Content and Dietary Contribution Assessment of Mineral Elements in Dairy from Henan Province of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Analysis
2.3. Contribution Rate Assessment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of Mineral Elements in Dairy Products
3.2. Contribution Rate Evaluation of Mineral Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Mg | Magnesium |
| Fe | Iron |
| Zn | Zinc |
| Se | Selenium |
| Cu | Copper |
| Pb | Lead |
| Cd | Cadmium |
| As | Arsenic |
| ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
| RNI | Recommended Nutrient Intake |
References
- Gaucheron, F. Milk and dairy products: A unique micronutrient combination. J. Am. Coll. Nutr. 2011, 30, 400S–409S. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, W.; Wang, J.Q.; Li, X.W.; Wang, H.Y.; Wang, J.P.; Xu, J. Dairy product and dairy iodine intake among pregnant women in 2 provinces of China: A cross-sectional study. J. Dairy Sci. 2025, 108, 3162–3171. [Google Scholar] [CrossRef] [PubMed]
- Tolenaars, L.; Romanazzi, D.; Carpenter, E.; Gallier, S.; Prosser, C.G. Minor dietary components intrinsic to goat milk and goat milk formulas. Int. Dairy J. 2021, 117, 105012. [Google Scholar] [CrossRef]
- Yang, Y.F.; Pan, M.J.; Lin, Y.Y.; Xu, H.H.; Wei, S.H.; Zhang, C.; Lu, S.; Niu, B. Assessing heavy metal risks in liquid milk: Dietary exposure and carcinogenicity in China. J. Dairy Sci. 2025, 108, 6838–6851. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.-N.; Zhang, Y.-H.; Cui, X.-S.; Lv, X.-Y.; Chen, Z.; Yang, Z.-P.; Lu, Q.-Y. Distribution characteristics and pollution assessment of lead and cadmium content in selected dairy farms in jiangsu, China. Vet. Sci. 2025, 12, 1042. [Google Scholar] [CrossRef]
- Ha, F.; Wu, Y.H.; Wang, H.N.; Wang, T.C. The reference intervals of whole blood copper, zinc, calcium, magnesium, and iron in infants under 1 year old. Biol. Trace Elem. Res. 2022, 200, 1–12. [Google Scholar] [CrossRef]
- Cannas, D.; Loi, E.; Serra, M.; Firinu, D.; Valera, P.; Zavattari, P. Relevance of essential trace elements in nutrition and drinking water for human health and autoimmune disease risk. Nutrients 2020, 12, 2074. [Google Scholar] [CrossRef]
- Zuin, G.; Principi, N. Trace elements and vitamins in immunomodulation in infancy and childhood. Eur. J. Cancer Prev. 1997, 6, S69–S77. [Google Scholar] [CrossRef]
- Redan, B.W.; Zuklic, J.; Hryshko, J.; Boyer, M.; Wan, J.S.; Sandhu, A.; Jackson, L.S. Analysis of eight types of plant-based milk alternatives from the United States market for target minerals and trace elements. J. Food Compos. Anal. 2023, 122, 105457. [Google Scholar] [CrossRef]
- Franzoi, M.; Niero, G.; Penasa, M.; De Marchi, M. Development of Infrared Prediction Models for Diffusible and Micellar Minerals in Bovine Milk. Animals 2019, 9, 430. [Google Scholar] [CrossRef]
- András, P.; Turisová, I.; Krnác, J.; Dirner, V.; Voleková-Lalinská, B.; Buccheri, G.; Jelen, S. Hazards of heavy metal contamination at Lubietova Cu-deposit (Slovakia). In Proceedings of the International Conference of Environment, Landscape, European Identity/Annual Scientific Meeting of the Faculty-of-Geography, Bucharest, Romania, 4–6 November 2011; Volume 5, pp. 3–21. [Google Scholar]
- Upadhyay, V.; Kumari, A.; Kumar, S. From soil to health hazards: Heavy metals contamination in northern India and health risk assessment. Chemosphere 2024, 354, 141697. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics. Bulletin of the Seventh National Census. Available online: https://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901083.html (accessed on 11 May 2021).
- Deng, C.Y.; Yue, Y.; Zhang, H.F.; Liu, M.; Ge, Y.S.; Xu, E.S.; Zheng, J.S. Serum metabolomics and ionomics analysis of hoof-deformed cows based on LC-MS/MS and ICP-OES/MS. Animals 2023, 13, 1440. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Shan, Y.; Yang, L. Determination of selenium in cow’s milk powder by ICP-MS using a green and efficient extraction induced by emulsion breaking (EIEB) method. Talanta 2025, 298, 129053. [Google Scholar] [CrossRef] [PubMed]
- Kandhro, F.; Kazi, T.G.; Afridi, H.I.; Baig, J.A. Compare the nutritional status of essential minerals in milk of different cattle and humans: Estimated daily intake for children. J. Food Compos. Anal. 2022, 105, 104214. [Google Scholar] [CrossRef]
- Usman, A.; Yaqoob, S.; Shafiq, H.; Amir, M.; Riaz, M.; Parveen, K.; Usman, U. Comparative analysis of heavy metals and minerals in dairy and plant-based milk alternatives available in pakistan’s markets. Biol. Trace Elem. Res. 2025, 203, 5432–5439. [Google Scholar] [CrossRef]
- Announcement of the Ministry of Health of the People’s Republic of China (Wei Tong [2010] No. 7): Issuing 66 national food safety standards including Raw Milk (GB19301-2010). Available online: https://www.nhc.gov.cn/sps/c100088/201004/5a847fa696a84c90bd1565672534da49.shtml (accessed on 11 May 2021).
- Oliveira Filho, E.F.D.; López-Alonso, M.; Vieira Marcolino, G.; Castro Soares, P.; Herrero-Latorre, C.; Lopes de Mendonça, C.; de Azevedo Costa, N.; Miranda, M. Factors Affecting Toxic and Essential Trace Element Concentrations in Cow’s Milk Produced in the State of Pernambuco, Brazil. Animals 2023, 13, 2465. [Google Scholar] [CrossRef]
- Sarsembayeva, N.B.; Abdigaliyeva, T.B.; Utepova, Z.A.; Biltebay, A.N.; Zhumagulova, S.Z. Heavy metal levels in milk and fermented milk products produced in the Almaty region, Kazakhstan. Vet. World 2020, 13, 609–613. [Google Scholar] [CrossRef]
- Zwierzchowski, G.; Ametaj, B.N. Mineral Elements in the Raw Milk of Several Dairy Farms in the Province of Alberta. Foods 2019, 8, 345. [Google Scholar] [CrossRef]
- Su, C.; Zheng, N.; Gao, Y.; Huang, S.; Yang, X.; Wang, Z.; Yang, H.; Wang, J. Content and Dietary Exposure Assessment of Toxic Elements in Infant Formulas from the Chinese Market. Foods 2020, 9, 1839. [Google Scholar] [CrossRef]
- Su, C.Y.; Gao, Y.A.; Qu, X.Y.; Zhou, X.W.; Yang, X.; Huang, S.N.; Han, L.; Zheng, N.; Wang, J.Q. The occurrence, pathways, and risk assessment of heavy metals in raw milk from industrial areas in China. Toxics 2021, 9, 320. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. Chinese Residents’ Dietary Guidelines (2022), 3rd ed.; People’s Medical Publishing House: Beijing, China, 2022; pp. 47–74. [Google Scholar]
- Nguyen, D.D.; Solah, V.; Daubney, S.; Jani, S. Determination of Ca, P, K, Na, and Mg in Australian Retail Pasteurised Milk Using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP OES). J. Anal. Methods. Chem. 2024, 2024, 4417607. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.R.G.; Gunawardana, D.; Jayatissa, R.; Silva, A.B.G. Estimation of Iron Content and Its Contribution in Iron-Fortified Food Products Consumed by School Children in Sri Lanka. J. Food Quality 2020, 2020, 6079379. [Google Scholar] [CrossRef]
- Debski, B.; Finley, D.A.; Picciano, M.F.; Lonnerdal, B.; Milner, J. Selenium content and glutathione-peroxidase activity of milk from vegetarian and non-vegetarian women. J. Nutr. 1989, 119, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Quintana, A.V.; Olalla-Herrera, M.; Ruiz-López, M.D.; Moreno-Montoro, M.; Navarro-Alarcón, M. Study of the effect of different fermenting microorganisms on the Se, Cu, Cr, and Mn contents in fermented goat and cow milks. Food Chem. 2015, 188, 234–239. [Google Scholar] [CrossRef]
- Neves, L.N.D.; de Oliveira, M.A.L. Effects of enzymatic lactose hydrolysis on thermal markers in lactose-free UHT milk. J. Food. Sci. Tech. 2020, 57, 3518–3524. [Google Scholar] [CrossRef]
- Stubbendorff, A.; Bolmsjö, B.B.; Bejersten, T.; Lemming, E.W.; Calling, S.; Wolff, M. Iron insight: Exploring dietary patterns and iron deficiency among teenage girls in Sweden. Eur. J. Nutr. 2025, 64, 107. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef]
- do Nascimento, I.R.; de Jesus, R.M.; dos Santos, W.N.L.; Souza, A.S.; Fragoso, W.D.; dos Reis, P.S. Determination of the mineral composition of fresh bovine milk from the milk-producing areas located in the state of sergipe in Brazil and evaluation employing exploratory analysis. Microchem J. 2010, 96, 37–41. [Google Scholar] [CrossRef]
- Giannuzzi, D.; Vanzin, A.; Pegolo, S.; Toscano, A.; Bisutti, V.; Gallo, L.; Schiavon, S.; Cecchinato, A. Novel insights into the associations between immune cell population distribution in mammary glands and milk minerals in Holstein cows. J. Dairy Sci. 2024, 107, 593–606. [Google Scholar] [CrossRef]
- Pšenková, M.; Toman, R.; Tančin, V. Concentrations of toxic metals and essential elements in raw cow milk from areas with potentially undisturbed and highly disturbed environment in Slovakia. Environ. Sci. Pollut. R. 2020, 27, 26763–26772. [Google Scholar] [CrossRef]
- Tunegová, M.; Toman, R.; Tančin, V.; Janíček, M. Occurrence of selected metals in feed and sheep´s milk from areas with different environmental burden. Potravinarstvo. Slovak. J. Food. Sci. 2018, 12, 454–460. [Google Scholar] [CrossRef]
- Pimentel, L.S.; Moraes, J.; Luna, A.S.; Barros, D.B.; Pimentel, T.C.; Guimaraes, J.T.; Silva, H.L.A.; Balthazar, C.F.; Esmerino, E.A.; Freitas, M.Q.; et al. Brazilian infant dairy foods: Mineral content and daily intake contribution. Brit. Food. J. 2018, 120, 2454–2465. [Google Scholar] [CrossRef]
- Cruijsen, H.; Poitevin, E.; Brunelle, S.L. Determination of minerals and trace elements in milk, milk products, infant formula, and adult nutrition: Collaborative study 2011.14 method modification. J. AOAC Int. 2019, 102, 1845–1863. [Google Scholar] [CrossRef]
- Reykdal, O.; Rabieh, S.; Steingrimsdottir, L.; Gunnlaugsdottir, H. Minerals and trace elements in Icelandic dairy products and meat. J. Food. Compos. Anal. 2011, 24, 980–986. [Google Scholar] [CrossRef]
| Mineral Element | Unit | Sterilized Milk (n = 61) | Pasteurized Milk (n = 29) | Fermented Milk (n = 38) | Modified Milk (n = 22) | Total (n = 150) |
|---|---|---|---|---|---|---|
| Mg | mg/kg | 153.44 ± 32.56 a | 144.09 ± 32.19 a | 107.78 ± 33.83 c | 132.77 ± 33.17 ab | 137.04 ± 37.56 |
| Fe | μg/kg | 260.07 ± 97.35 a | 228.57 ± 57.88 ab | 202.44 ± 77.63 b | 269.62 ± 162.51 ab | 240.78 ± 102.57 |
| Zn | mg/kg | 2.64 ± 0.56 a | 2.55 ± 0.37 a | 1.91 ± 0.48 b | 2.72 ± 0.67 a | 2.45 ± 0.61 |
| Se | μg/kg | 28.21 ± 10.27 b | 40.09 ± 17.17 a | 26.77 ± 10.74 b | 29.85 ± 9.58 ab | 30.38 ± 12.79 |
| Cu | μg/kg | 32.38 ± 9.61 a | 34.78 ± 26.62 a | 20.44 ± 9.35 b | 26.68 ± 7.24 ab | 28.98 ± 15.18 |
| Mineral Element | Unit | Domestic Sterilized Milk (n = 32) | Imported Sterilized Milk (n = 29) |
|---|---|---|---|
| Mg | mg/kg | 147.41 ± 32.47 b | 160.10 ± 31.88 a |
| Fe | μg/kg | 260.82 ± 96.20 | 259.25 ± 100.30 |
| Zn | mg/kg | 2.72 ± 0.64 | 2.53 ± 0.45 |
| Se | μg/kg | 29.41 ± 9.19 | 26.90 ± 11.35 |
| Cu | μg/kg | 32.57 ± 9.89 | 32.20 ± 9.93 |
| Mineral Element | Average Content in Dairy Products | Daily Dairy Product Intake | Age/Stage | Daily Mineral Intake from Dairy | RNI of Mineral | Contribution Rate (%) |
|---|---|---|---|---|---|---|
| Mg | 137.04 (mg/kg) | 0.3–0.5 (kg/d) | 18–49 | 41.11–68.52 (mg/d) | 330 (mg/d) | 12.46–20.76 |
| ≥50 years old | 41.11–68.52 (mg/d) | 330 (mg/d) | 12.46–20.76 | |||
| Pregnancy | 41.11–68.52 (mg/d) | 370 (mg/d) | 11.11–18.52 | |||
| Lactation Period | 41.11–68.52 (mg/d) | 330 (mg/d) | 12.46–20.76 | |||
| Fe | 240.78 (μg/kg) | 0.3–0.5 (kg/d) | 18–49 | 72.23–120.39 (μg/d) | 12,000~20,000 (μg/d) | 0.25–1.00 |
| ≥50 years old | 72.23–120.39 (μg/d) | 12,000 (μg/d) | 0.60–1.00 | |||
| Pregnancy | 72.23–120.39 (μg/d) | 20,000~29,000 (μg/d) | 0.25–0.60 | |||
| Lactation Period | 72.23–120.39 (μg/d) | 24,000 (μg/d) | 0.30–0.50 | |||
| Zn | 2.45 (mg/kg) | 0.3–0.5 (kg/d) | 18–49 | 0.74–1.23 (mg/d) | 7.5–12.5 (mg/d) | 5.88–16.33 |
| ≥50 years old | 0.74–1.23 (mg/d) | 7.5–12.5 (mg/d) | 5.88–16.33 | |||
| Pregnancy | 0.74–1.23 (mg/d) | 9.5 (mg/d) | 7.74–12.89 | |||
| Lactation Period | 0.74–1.23 (mg/d) | 12 (mg/d) | 6.13–10.21 | |||
| Se | 30.38 (μg/kg) | 0.3–0.5 (kg/d) | 18–49 | 9.11–15.19 (μg/d) | 60 (μg/d) | 15.19–25.32 |
| ≥50 years old | 9.11–15.19 (μg/d) | 60 (μg/d) | 15.19–25.32 | |||
| Pregnancy | 9.11–15.19 (μg/d) | 65 (μg/d) | 14.02–23.37 | |||
| Lactation Period | 9.11–15.19 (μg/d) | 78 (μg/d) | 11.68–19.47 | |||
| Cu | 28.98 (μg/kg) | 0.3–0.5 (kg/d) | 18–49 | 8.69–14.49 (μg/d) | 800 (μg/d) | 1.09–1.81 |
| ≥50 years old | 8.69–14.49 (μg/d) | 800 (μg/d) | 1.09–1.81 | |||
| Pregnancy | 8.69–14.49 (μg/d) | 800 (μg/d) | 0.97–1.61 | |||
| Lactation Period | 8.69–14.49 (μg/d) | 1400 (μg/d) | 0.62–1.04 |
| Year | Country | Types of Dairy | Content | Reference |
|---|---|---|---|---|
| 2025 | Pakistan | Mg (mg/kg) | − | [17] |
| Fe (μg/kg) | 1940 | |||
| Zn (mg/kg) | 2.3 | |||
| Se (μg/kg) | − | |||
| Cu (μg/kg) | − | |||
| 2018 | Brazil | Mg (mg/kg) | 72.73 | [[36] |
| Fe (μg/kg) | − | |||
| Zn (mg/kg) | − | |||
| Se (μg/kg) | − | |||
| Cu (μg/kg) | <13.32 | |||
| 2019 | Germany | Mg (mg/kg) | 102 | [37] |
| Fe (μg/kg) | 160 | |||
| Zn (mg/kg) | 3.75 | |||
| Se (μg/kg) | − | |||
| Cu (μg/kg) | 70 | |||
| 2011 | Iceland | Mg (mg/kg) | 100~150 | [38] |
| Fe (μg/kg) | 300~500 | |||
| Zn (mg/kg) | 3~5 | |||
| Se (μg/kg) | 15~30 | |||
| Cu (μg/kg) | 100~300 | |||
| 2025 | China | Mg (mg/kg) | 137.04 | This study |
| Fe (μg/kg) | 240.78 | |||
| Zn (mg/kg) | 2.45 | |||
| Se (μg/kg) | 30.38 | |||
| Cu (μg/kg) | 28.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Su, C.; Li, H.; Li, Y.; Feng, C.; Fu, T.; Zhang, T.; Gao, T. Content and Dietary Contribution Assessment of Mineral Elements in Dairy from Henan Province of China. Foods 2026, 15, 135. https://doi.org/10.3390/foods15010135
Su C, Li H, Li Y, Feng C, Fu T, Zhang T, Gao T. Content and Dietary Contribution Assessment of Mineral Elements in Dairy from Henan Province of China. Foods. 2026; 15(1):135. https://doi.org/10.3390/foods15010135
Chicago/Turabian StyleSu, Chuanyou, Han Li, Yi Li, Chunyu Feng, Tong Fu, Tianliu Zhang, and Tengyun Gao. 2026. "Content and Dietary Contribution Assessment of Mineral Elements in Dairy from Henan Province of China" Foods 15, no. 1: 135. https://doi.org/10.3390/foods15010135
APA StyleSu, C., Li, H., Li, Y., Feng, C., Fu, T., Zhang, T., & Gao, T. (2026). Content and Dietary Contribution Assessment of Mineral Elements in Dairy from Henan Province of China. Foods, 15(1), 135. https://doi.org/10.3390/foods15010135
