Comprehensive Assessment of Harvesting Method Effects on FAEE, Waxes, Fatty Acids, Phenolics, Volatiles, and Sensory Characteristics of Buža Virgin Olive Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Olive Samples and Harvesting Procedures
2.2. Post-Harvest Handling and Processing
2.3. Analysis of Olive Oil
2.3.1. Basic Quality Parameters of Virgin Olive Oils
2.3.2. Fatty Acid Ethyl Esters and Waxes
2.3.3. Analysis of Fatty Acid Methyl Esters (FAME)
2.3.4. Volatile Compound Analysis
2.3.5. Phenolic Compound Analysis
2.3.6. Sensory Evaluation
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Fruit Damage
3.2. Oil Quality Parameters
3.3. Fatty Acid Ethyl Esters
3.4. Waxes
3.5. Fatty Acids
3.6. Volatile Compounds
3.7. Phenolic Compounds
3.8. Principal Component Analysis (PCA)
3.9. Sensory Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| B-HH | Manual harvesting using hand-held combs |
| B-MH-1 | Mechanical harvesting using hand-held shaker rake |
| B-MH-2 | Mechanical harvesting by self-propelled trunk shaker |
| VOO | Virgin olive oil |
| EVOO | Extra virgin olive oil |
| PV | Peroxide value |
| FFA | Free fatty acidity |
| LOX | Lipoxygenase pathway |
| FAEE | Fatty acid ethyl esters |
| MI | Maturity Index |
| IOC | International Olive Council |
| FID | Flame ionization detector |
| HS-SPME | Headspace solid-phase microextraction |
| GC-FID/MS | Gas chromatography-flame ionization detection and mass spectrometry |
| DVB/CAR/PDMS | Divinylbenzene/carboxen/polydimethylsiloxane |
| HPLC-DAD | High-performance liquid chromatography with a diode array detector |
| 3,4-DHPEA-EDA | Decarboxymethyl oleuropein aglycone, dialdehyde form |
| p-HPEA-EDA | Decarboxymethyl ligstroside aglycone dialdehyde form |
| ANOVA | One-way analysis of variance |
| SFA | Saturated fatty acids |
| MUFA | Monounsaterated fatty acids |
| PUFA | Polyunsaturated fatty acids |
| TPC | Total phenolic content |
References
- COI/T.15/NC No 3/Rev. 21; Trade Standard Applying to Olive Oils and Olive Pomace Oils. IOC (International Olive Council): Madrid, Spain, 2025.
- The European Commission. Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Off. J. Eur. Union. 2022, L284, 1–22. [Google Scholar]
- Rufat, J.; Romero-Aroca, A.J.; Arbones, A.; Villar, J.M.; Hermoso, J.F.; Pascual, M. Mechanical Harvesting and Irrigation Strategy Responses on ‘Arbequina’ Olive Oil Quality. HortTechnology 2018, 28, 607–614. [Google Scholar] [CrossRef]
- Mele, M.A.; Islam, M.Z.; Kang, H.-M.; Giuffrè, A.M. Pre-and post-harvest factors and their impact on oil composition and quality of olive fruit. Emir. J. Food Agric. 2018, 30, 592–603. [Google Scholar] [CrossRef]
- Corti, F.; Parenti, A.; Cecchi, L.; Mulinacci, N.; Masella, P.; Angeloni, G.; Spadi, A.; Zanoni, B.; Calamai, L.; Guerrini, L. Effect of facilitated harvesting and fruit cooling on extra virgin olive oil quality. Riv. Ital. Sostanze Grase 2022, 99, 211–224. [Google Scholar]
- Sito, S.; Strikić, F.; Bilandžija, N.; Fabijanić, G.; Bernobich Veronese, A.; Martinec, J.; Arar, M. Suvremena tehnika u berbi maslina. Glas. Zaštite Bilja 2013, 5, 44–51. [Google Scholar]
- Famiani, F.; Farinelli, D.; Urbani, S.; Al Hariri, R.; Paoletti, A.; Rosati, A.; Esposto, S.; Selvaggini, R.; Taticchi, A.; Servili, M. Harvesting system and fruit storage affect basic quality parameters and phenolic and volatile compounds of oils from intensive and super-intensive olive orchards. Sci. Hortic. 2020, 263, 109045. [Google Scholar] [CrossRef]
- Zimbalatti, G. Macchine e impianti per la raccolta e la transformazione delle olive da olio. Perito Agrar. 2004, 5, 20–28. [Google Scholar]
- Morales-Sillero, A.; Jiménez, M.R.; Suárez, M.P.; Rallo, P.; Casanova, L. Mechanical harvesting at dawn in a super-high-density table olive orchard: Effect on the quality of fruits. J. Sci. Food Agric. 2023, 103, 2989–2996. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Sbaglia, M.; Bernardi, B. Mechanical Harvesting of Olive Orchards: An Overview on Trunk Shakers. AgriEngineering 2025, 7, 52. [Google Scholar] [CrossRef]
- Taiti, C.; Masi, E.; Flamminii, F.; Di Mattia, C.; Mancuso, S.; Marone, E. Does the Harvest Type Affect Olive Health? Influence of the Harvesting System and Storage Time on the Chemical, Volatile and Sensory Qualities of Extra Virgin Olive Oils. Plants 2023, 12, 3843. [Google Scholar] [CrossRef]
- Sola-Guirado, R.R.; Bayano-Tejero, S.; Aragon-Rodriguez, F.; Peña, A.; Blanco-Roldan, G. Bruising pattern of table olives (‘Manzanilla’ and ‘Hojiblanca’ cultivars) caused by hand-held machine harvesting methods. Biosyst. Eng. 2022, 215, 188–202. [Google Scholar] [CrossRef]
- Segovia-Bravo, K.A.; Jarén-Galán, M.; García-García, P.; Garrido-Fernández, A. Browning reactions in olives: Mechanism and polyphenols involved. Food Chem. 2009, 114, 1380–1385. [Google Scholar] [CrossRef]
- Yousfi, K.; Weiland, C.M.; Garcia, J.M. Effect of harvesting system and fruit cold storage on virgin olive oil chemical composition and quality of superintensive cultivated ‘Arbequina’ olives. J. Agric. Food. Chem. 2012, 60, 4743–4750. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; Pérez, A.G.; Casanova, L.; García, J.M. Cold storage of ‘Manzanilla de Sevilla’ and ‘Manzanilla Cacereña’ mil olives from super-high density orchards. Food Chem. 2017, 237, 1216–1225. [Google Scholar] [CrossRef]
- Dag, A.; Ben-Gal, A.; Yermiyahu, U.; Basheer, L.; Nir, Y.; Kerem, Z. The effect of irrigation level and harvest mechanization on virgin olive oil quality in a traditional rain-fed ‘Souri’ olive orchard converted to irrigation. J. Sci. Food Agric. 2008, 88, 1524–1528. [Google Scholar] [CrossRef]
- Saglam, C.; Tuna, Y.T.; Gecgel, U.; Atar, E.S. Effects of olive harvesting methods on oil quality. APCBEE Procedia 2014, 8, 334–342. [Google Scholar] [CrossRef]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2020, 105, 483–493. [Google Scholar] [CrossRef]
- Boskou, D. Olive Oil: Chemistry and Technology, 2nd ed.; AOCS Press: Champaign, IL, USA, 2006. [Google Scholar] [CrossRef]
- CBS (Croatian Bureau of Statistics). Production of Vegetables, Fruits and Grapes in 2022. 2023. Available online: https://podaci.dzs.hr/2022/hr/29338 (accessed on 17 October 2025).
- Lukić, I.; Horvat, I.; Godena, S.; Krapac, M.; Lukić, M.; Vrhovsek, U.; Brkić Bubola, K. Towards understanding the varietal typicity of virgin olive oil by correlating sensory and compositional analysis data: A case study. Food Res. Int. 2018, 112, 78–89. [Google Scholar] [CrossRef]
- CPGRD (Croatian Agency for Agriculture and Food Croatian Plant Genetic Resources Database). Available online: https://cpgrd.hapih.hr/gb/fruit/main/accession/391?document_code=OLEA (accessed on 17 October 2025).
- Poljuha, D.; Sladonja, B.; Bubola, K.B.; Radulović, M.; Brščić, K.; Šetić, E.; Krapac, M.; Milotić, A. A multidisciplinary approach to the characterisation of autochthonous istrian olive (Olea europaea L.) varieties. Food Technol. Biotechnol. 2008, 46, 347–354. [Google Scholar]
- COI/OH/Doc. No 1; Guide for the Determination of the Characteristics of Oil-Olives. IOC (International Olive Council): Madrid, Spain, 2011.
- COI/T.20/Doc. No. 34; Determination of Free Fatty Acids, Cold Method. IOC (International Olive Council): Madrid, Spain, 2017.
- COI/T.20/Doc. No. 35; Determination of Peroxide Value. IOC (International Olive Council): Madrid, Spain, 2017.
- COI/T.20/Doc. No. 19/Rev. 5; Spectrophotometric Investigation in the Ultraviolet. IOC (International Olive Council): Madrid, Spain, 2019.
- COI/T.20/Doc. No 28/Rev. 4/2024; Determination of the Content of Waxes and Fatty acid Ethyl Esters by Capillary Gas Chromatography. IOC (International Olive Council): Madrid, Spain, 2024.
- COI/T.20/Doc. No 33; Determination of Fatty acid Methyl Esters by Gas Chromatography. IOC (International Olive Council): Madrid, Spain, 2017.
- COI/T.20/Doc. No 37; Determination of Volatile Compounds in Virgin Olive Oil by SPME-GC-FID/MS. IOC (International Olive Council): Madrid, Spain, 2024.
- COI/T.20/Doc. No 29/Rev.2/2022; Determination of Biophenols in Olive Oils by HPLC. IOC (International Olive Council): Madrid, Spain, 2022.
- Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U.; Mozetič Vodopivec, B. Phenolic Profiling of Olives and Olive Oil Process-Derived Matrices Using UPLC-DAD-ESI-QTOF-HRMS Analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- COI/T.20/Doc. No. 15; Sensory Analysis of Olive Oil. Method for the Organoleptic Assessment of Virgin Olive Oil. IOC (International Olive Council): Madrid, Spain, 2024.
- Jimenez-Jimenez, F.; Castro-Garcia, S.; Blanco-Roldan, G.L.; González-Sánchez, E.J.; Gil-Ribes, J.A. Isolation of table olive damage causes and bruise time evolution during fruit detachment with trunk shaker. SJAR 2013, 11, 65–71. [Google Scholar] [CrossRef]
- Rashvand, M.; Altieri, G.; Li, Z.; Akbarnia, A.; Genovese, F.; Matera, A.; Di Renzo, G.C. Deformation and bruising investigation of the olive fruit in a rotary hand-held olive harvester. Biosyst. Eng. 2023, 233, 35–46. [Google Scholar] [CrossRef]
- Plasquy, E.; García Martos, J.M.; Florido, M.C.; Sola-Guirado, R.R.; García Martín, J.F. Cold Storage and Temperature Management of Olive Fruit: The Impact on Fruit Physiology and Olive Oil Quality—A Review. Processes 2021, 9, 1543. [Google Scholar] [CrossRef]
- Tombesi, A.; Famiani, F.; Proietti, P.; Guelfi, P. Efficiency of different olive harvesting methods and effects on the trees and oil quality. Ezzaitouna Rev. Sci. Oléic. Oléotec. 1996, 2, 93–101. [Google Scholar]
- Morales-Sillero, A.; García, J.M. Impact assessment of mechanical harvest on fruit physiology and consequences on oil physicochemical and sensory quality from ‘Manzanilla de Sevilla’ and ‘Manzanilla Cacereña’ super-high-density hedgerows. J. Sci. Food Agric. 2015, 95, 2445–2453. [Google Scholar] [CrossRef]
- Bajoub, A.; Bendini, A.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Olive oil authentication: A comparative analysis of regulatory frameworks with especial emphasis on quality and authenticity indices, and recent analytical techniques developed for their assessment. A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 832–857. [Google Scholar] [CrossRef] [PubMed]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Fregapane, G.; Salvador, M.D.; Simal-Gandara, J. Characterisation of extra virgin olive oils from Galician autochthonous varieties and their co-crushings with Arbequina and Picual cv. Food Chem. 2015, 176, 493–503. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes: Their relationships with volatile compounds from lipoxygenase pathway and secoiridoid compounds. Food Chem. 2004, 68, 283–287. [Google Scholar] [CrossRef]
- Casadei, E.; Valli, E.; Aparicio-Ruiz, R.; Ortiz-Romero, C.; García-González, D.L.; Vichi, S.; Quintanilla-Casas, B.; Tres, A.; Bendini, A.; Gallina Toschi, T. Peer inter-laboratory validation study of a harmonized SPME-GC-FID method for the analysis of selected volatile compounds in virgin olive oils. Food Control 2021, 123, 107823. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Reiners, J.; Grosch, W. Odorants of virgin olive oils with different flavor profiles. J. Agric. Food Chem. 1998, 46, 2754–2763. [Google Scholar] [CrossRef]
- Gallina-Toschi, T.; Cerretani, L.; Bendini, A.; Bonoli-Carbognin, M.; Lercker, G. Oxidative stability and phenolic content of virgin olive oil: An analytical approach by traditional and high resolution techniques. J. Sep. Sci. 2005, 28, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.P.; Sanz, C. Composición fenólico del aceite de oliva: Compuestos y enzimas implicados. Actas Hortic. 2019, 84, 7–9. [Google Scholar]
- Hbaieb, R.H.; Kotti, F.; Gargouri, M. Contribution of olive endogenous enzymes activities on virgin olive oil phenolic profile. Eur. J. Lipid Sci. Technol. 2024, 126, e2300100. [Google Scholar] [CrossRef]
- Parenti, A.; Spugnoli, P.; Masella, P.; Calamai, L. The effect of malaxation temperature on the virgin olive oil phenolic profile under laboratory-scale conditions. Eur. J. Lipid Sci. Technol. 2008, 110, 735–741. [Google Scholar] [CrossRef]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Urbani, S.; Selvaggini, R.; Servili, M. The influence of the malaxation temperature on the activity of polyphenoloxidase and peroxidase and on the phenolic composition of virgin olive oil. Food Chem. 2013, 136, 975–983. [Google Scholar] [CrossRef]
- Cicerale, S.; Lucas, L.J.; Keast, R.S. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [Google Scholar] [CrossRef]
- Alagna, F.; Mariotti, R.; Panara, F.; Caporali, S.; Urbani, S.; Veneziani, G.; Esposto, S.; Taticchi, A.; Rosati, A.; Rao, R.; et al. Olive Phenolic Compounds: Metabolic and Transcriptional Profiling during Fruit Development. BMC Plant Biol. 2012, 12, 162. [Google Scholar] [CrossRef]
- Sirangelo, T.M.; Forgione, I.; Zelasco, S.; Benincasa, C.; Perri, E.; Vendramin, E.; Angilè, F.; Fanizzi, F.P.; Sunseri, F.; Salimonti, A.; et al. Combined Transcriptomic and Metabolomic Approach Revealed a Relationship between Light Control, Photoprotective Pigments, and Lipid Biosynthesis in Olives. Int. J. Mol. Sci. 2023, 24, 14448. [Google Scholar] [CrossRef]






| Quality Parameters | B-HH | B-MH-1 | B-MH-2 | EVOO * |
|---|---|---|---|---|
| FFA (% oleic acid) | 0.09 ± 0.01 | 0.09 ± 0.01 | 0.10 ± 0.01 | ≤0.80 |
| PV (meq O2/kg) | 5.67 ± 1.07 | 4.47 ± 0.35 | 5.43 ± 0.50 | ≤20.0 |
| K232 | 1.99 ± 0.12 | 1.85 ± 0.10 | 2.14 ± 0.22 | ≤2.50 |
| K268 | 0.13 ± 0.02 | 0.12 ± 0.01 | 0.15 ± 0.01 | ≤0.22 |
| ∆K | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | ≤0.01 |
| Fatty Acid (%) | B-HH | B-MH-1 | B-MH-2 | EVOO * |
|---|---|---|---|---|
| Myristic (C 14:0) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.01 | ≤0.03 |
| Palmitic (C 16:0) | 14.53 ± 0.31 | 14.26 ± 0.25 | 14.50 ± 0.07 | 7.50–20.00 |
| Palmitoleic (C 16:1) | 1.14 ± 0.02 | 1.15 ± 0.01 | 1.16 ± 0.01 | 0.30–3.50 |
| Heptadecanoic (C 17:0) | 0.18 ± 0.00 | 0.18 ± 0.01 | 0.19 ± 0.00 | ≤0.40 |
| Heptadecenoic (C 17:1) | 0.31 ± 0.00 | 0.31 ± 0.01 | 0.30 ± 0.01 | ≤0.60 |
| Stearic (C 18:0) | 2.48 ± 0.02 | 2.46 ± 0.01 | 2.49 ± 0.02 | 0.50–5.00 |
| Oleic (C 18:1) | 67.55 ± 0.14 | 67.74 ± 0.17 | 67.55 ± 0.04 | 55.00–85.00 |
| Linoleic (C 18:2) | 12.08 ± 0.19 | 12.16 ± 0.18 | 12.16 ± 0.05 | 2.50–21.00 |
| Linolenic (C 18:3) | 0.83 ± 0.02 | 0.84 ± 0.03 | 0.82 ± 0.01 | ≤1.00 |
| Arachidic (C 20:0) | 0.42 ± 0.01 a | 0.41 ± 0.01 a | 0.38 ± 0.00 b | ≤0.60 |
| Eicosenoic (C 20:1) | 0.29 ± 0.01 | 0.29 ± 0.03 | 0.26 ± 001 | ≤0.50 |
| Behenic (C 22:0) | 0.12 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | ≤0.20 |
| Erucic (C 22:1) | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | |
| Lignoceric (C 24:0) | 0.05 ± 0.01 | 0.05 ± 0.00 | 0.04 ± 0.01 | ≤0.20 |
| ∑SFA | 17.80 ± 0.28 | 17.50 ± 0.25 | 17.73 ± 0.05 | |
| ∑MUFA | 69.29 ± 0.13 | 69.50 ± 0.18 | 69.28 ± 0.06 | |
| ∑PUFA | 12.91 ± 0.20 | 13.00 ± 0.19 | 12.98 ± 0.05 |
| Volatile Compound (Odor Threshold *) (mg/kg) | B-HH | B-MH-1 | B-MH-2 |
|---|---|---|---|
| Octane (0.94) | 0.012 ± 0.001 | 0.010 ± 0.002 | 0.011 ± 0.002 |
| Ethyl acetate (0.94) | 0.022 ± 0.002 b | 0.022 ± 0.007 b | 0.039 ± 0.005 a |
| Ethanol (30.0) | 0.766 ± 0.210 | 0.545 ± 0.082 | 0.759 ± 0.077 |
| Ethyl propanoate (0.10) | 0.001 ± 0.000 | 0.028 ± 0.048 | 0.033 ± 0.056 |
| Hexanal (0.08) | 1.197 ± 0.072 a | 1.062 ± 0.027 ab | 0.944 ± 0.120 b |
| 3-Methyl-1-butanol (0.10) | 0.002 ± 0.000 ab | 0.001 ± 0.000 b | 0.003 ± 0.000 a |
| (E)-2-Hexenal (0.420) | 6.381 ± 0.476 ab | 5.801 ± 0.237 b | 7.141 ± 0.617 a |
| (Z)-3-Hexenyl acetate (0.2) | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.003 ± 0.001 |
| (E)-2-Heptenal (0.042) | 0.043 ± 0.002 ab | 0.037 ± 0.001 b | 0.051 ± 0.009 a |
| 6-methyl-5-hepten-2-one (1.00) | 0.035 ± 0.004 ab | 0.025 ± 0.004 b | 0.040 ± 0.007 a |
| 1-Hexanol (0.40) | 0.132 ± 0.013 b | 0.236 ± 0.011 a | 0.220 ± 0.009 a |
| Nonanal (0.15) | 0.124 ± 0.018 | 0.139 ± 0.018 | 0.112 ± 0.011 |
| 1-Octen-3-ol (0.05) | 0.005 ± 0.001 | 0.003 ± 0.000 | 0.006 ± 0.003 |
| (E,E)-2,4-Hexadienal | 0.200 ± 0.022 | 0.191 ± 0.016 | 0.178 ± 0.013 |
| Acetic acid (0.5) | 0.236 ± 0.031 | 0.249 ± 0.013 | 0.291 ± 0.039 |
| Propanoic acid (0.72) | 0.434 ± 0.028 | 0.391 ± 0.061 | 0.366 ± 0.019 |
| (E)-2-Decenal (0.01) | 0.068 ± 0.005 | 0.067 ± 0.004 | 0.077 ± 0.008 |
| Pentanoic acid (0.60) | 0.011 ± 0.001 c | 0.048 ± 0.007 a | 0.029 ± 0.002 b |
| Phenolic Compounds (mg/kg) | B-HH | B-MH-1 | B-MH-2 |
|---|---|---|---|
| Oleuropein | 10.97 ± 2.05 | 14.71 ± 0.72 | 11.53 ± 1.93 |
| Oleuropein aglycone, dialdehyde form | 12.25 ± 2.57 | 15.11 ± 1.10 | 12.78 ± 1.95 |
| Oleuropein aglycone, oxidized aldehyde and hydroxylic form | 1.59 ± 0.15 | 1.69 ± 0.08 | 1.35 ± 0.27 |
| Oleacein | 49.69 ± 8.75 | 63.24 ± 4.67 | 48.11 ± 10.68 |
| Oleacein, oxidized form | 2.20 ± 0.06 b | 2.86 ± 0.16 a | 2.26 ± 0.11 b |
| Oleocanthal | 20.62 ± 0.90 | 22.33 ± 1.20 | 21.88 ± 0.51 |
| Oleocanthal, oxidized form | 6.75 ± 0.81 ab | 8.06 ± 0.60 a | 5.97 ± 0.34 b |
| Oleuropein aglycone, aldehyde and hydroxylic form | 21.03 ± 1.34 | 21.72 ± 0.62 | 21.91 ± 0.66 |
| Ligstroside aglycone, dialdehyde form | 28.59 ± 2.28 | 29.98 ± 1.73 | 30.49 ± 1.12 |
| Ligstroside aglycone, aldehyde and hydroxylic form | 11.71 ± 1.19 ab | 9.07 ± 0.34 b | 12.93 ± 1.66 a |
| Ligstroside aglycone, oxidized aldehyde and hydroxylic form | 5.28 ± 0.38 | 5.07 ± 0.51 | 5.44 ± 0.53 |
| Total secoiridoids | 170.67 ± 19.97 | 193.85 ± 7.10 | 174.64 ± 16.71 |
| Tyrosol | 5.58 ± 0.18 | 5.74 ± 0.16 | 5.75 ± 0.38 |
| Hydroxytyrosol | 1.04 ± 0.08 ab | 1.26 ± 0.11 a | 0.89 ± 0.24 b |
| Hydroxytyrosol acetate | 0.15 ± 0.06 | 0.11 ± 0.05 | 0.25 ± 0.05 |
| Tyrosol acetate | 1.20 ± 0.14 ab | 1.54 ± 0.14 a | 1.03 ± 0.23 b |
| Vanillin | 4.80 ± 0.48 | 4.88 ± 0.15 | 5.36 ± 0.51 |
| Total simple phenols | 12.76 ± 0.42 | 13.54 ± 0.32 | 13.31 ± 1.20 |
| Vanillic and caffeic acid | 1.97 ± 0.12 ab | 2.10 ± 0.05 a | 1.77 ± 0.05 b |
| p-Coumaric acid | 1.99 ± 0.19 | 2.13 ± 0.10 | 1.95 ± 0.11 |
| o-Coumaric acid | 0.25 ± 0.00 a | 0.24 ± 0.03 a | 0.14 ± 0.02 b |
| Ferulic acid | 0.47 ± 0.07 | 0.55 ± 0.06 | 0.55 ± 0.04 |
| Cinnamic acid | 0.44 ± 0.10 b | 0.50 ± 0.33 b | 1.23 ± 0.19 a |
| Total phenolic acids | 5.12 ± 0.23 | 5.51 ± 0.43 | 5.63 ± 0.04 |
| Pinoresinol, 1-acetoxy-pinoresinol | 31.16 ± 0.68 | 29.56 ± 0.37 | 30.15 ± 1.20 |
| Total lignans | 31.16 ± 0.68 | 29.56 ± 0.37 | 30.15 ± 1.20 |
| Luteolin | 6.86 ± 0.03 b | 7.38 ± 0.48 b | 8.39 ± 0.26 a |
| Apigenin | 1.96 ± 0.05 b | 2.05 ± 0.10 b | 2.43 ± 0.22 a |
| Methyl-luteolin | 0.51 ± 0.03 b | 0.52 ± 0.04 ab | 0.59 ± 0.02 a |
| Total flavonoids | 9.33 ± 0.10 b | 9.95 ± 0.61 b | 11.42 ± 0.48 a |
| Total phenolic content | 229.03 ± 21.30 | 252.41 ± 7.27 | 235.15 ± 13.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Brkić Bubola, K.; Lukić, M.; Pastor, I.; Lukić, I.; Kozlovič, G.; Bučar-Miklavčič, M.; Koprivnjak, O.; Krapac, M. Comprehensive Assessment of Harvesting Method Effects on FAEE, Waxes, Fatty Acids, Phenolics, Volatiles, and Sensory Characteristics of Buža Virgin Olive Oil. Foods 2026, 15, 160. https://doi.org/10.3390/foods15010160
Brkić Bubola K, Lukić M, Pastor I, Lukić I, Kozlovič G, Bučar-Miklavčič M, Koprivnjak O, Krapac M. Comprehensive Assessment of Harvesting Method Effects on FAEE, Waxes, Fatty Acids, Phenolics, Volatiles, and Sensory Characteristics of Buža Virgin Olive Oil. Foods. 2026; 15(1):160. https://doi.org/10.3390/foods15010160
Chicago/Turabian StyleBrkić Bubola, Karolina, Marina Lukić, Iva Pastor, Igor Lukić, Gašper Kozlovič, Milena Bučar-Miklavčič, Olivera Koprivnjak, and Marin Krapac. 2026. "Comprehensive Assessment of Harvesting Method Effects on FAEE, Waxes, Fatty Acids, Phenolics, Volatiles, and Sensory Characteristics of Buža Virgin Olive Oil" Foods 15, no. 1: 160. https://doi.org/10.3390/foods15010160
APA StyleBrkić Bubola, K., Lukić, M., Pastor, I., Lukić, I., Kozlovič, G., Bučar-Miklavčič, M., Koprivnjak, O., & Krapac, M. (2026). Comprehensive Assessment of Harvesting Method Effects on FAEE, Waxes, Fatty Acids, Phenolics, Volatiles, and Sensory Characteristics of Buža Virgin Olive Oil. Foods, 15(1), 160. https://doi.org/10.3390/foods15010160

