinking Water in the Netherlands. Available online: https://rivm.openrepository.com/server/api/core/bitstreams/372952eb-a911-41dc-b29f-6249702f989f/content (accessed on 10 November 2025).
- Xu, C.; Song, X.; Liu, Z.Y.; Ding, X.Y.; Chen, H.; Ding, D. Occurrence, source apportionment, plant bioaccumulation and human exposure of legacy and emerging per-and polyfluoroalkyl substances in soil and plant leaves near a landfill in China. Sci. Total Environ. 2021, 776, 145731. [Google Scholar] [CrossRef]
- Liu, N.; Li, M.Y. Distinctive adsorption and transport behaviors of short-chain versus long-chain perfluoroalkyl acids in a river sediment. Environ. Sci. Pollut. Res. 2024, 31, 66854–66865. [Google Scholar] [CrossRef]
- Lalonde, S.; Wipf, D.; Frommer, W.B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu. Rev. Plant Biol. 2004, 55, 341–372. [Google Scholar] [CrossRef]
- Bresinsky, A.; Körner, C.; Kadereit, J.W.; Neuhaus, G.; Sonnewald, U. Strasburger, Lehrbuch der Botanik für Hochschulen. 36. Aufl/neu bearb. von Andreas Bresinsky; Spektrum Akademischer Verlag: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hyland, K.C.; Stushnoff, C.; Dickenson, E.R.; Higgins, C.P. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ. Sci. Technol. 2014, 48, 14361–14368. [Google Scholar] [CrossRef]
- Lechner, M.; Knapp, H. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis sativus). J. Agric. Food Chem. 2011, 59, 11011–11018. [Google Scholar] [CrossRef]
- Stahl, T.; Heyn, J.; Thiele, H.; Hüther, J.; Failing, K.; Georgii, S.; Brunn, H. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch. Environ. Contam. Toxicol. 2009, 57, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Felizeter, S.; McLachlan, M.S.; De Voogt, P. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ. Sci. Technol. 2012, 46, 11735–11743. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.H.; Zhou, M.; Yao, Y.M.; Sun, H.M. Plant uptake and translocation of perfluoroalkyl acids in a wheat–soil system. Environ. Sci. Pollut. Res. 2018, 25, 30907–30916. [Google Scholar] [CrossRef]
- Campos-Pereira, H.; Kleja, D.B.; Ahrens, L.; Enell, A.; Kikuchi, J.; Pettersson, M.; Gustafsson, J.P. Effect of pH, surface charge and soil properties on the solid–solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils. Chemosphere 2023, 321, 138133. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Bräunig, J.; Thompson, K.; Thompson, J.; Kabiri, S.; Navarro, D.A.; Kookana, R.S.; Grimison, C.; Barnes, C.M.; Higgins, C.P.; et al. Influences of chemical properties, soil properties, and solution pH on soil–water partitioning coefficients of per-and polyfluoroalkyl substances (PFASs). Environ. Sci. Technol. 2020, 54, 15883–15892. [Google Scholar] [CrossRef] [PubMed]
- Campos-Pereira, H.; Kleja, D.B.; Sjöstedt, C.; Ahrens, L.; Klysubun, W.; Gustafsson, J.P. The adsorption of per-and polyfluoroalkyl substances (PFASs) onto ferrihydrite is governed by surface charge. Environ. Sci. Technol. 2020, 54, 15722–15730. [Google Scholar] [CrossRef]
- Cai, W.W.; Navarro, D.A.; Du, J.; Ying, G.G.; Yang, B.; McLaughlin, M.J.; Kookana, R.S. Increasing ionic strength and valency of cations enhance sorption through hydrophobic interactions of PFAS with soil surfaces. Sci. Total Environ. 2022, 817, 152975. [Google Scholar] [CrossRef]
- Zhong, H.F.; Zheng, M.G.; Liang, Y.; Wang, Y.J.; Gao, W.; Wang, Y.W.; Jiang, G.B. Legacy and emerging per-and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment. Chemosphere 2021, 282, 131042. [Google Scholar] [CrossRef]
- Young, C.J.; Furdui, V.I.; Franklin, J.; Koerner, R.M.; Muir, D.C.; Mabury, S.A. Perfluorinated acids in arctic snow: New evidence for atmospheric formation. Environ. Sci. Technol. 2007, 41, 3455–3461. [Google Scholar] [CrossRef]
- Simcik, M.F.; Dorweiler, K.J. Ratio of perfluorochemical concentrations as a tracer of atmospheric deposition to surface waters. Environ. Sci. Technol. 2005, 39, 8678–8683. [Google Scholar] [CrossRef]
- Glenn, G.; Shogren, R.; Jin, X.; Orts, W.; Hart-Cooper, W.; Olson, L. Per-and polyfluoroalkyl substances and their alternatives in paper food packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2596–2625. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Y.W.; Yu, P.F.; Feng, N.X.; Zhao, H.M.; Li, H.; Cai, Q.Y.; Mo, C.H.; Li, Q.X. Food safety concerns: Crop breeding as a potential strategy to address issues associated with the recently lowered reference doses for perfluorooctanoic acid and perfluorooctane sulfonate. J. Agric. Food Chem. 2019, 68, 48–58. [Google Scholar] [CrossRef]





| Sample Types | Location | ΣPFAS Concentration Range | Dominant PFAS | Reference |
|---|---|---|---|---|
| Mangoes | Hainan Nanfan District, China (Normal agricultural soil) | 0.0019–0.0201 ng/g (ww) | PFHxA, PFHpA | This study |
| Fruits (strawberries, apples, pears) | Netherlands (Normal agricultural soil) | <0.03 ng/g | No dominant congeners | [25] |
| Vegetables (Cucumbers, cauliflowers) | Netherlands (Normal agricultural soil) | 0.007 ng/g (mean) | PFUnDA, PFOS, PFDA | [26] |
| Maize kernels | Farmland near the mega fluorine chemical industrial park in China | 1.36–58.83 ng/g | PFBA | [10] |
| Cabbages | Farmland near the mega fluorine chemical industrial park in China | 11.88–115.14 ng/g | PFBA | [27] |
| Analytes | Soil Ecological Risk | Human Health Risk | ||||
|---|---|---|---|---|---|---|
| RQ (×10−6) | EDI (×10−3) | RQ (×10−4) | ||||
| Max | Min | Max | Min | Max | Min | |
| PFHxA | 21.82 | 0.98 | 9.47 | 1.30 | 0.30 | 0.04 |
| PFHpA | 4.44 | 0.20 | 3.50 | 0.17 | — | — |
| PFOA | 20.22 | 1.77 | 1.52 | 0.03 | 5.07 | 0.11 |
| PFNA | 30.81 | 4.02 | 0.15 | 0.02 | — | — |
| PFDA | 148.75 | 6.41 | 0.58 | 0.58 | — | — |
| PFUnDA | 26.37 | 4.70 | 0.49 | 0.01 | — | — |
| PFDoA | 2.81 | 0.24 | — | — | — | — |
| PFOS | 78.77 | 7.30 | 2.35 | 0.57 | 11.77 | 2.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, Z.; Chen, F.; Yang, R.; Ren, S.; Zhang, S.; Pan, X.; Tian, H.; Ramilan, T.; Duan, Y.; Han, B. Occurrence, Sources, and Risk Assessment of PFAS in Soil–Mango Systems of the Chinese Tropical Nanfan District. Foods 2026, 15, 58. https://doi.org/10.3390/foods15010058
Zhang Z, Chen F, Yang R, Ren S, Zhang S, Pan X, Tian H, Ramilan T, Duan Y, Han B. Occurrence, Sources, and Risk Assessment of PFAS in Soil–Mango Systems of the Chinese Tropical Nanfan District. Foods. 2026; 15(1):58. https://doi.org/10.3390/foods15010058
Chicago/Turabian StyleZhang, Zhen, Fei Chen, Rui Yang, Saihao Ren, Shanying Zhang, Xiaowei Pan, Hai Tian, Thiagarajah Ramilan, Yun Duan, and Bingjun Han. 2026. "Occurrence, Sources, and Risk Assessment of PFAS in Soil–Mango Systems of the Chinese Tropical Nanfan District" Foods 15, no. 1: 58. https://doi.org/10.3390/foods15010058
APA StyleZhang, Z., Chen, F., Yang, R., Ren, S., Zhang, S., Pan, X., Tian, H., Ramilan, T., Duan, Y., & Han, B. (2026). Occurrence, Sources, and Risk Assessment of PFAS in Soil–Mango Systems of the Chinese Tropical Nanfan District. Foods, 15(1), 58. https://doi.org/10.3390/foods15010058

