Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Tea Sample Preparation
2.3. Sensory Evaluation
2.4. Chemical Composition Analysis
2.5. Analysis of the Volatile Metabolites
2.6. Analysis of the Non-Volatile Components
2.7. Data Statistics and Graphing
3. Results and Discussion
3.1. Sensory Evaluation Results
3.2. Analysis of Major Chemical Components
3.3. Differential Analysis of Volatile Metabolites
3.4. Differential Analysis of Non-Volatile Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yue, W.J.; Sun, W.J.; Rao, R.S.P.; Ye, N.X.; Yang, Z.B.; Chen, M.J. Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea. Food Chem. 2019, 277, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.X.; Lin, Y.; Hu, W.J.; Hu, X.J.; Wang, L.Y.; Hu, S.S.; Lin, Z.; Guo, L. The difference of color and taste chemistry of white tea between cultivars. Mod. Food Sci. Technol. 2024, 40, 1–10. [Google Scholar]
- Feng, H.; Wang, F.Q.; Zhang, B.; Zhang, J.M.; Chen, R.B.; Gong, X.J.; Chen, H.; Huang, Y.B.; Ye, J.H. Analysis of aroma components of Baimudan tea from different tea plant varieties by HS-SPME-GC-MS. Mod. Food Sci. Technol. 2021, 37, 252–264+251. [Google Scholar]
- Sanlier, N.; Atik, İ.; Atik, A. A minireview of effects of white tea consumption on diseases. Trends Food Sci. Technol. 2018, 82, 82–88. [Google Scholar] [CrossRef]
- Zhang, C.H.; Yan, X.X.; Cui, T.H.; Zhao, Y.Y.; Tao, Z.; Wang, Y.F.; Shan, Z.G. Comparative analysis on chemical components and antioxidant activity for four different varieties of Yunnan large-leaf white Tea. Sci. Technol. Food Ind. 2025, 46, 234–242. [Google Scholar]
- Zhou, S.; Zhang, J.M.; Ma, S.C.; Ou, C.S.; Feng, X.Y.; Pan, Y.N.; Gong, S.Y.; Fan, F.Y.; Chen, P.; Chu, Q. Recent advances on white tea: Manufacturing, compositions, aging characteristics and bioactivities. Trends Food Sci. Technol. 2023, 134, 41–55. [Google Scholar] [CrossRef]
- Mei, Y.; Liang, X. Analysis of China’s tea production and domestic sales in 2021. China Tea 2022, 44, 17–22. [Google Scholar]
- Mei, Y.; Zhang, S. Analysis of China’s tea production and domestic sales in 2022. China Tea 2023, 45, 25–30. [Google Scholar]
- Jiang, B.; Yan, Y.Z.; Liu, K.Y.; Jiao, W.W.; Liu, S.Z.; Ma, Y.; Zhao, M. Comparison of the difference between Yunnan and Fujian white tea. J. Southwest Univ. 2021, 43, 62–72. [Google Scholar]
- Liang, Z.J.; Yu, Y.; Zhang, L.; Zhao, Y.X.; Shao, S.X.; Ye, N.X.; Yang, R.X. Headspace solid phase microextraction combined with gas chromatography mass spectrometry analysis of aroma characteristics of white tea from new strain ‘Baiyun 0492′. Food Sci. 2023, 44, 313–321. [Google Scholar]
- Gao, J.J.; Chen, D.; Peng, J.K.; Wu, W.L.; Cai, L.S.; Cai, Y.W.; Tian, J.; Wan, Y.L.; Sun, W.j.; Huang, Y.; et al. Comparison on chemical components of Yunnan and Fuding white tea based on metabolomics approach. J. Tea Sci. 2022, 42, 623–637. [Google Scholar]
- Lin, Y.P.; Huang, Y.B.; Zhou, S.; Li, X.L.; Tao, Y.K.; Pan, Y.N.; Feng, X.Y.; Guo, H.W.; Chen, P.; Chu, Q. A newly-discovered tea population variety processed Bai Mu Dan white tea: Flavor characteristics and chemical basis. Food Chem. 2024, 446, 138851. [Google Scholar] [CrossRef]
- Cui, H.C.; Huang, H.T.; Zheng, X.X.; Zhao, Y.; Zhang, J.Y.; Ao, C.; Shi, D.L.; Du, L.G. Suitability of white tea made from new tea varieties (lines) of Fuyun Hybrid offspring. Sci. Technol. Food Ind. 2023, 44, 332–341. [Google Scholar]
- Miao, Y.w.; Zhou, J.Y.; Yang, C.M.; Luo, Z.F.; Wang, Y.; Gong, Z.L.; Tong, H.R. Analysis of quality in Shoumei white tea from different tea plant varieties. Sci. Technol. Food Ind. 2024, 45, 283–294. [Google Scholar]
- Zhang, C.; Zhou, C.; Xu, K.; Tian, C.; Zhang, M.; Lu, L.; Zhu, C.; Lai, Z.; Guo, Y. A comprehensive investigation of macro-composition and volatile compounds in spring picked and autumn-picked white tea. Foods 2022, 11, 3628. [Google Scholar] [CrossRef]
- Kong, Y.S.; Wei, Y.W.; Wan, Y.X.; Wang, J.J.; Yao, H.M.; Yin, P.; Wang, Z.H.; Guo, G.Y. Quality analysis of Xinyang white tea in different production seasons based on non-targeted metabolomics technologies. Food Sci. Technol. 2024, 49, 50–56. [Google Scholar]
- Yang, C.; Hu, Z.Y.; Lu, M.L.; Li, P.L.; Tan, J.F.; Chen, M.; Lv, H.P.; Zhu, Y.; Zhang, Y.; Guo, L.; et al. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Res. Int. 2018, 106, 909–919. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.N.; Chen, D.; Peng, J.K.; Gao, J.J.; Lin, Z.; Chen, X.F.; Tian, J.; Wan, Y.L.; Dai, W.D. Metabolomics analysis of difference in chemical components among different types of Yunnan white tea. Food Sci. 2022, 43, 221–231. [Google Scholar]
- Zou, L.; Shen, S.S.; Wei, Y.M.; Jia, H.Y.; Li, T.H.; Yin, X.C.; Lu, C.Y.; Cui, Q.Q.; He, F.; Deng, W.W.; et al. Evaluation of the effects of solar withering on nonvolatile compounds in white tea through metabolomics and transcriptomics. Food Res. Int. 2022, 162, 112088. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhang, X.M.; Jiang, R.G.; Ouyang, J.; Liu, Q.; Li, J.; Wen, H.T.; Li, Q.; Chen, J.H.; Xiong, L.G.; et al. Characterization of aroma differences on three drying treatments in Rucheng Baimao (Camellia pubescens) white tea. LWT–Food Sci. Technol. 2023, 179, 114659. [Google Scholar] [CrossRef]
- Lin, H.Z.; Wu, L.Y.; Ou, X.X.; Zhou, J.J.; Feng, J.; Zhang, W.P.; Bi, W.J.; Hao, Z.L.; Sun, Y. Study on the dynamic change of volatile components of white tea in the pile-up processing based on sensory evaluation and ATD-GC–MS Technology. Food Chem. X 2024, 21, 101139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Wang, Z.H.; Dai, H.M.; Wu, S.L.; Song, B.; Lin, F.; Huang, Y.; Lin, X.C.; Sun, W.J. Identification of characteristic aroma and bacteria related to aroma evolution during long-term storage of compressed white tea. Front. Nutr. 2022, 9, 1092048. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.M.; Zhang, L.Z.; Liang, Y.L.; Wang, Z.H.; Wang, Y.; Cao, S.X.; Rong, J.F.; Sun, W.J.; Chen, Z.D. Analysis of flavor characteristics and characteristic components of white tea made from Oolong tea cultivars. Food Sci. 2024, 45, 229–239. [Google Scholar]
- Tang, M.T.; Liao, X.S.; Wu, X.S.; Wei, M.X.; Zheng, Y.C.; Jin, S.; Zhang, J.M.; Ye, N.X. Analysis of aroma quality differences of summer and autumn teas of different tea types of Jinmudan. Food Sci. 2025, 46, 171–182. [Google Scholar]
- Ma, L.J.; Sun, Y.Y.; Wang, X.J.; Zhang, H.Y.; Zhang, L.Q.; Yin, Y.G.; Wu, Y.M.; Du, L.P.; Du, Z.P. The characteristic of the key aroma-active components in white tea using GC-TOF-MS and GC-olfactometry combined with sensory-directed flavor analysis. J. Sci. Food Agric. 2023, 103, 7136–7152. [Google Scholar] [CrossRef]
- Huang, J.L.; Zhang, J.X.; Chen, Z.B.; Xiong, Z.C.; Feng, W.Z.; Wei, Y.M.; Li, T.H.; Ning, J.M. Sensory-directed flavor analysis of Jinggu white tea: Exploring the formation mechanisms of sweet and fruity aromas. Food Chem. X 2024, 24, 102026. [Google Scholar] [CrossRef]
- Hao, Z.L.; Feng, J.; Chen, Q.L.; Lin, H.Z.; Zhou, X.H.; Zhuang, J.Y.; Wang, J.Y.; Tan, Y.P.; Sun, Z.L.; Wang, Y.F.; et al. Comparative volatiles profiling in milk flavored white tea and traditional white tea Shoumei via HS-SPME-GC-TOFMS and OAV analyses. Food Chem. X 2023, 18, 100710. [Google Scholar] [CrossRef]
- Fang, Z.T.; Song, C.J.; Xu, H.R.; Ye, J.H. Dynamic changes in flavonol glycosides during production of green, yellow, white, oolong and black teas from Camellia sinensis L. (cv. Fudingdabaicha). Int. J. Food Sci. Technol. 2019, 54, 490–498. [Google Scholar] [CrossRef]
- Guo, X.Y.; Lv, Y.Q.; Ye, Y.; Liu, Z.Y.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R.; Ye, J.H. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food Chem. 2021, 339, 128088. [Google Scholar] [CrossRef]
- T/HZTA 005-2024; Hangzhou White Tea. Hangzhou Tea Science Society: Hangzhou, China, 2024.
- Yu, H.N.; Huang, H.T.; Zhao, Y.; Cui, H.C.; Cheng, Z.Q.; HE, P.M. Physicochemical properties and biological activities of Hangzhou white tea. J. Tea 2024, 50, 151–155. [Google Scholar]
- Ao, C.; Niu, X.; Shi, D.; Zheng, X.; Yu, J.; Zhang, Y. Dynamic changes in aroma compounds during processing of flat black tea: Combined GC-MS with Proteomic analysis. Foods 2024, 13, 3243. [Google Scholar] [CrossRef] [PubMed]
- Teng, R.M.; Ao, C.; Huang, H.H.; Shi, D.L.; Mao, Y.X.; Zheng, X.X.; Zhao, Y. Research of processing technology of Longjing tea with ‘Baiye 1’ based on non-targeted aroma metabolomics. Foods 2024, 13, 1338. [Google Scholar] [CrossRef]
- Hu, S.S.; Hu, C.H.; Luo, L.Y.; Zhang, H.T.; Zhao, S.B.; Liu, Z.H.; Zeng, L. Pu-erh tea increases the metabolite Cinnabarinic acid to improve circadian rhythm disorder-induced obesity. Food Chem. 2022, 394, 133500. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Zhou, F.; Wen, M.C.; Jiang, S.; Long, P.P.; Ke, J.P.; Han, Z.S.; Zhu, M.T.; Zhou, Y.; Zhang, L. LC-MS and GC–MS based metabolomics analysis revealed the impact of tea trichomes on the chemical and flavor characteristics of white tea. Food Res. Int. 2024, 191, 114740. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.T.; Chen, Y.Y.; Feng, W.Z.; Shen, S.S.; Wei, Y.M.; Jia, H.Y.; Wang, Y.J.; Deng, W.W.; Ning, J.M. Effects of three different withering treatments on the aroma of white tea. Foods 2022, 11, 2502. [Google Scholar] [CrossRef]
- Shao, S.X.; Wang, S.Y.; Wang, L.; Zhao, F.; Chen, S.M.; Wu, X.X.; Ye, N.X. Analysis of aroma components of different cultivars of white Peony tea based on ATD-GC-MS. Sci. Technol. Food Ind. 2022, 43, 261–268. [Google Scholar]
- Zou, L.; Sheng, C.Y.; Xia, D.Z.; Zhang, J.X.; Wei, Y.M.; Ning, J.M. Mechanism of aroma formation in white tea treated with solar withering. Food Res. Int. 2024, 194, 114917. [Google Scholar] [CrossRef]
- Feng, Z.H.; Li, M.; Li, Y.F.; Yin, J.F.; Wan, X.C.; Yang, X.G. Characterization of the key aroma compounds in infusions of four white teas by the sensomics approach. Eur. Food Res. Technol. 2022, 248, 1299–1309. [Google Scholar] [CrossRef]
- Qu, F.F.; Li, X.H.; Wang, P.Q.; Han, Y.H.; Wu, Y.; Hua, J.H.; Zhang, X.F. Effect of thermal process on the key aroma components of green tea with chestnut-like aroma. J. Sci. Food Agric. 2023, 103, 657–665. [Google Scholar] [CrossRef]
- Wang, B.; Meng, Q.; Xiao, L.; Li, R.L.; Peng, C.H.; Liao, X.L.; Yan, J.N.; Liu, H.L.; Xie, G.H.; Ho, C.T.; et al. Characterization of aroma compounds of Pu-erh ripen tea using solvent assisted flavor evaporation coupled with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Sci. Hum. Wellness 2022, 11, 618–626. [Google Scholar] [CrossRef]
- Yin, P.; Kong, Y.S.; Liu, P.P.; Wang, J.J.; Zhu, Y.; Wang, G.M.; Sun, M.F.; Chen, Y.; Guo, G.Y.; Liu, Z.H. A critical review of key odorants in green tea: Identification and biochemical formation pathway. Trends Food Sci. Technol. 2022, 129, 221–232. [Google Scholar] [CrossRef]
- Chen, X.H.; Sun, H.Y.; Qu, D.; Yan, F.; Jin, W.G.; Jiang, H.; Chen, C.; Zhang, Y.F.; Li, C.Y.; Xu, Z.M. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods. Flavour Fragr. J. 2020, 35, 666–673. [Google Scholar] [CrossRef]
- Yin, X.; Huang, J.A.; Huang, J.; Wu, W.L.; Tong, T.; Liu, S.J.; Zhou, L.Y.; Liu, Z.H.; Zhang, S.G. Identification of volatile and odor-active compounds in Hunan black tea by SPME/GC-MS and multivariate analysis. LWT-Food Sci. Technol. 2022, 164, 113656. [Google Scholar] [CrossRef]
- Jia, X.; Deng, Q.C.; Yang, Y.N.; Xiang, X.; Zhou, X.P.; Tan, C.B.; Zhou, Q.; Huang, F.H. Unraveling of the aroma-active compounds in virgin camellia oil (Camellia oleifera Abel) using gas chromatography-mass spectrometry-olfactometry, aroma recombination, and omission studies. J. Agric. Food Chem. 2021, 69, 9043–9055. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Ni, D.; Lin, L.; Wang, H.; Xu, Y. Characterization of aroma compounds in cooked sorghum using comprehensive two-dimensional gas chromatograph-time-of-flight mass spectrometry and gas chromatography-olfactometry -mass spectrometry. Molecules 2021, 26, 4796. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.J.; Gao, M.M.; Zhang, L.Q.; Qiao, Y.; Li, J.X.; Du, L.P.; Zhang, H.L.; Wang, H. Characterization of the key aroma-active compounds in high-grade Dianhong tea using GC-MS and GC-O combined with sensory-directed flavor analysis. Food Chem. 2022, 378, 132058. [Google Scholar] [CrossRef]
- Joshi, R.; Gulati, A. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea. Food Chem. 2015, 167, 290–298. [Google Scholar] [CrossRef]
- Guo, X.Y.; Ho, C.T.; Wan, X.C.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef]
- Shan, Q.Y.; Wan, Y.; Liang, J.D.; He, W.J.; Zeng, J.; Liang, W.H.; Xiong, S.W.; Zhang, M.L.; Wang, B.; Zou, X.X.; et al. HS–SPME combined with GC–MS and GC–O for characterization of key aroma-active compounds in fruity and grassy peppers (Capsicum chinense Jacq.). Food Chem. X 2024, 24, 101944. [Google Scholar] [CrossRef]
- Tan, J.F.; Engelhardt, U.H.; Lin, Z.; Kaiser, N.; Maiwald, B. Flavonoids, phenolic acids, alkaloids and theanine in different types of authentic Chinese white tea samples. J. Food Compos. Anal. 2017, 57, 8–15. [Google Scholar] [CrossRef]
- Deng, X.M.; Shang, H.; Chen, J.J.; Wu, J.; Wang, T.; Wang, Y.Q.; Zhu, C.S.; Sun, W.J. Metabolomics combined with proteomics provide a novel interpretation of the changes in flavonoid glycosides during white tea processing. Foods 2022, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Liang, Y.L.; Wu, W.W.; Gao, C.X.; Xiao, C.Y.; Zhou, Z.; Lin, F.M.; Sun, W.J. The effect of different drying temperatures on flavonoid glycosides in white tea: A targeted metabolomics, molecular docking, and simulated reaction study. Food Res. Int. 2024, 190, 114634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Gao, C.X.; Zhao, J.M.; Zhang, J.L.; Zheng, Z.Q.; Huang, Y.; Sun, W.J. The metabolic mechanism of flavonoid glycosides and their contribution to the flavor evolution of white tea during prolonged withering. Food Chem. 2024, 439, 138133. [Google Scholar] [CrossRef] [PubMed]
Components | RIr | RIc | CAS | FD | JK | LJ | YS |
---|---|---|---|---|---|---|---|
Alkanes | |||||||
Octane | 800 | 799 | 111-65-9 | 0.50 ± 0.07 a | 0.00 ± 0.00 c | 0.39 ± 0.04 b | 0.37 ± 0.03 b |
2,2,4,6,6-Pentamethylheptane | 943 | 954 | 13475-82-6 | 0.34 ± 0.05 a | 0.18 ± 0.02 b | 0.32 ± 0.06 a | 0.35 ± 0.03 a |
3-Methylnonane | 965 | 961 | 5911-04-6 | 0.43 ± 0.02 a | 0.19 ± 0.02 c | 0.28 ± 0.05 b | 0.43 ± 0.03 a |
Decane | 1000 | 999 | 124-18-5 | 1.12 ± 0.04 a | 0.56 ± 0.03 c | 0.66 ± 0.09 c | 0.98 ± 0.08 b |
2.40 ± 0.03 a | 0.94 ± 0.06 c | 1.66 ± 0.22 b | 2.13 ± 0.16 a | ||||
Alcohols | |||||||
Pent-1-en-3-ol | 1165 | 1170 | 616-25-1 | 1.11 ± 0.29 a | 0.74 ± 0.26 ab | 0.66 ± 0.08 b | 0.78 ± 0.16 ab |
Pentanol | 1259 | 1256 | 71-41-0 | 1.20 ± 0.20 a | 0.75 ± 0.14 b | 0.90 ± 0.20 b | 0.76 ± 0.01 b |
(Z)-Pent-2-en-1-ol | 1334 | 1326 | 1576-95-0 | 1.61 ± 0.31 a | 0.90 ± 0.13 bc | 0.82 ± 0.21 c | 1.29 ± 0.10 ab |
Hexanol | 1361 | 1355 | 111-27-3 | 9.33 ± 1.33 a | 5.02 ± 0.20 b | 4.48 ± 0.66 b | 5.67 ± 0.34 b |
(Z)-Hex-3-en-1-ol | 1391 | 1391 | 928-96-1 | 17.00 ± 2.83 a | 4.89 ± 0.46 b | 7.68 ± 1.27 b | 7.17 ± 0.36 b |
Octan-3-ol | 1393 | 1397 | 589-98-0 | 0.33 ± 0.07 a | 0.24 ± 0.04 ab | 0.16 ± 0.05 b | 0.15 ± 0.01 b |
(E)-Hex-2-en-1-ol | 1412 | 1412 | 928-95-0 | 3.22 ± 0.36 a | 1.52 ± 0.09 c | 1.82 ± 0.24 c | 2.57 ± 0.27 b |
Linalool oxideⅠ | 1450 | 1451 | 34995-77-2 | 37.00 ± 5.58 a | 17.12 ± 2.30 c | 14.43 ± 2.94 c | 24.38 ± 1.10 b |
Oct-1-en-3-ol | 1452 | 1456 | 3391-86-4 | 2.96 ± 0.27 ab | 3.33 ± 0.30 a | 3.29 ± 0.61 a | 2.32 ± 0.04 b |
Heptanol | 1456 | 1461 | 111-70-6 | 6.38 ± 0.69 a | 3.00 ± 0.17 c | 2.89 ± 0.47 c | 3.96 ± 0.21 b |
6-Methylhept-5-en-2-ol | 1467 | 1468 | 1569-60-4 | 1.90 ± 0.21 a | 0.62 ± 0.06 b | 0.72 ± 0.26 b | 0.91 ± 0.08 b |
2-Ethylhexan-1-ol | 1496 | 1496 | 104-76-7 | 41.82 ± 4.60 a | 22.73 ± 1.76 c | 9.66 ± 1.18 d | 34.52 ± 2.02 b |
Linalool | 1552 | 1558 | 78-70-6 | 358.29 ± 46.85 a | 172.38 ± 18.51 b | 118.07 ± 19.67 c | 217.22 ± 9.60 b |
Octanol | 1562 | 1564 | 111-87-5 | 5.74 ± 0.59 a | 3.43 ± 0.28 c | 4.31 ± 0.69 bc | 4.85 ± 0.23 ab |
Hotrienol | 1621 | 1617 | 29957-43-5 | 0.57 ± 0.08 a | 0.52 ± 0.11 a | 0.28 ± 0.05 b | 0.30 ± 0.02 b |
Nonanol | 1664 | 1666 | 143-08-8 | 14.46 ± 1.24 a | 7.69 ± 0.63 c | 6.55 ± 0.71 c | 10.82 ± 0.48 b |
(Z)-Non-3-en-1-ol | 1693 | 1691 | 10340-23-5 | 3.13 ± 0.24 a | 1.61 ± 0.10 bc | 0.87 ± 0.76 c | 2.37 ± 0.19 ab |
α-Terpineol | 1706 | 1706 | 98-55-5 | 2.34 ± 0.21 a | 1.52 ± 0.13 b | 0.85 ± 0.16 c | 0.87 ± 0.05 c |
(E,Z)-Nona-3,6-dien-1-ol | 1762 | 1758 | 56805-23-3 | 0.76 ± 0.06 a | 0.31 ± 0.05 c | 0.19 ± 0.02 d | 0.51 ± 0.02 b |
Decanol | 1766 | 1765 | 112-30-1 | 0.63 ± 0.04 a | 0.32 ± 0.11 b | 0.45 ± 0.08 b | 0.32 ± 0.03 b |
Linalool oxide Ⅳ | 1750 | 1771 | 39028-58-5 | 6.38 ± 1.24 a | 1.75 ± 0.15 b | 2.32 ± 0.25 b | 2.34 ± 0.12 b |
Nerol | 1808 | 1807 | 106-25-2 | 8.06 ± 1.16 a | 5.59 ± 0.55 b | 4.25 ± 0.72 bc | 3.60 ± 0.17 c |
Isogeraniol | 1820 | 1820 | 5944-20-7 | 2.17 ± 0.24 a | 1.03 ± 0.10 bc | 0.81 ± 0.14 c | 1.17 ± 0.08 b |
Geraniol | 1857 | 1859 | 106-24-1 | 144.45 ± 20.96 a | 134.57 ± 17.94 a | 75.91 ± 12.96 b | 71.49 ± 3.38 b |
Benzyl alcohol | 1898 | 1890 | 100-51-6 | 4.11 ± 0.57 a | 3.50 ± 0.45 ab | 3.16 ± 0.43 b | 4.34 ± 0.20 a |
Phenylethyl alcohol | 1935 | 1926 | 60-12-8 | 25.81 ± 3.92 a | 9.45 ± 1.26 c | 8.87 ± 1.36 c | 14.92 ± 0.57 b |
Nerolidol | 2050 | 2055 | 40716-66-3 | 2.07 ± 0.08 b | 2.60 ± 0.34 a | 2.87 ± 0.41 a | 1.23 ± 0.03 c |
702.84 ± 92.27 a | 407.12 ± 45.96 b | 277.27 ± 45.54 c | 420.83 ± 18.15 b | ||||
Aldehydes | |||||||
2-Methylbutanal | 920 | 918 | 96-17-3 | 3.01 ± 0.48 a | 1.70 ± 0.13 b | 1.38 ± 0.22 b | 3.25 ± 0.17 a |
3-Methylbutanal | 918 | 921 | 590-86-3 | 1.36 ± 0.28 a | 0.87 ± 0.03 b | 0.87 ± 0.15 b | 1.46 ± 0.11 a |
Pentanal | 982 | 985 | 110-62-3 | 2.11 ± 0.37 a | 1.41 ± 0.12 b | 1.80 ± 0.31 ab | 1.55 ± 0.09 b |
Hexanal | 1089 | 1089 | 66-25-1 | 27.13 ± 3.38 ab | 23.43 ± 0.34 b | 32.89 ± 6.50 a | 21.18 ± 0.60 b |
(E)-Pent-2-enal | 1134 | 1139 | 1576-87-0 | 1.83 ± 0.42 a | 1.36 ± 0.13 a | 1.67 ± 0.23 a | 1.53 ± 0.06 a |
Heptanal | 1194 | 1193 | 111-71-7 | 10.13 ± 0.57 a | 7.94 ± 0.11 b | 7.37 ± 0.90 b | 9.41 ± 0.23 a |
(E)-Hex-2-enal | 1218 | 1230 | 6728-26-3 | 56.88 ± 5.11 a | 38.61 ± 3.44 b | 40.75 ± 7.02 b | 46.53 ± 3.02 b |
(Z)-Hept-4-enal | 1252 | 1250 | 929-22-6 | 0.70 ± 0.18 b | 0.41 ± 0.09 c | 0.49 ± 0.03 bc | 1.09 ± 0.15 a |
Octanal | 1296 | 1296 | 124-13-0 | 3.81 ± 0.20 b | 4.15 ± 0.12 b | 5.62 ± 1.21 a | 3.75 ± 0.13 b |
Nonanal | 1400 | 1401 | 124-19-6 | 20.70 ± 0.72 a | 15.27 ± 1.13 b | 16.47 ± 1.65 b | 22.82 ± 1.34 a |
(E,E)-Hexa-2,4-dienal | 1409 | 1415 | 142-83-6 | 1.75 ± 0.18 ab | 1.19 ± 0.06 c | 1.96 ± 0.47 a | 1.31 ± 0.05 bc |
(E)-Oct-2-enal | 1441 | 1439 | 2548-87-0 | 2.22 ± 0.12 c | 2.43 ± 0.24 bc | 3.23 ± 0.49 a | 2.80 ± 0.06 ab |
(E,E)-Hepta-2,4-dienal | 1507 | 1505 | 4313-03-5 | 4.98 ± 0.88 a | 3.24 ± 0.96 a | 3.87 ± 1.30 a | 3.63 ± 0.27 a |
Decanal | 1510 | 1506 | 112-31-2 | 0.00 ± 0.00 b | 3.06 ± 0.40 a | 2.70 ± 0.31 a | 0.00 ± 0.00 b |
Benzaldehyde | 1536 | 1539 | 100-52-7 | 14.51 ± 1.55 b | 17.84 ± 1.29 a | 12.14 ± 2.14 b | 14.33 ± 0.52 b |
(E)-Non-2-enal | 1548 | 1547 | 18829-56-6 | 1.32 ± 0.06 a | 1.30 ± 0.16 a | 1.11 ± 0.23 a | 1.24 ± 0.12 a |
(E,Z)-Nona-2,6-dienal | 1599 | 1599 | 557-48-2 | 0.78 ± 0.03 a | 0.48 ± 0.05 c | 0.33 ± 0.02 d | 0.61 ± 0.05 b |
β-Cyclocitral | 1638 | 1634 | 432-25-7 | 6.08 ± 0.60 a | 4.25 ± 0.33 b | 6.22 ± 0.87 a | 6.35 ± 0.28 a |
(E)-Dec-2-enal | 1655 | 1655 | 3913-81-3 | 0.22 ± 0.01 c | 0.33 ± 0.04 b | 0.44 ± 0.04 a | 0.22 ± 0.01 c |
Benzeneacetaldehyde | 1663 | 1659 | 122-78-1 | 8.51 ± 1.38 a | 8.05 ± 0.96 ab | 6.45 ± 1.09 b | 9.16 ± 0.43 a |
2-Butyloct-2-enal | 1659 | 1678 | 13019-16-4 | 0.62 ± 0.07 b | 1.14 ± 0.17 a | 1.24 ± 0.26 a | 0.60 ± 0.02 b |
Neral | 1694 | 1694 | 106-26-3 | 3.72 ± 0.30 b | 5.02 ± 0.36 a | 3.78 ± 0.32 b | 1.79 ± 0.09 c |
(E)-Citral | 1744 | 1745 | 141-27-5 | 10.71 ± 1.07 b | 12.43 ± 1.00 a | 8.67 ± 0.90 c | 5.25 ± 0.17 d |
183.09 ± 16.29 a | 155.93 ± 7.14 a | 161.46 ± 25.88 a | 159.87 ± 6.05 a | ||||
Ketones | |||||||
2-Methylpentan-3-one | 1007 | 1003 | 565-69-5 | 0.08 ± 0.01 b | 0.09 ± 0.00 ab | 0.12 ± 0.04 a | 0.07 ± 0.01 b |
Pent-1-en-3-one | 1025 | 1026 | 1629-58-9 | 1.39 ± 0.31 a | 0.82 ± 0.16 b | 0.90 ± 0.16 b | 1.52 ± 0.06 a |
Heptan-2-one | 1189 | 1190 | 110-43-0 | 0.47 ± 0.08 c | 0.88 ± 0.12 b | 1.22 ± 0.24 a | 0.37 ± 0.03 c |
6-Methylheptan-2-one | 1247 | 1245 | 928-68-7 | 0.21 ± 0.05 b | 0.21 ± 0.05 b | 0.34 ± 0.08 a | 0.14 ± 0.03 b |
Octan-3-one | 1257 | 1260 | 106-68-3 | 0.30 ± 0.04 c | 0.38 ± 0.02 b | 0.45 ± 0.03 a | 0.22 ± 0.01 d |
2,2,6-Trimethylcyclohexanone | 1327 | 1323 | 2408-37-9 | 1.19 ± 0.23 b | 2.48 ± 0.32 a | 1.55 ± 0.04 b | 1.22 ± 0.13 b |
6-Methylhept-5-en-2-one | 1346 | 1346 | 110-93-0 | 2.77 ± 0.22 a | 2.97 ± 0.15 a | 2.90 ± 0.51 a | 1.82 ± 0.09 b |
Oct-3-en-2-one | 1416 | 1416 | 1669-44-9 | 1.20 ± 0.06 b | 1.80 ± 0.11 a | 2.10 ± 0.33 a | 1.12 ± 0.11 b |
Octa-3,5-dien-2-one | 1522 | 1531 | 38284-27-4 | 5.68 ± 0.38 a | 5.23 ± 0.50 a | 5.42 ± 0.79 a | 4.26 ± 0.14 b |
(E,E)-Octa-3,5-dien-2-one | 1573 | 1583 | 30086-02-3 | 2.11 ± 0.36 a | 1.78 ± 0.25 ab | 1.60 ± 0.31 ab | 1.46 ± 0.06 b |
α-Ionone | 1863 | 1865 | 127-41-3 | 2.77 ± 0.40 a | 2.15 ± 0.12 b | 2.14 ± 0.37 b | 1.28 ± 0.09 c |
trans-β-Ionone | 1958 | 1954 | 79-77-6 | 13.72 ± 1.96 a | 9.41 ± 1.18 b | 13.22 ± 0.60 a | 10.54 ± 0.43 b |
Jasmone | 1969 | 1959 | 488-10-8 | 0.24 ± 0.03 b | 0.27 ± 0.05 b | 0.40 ± 0.08 a | 0.00 ± 0.00 c |
32.13 ± 3.63 a | 28.47 ± 2.00 ab | 32.36 ± 3.32 a | 24.01 ± 1.00 b | ||||
Benzenes | |||||||
Toluene | 1047 | 1045 | 108-88-3 | 1.95 ± 0.20 a | 0.96 ± 0.10 c | 1.26 ± 0.26 bc | 1.51 ± 0.09 b |
Ethylbenzene | 1126 | 1130 | 100-41-4 | 0.48 ± 0.05 a | 0.26 ± 0.04 b | 0.40 ± 0.12 ab | 0.44 ± 0.02 a |
1,3-Dimethylbenzene | 1137 | 1138 | 108-38-3 | 0.23 ± 0.00 b | 0.14 ± 0.02 c | 0.28 ± 0.02 a | 0.26 ± 0.02 ab |
p-Xylene | 1142 | 1145 | 106-42-3 | 0.83 ± 0.11 a | 0.65 ± 0.10 a | 0.70 ± 0.22 a | 0.92 ± 0.07 a |
p-Cymene | 1280 | 1276 | 99-87-6 | 3.19 ± 0.46 a | 1.47 ± 0.38 b | 1.23 ± 0.26 b | 1.18 ± 0.05 b |
6.69 ± 0.72 a | 3.49 ± 0.37 b | 3.87 ± 0.82 b | 4.31 ± 0.10 b | ||||
Terpenes | |||||||
β-Myrcene | 1160 | 1165 | 123-35-3 | 28.51 ± 4.73 a | 18.51 ± 1.62 b | 11.23 ± 2.30 c | 13.09 ± 0.55 c |
α-Terpinene | 1188 | 1181 | 99-86-5 | 1.27 ± 0.10 a | 0.74 ± 0.02 b | 0.39 ± 0.04 d | 0.53 ± 0.04 c |
Limonene | 1203 | 1201 | 5989-27-5 | 10.04 ± 1.33 a | 5.70 ± 0.18 b | 3.54 ± 0.67 c | 4.60 ± 0.24 bc |
trans-β-Ocimene | 1235 | 1239 | 3779-61-1 | 5.16 ± 0.92 a | 3.95 ± 0.50 b | 1.86 ± 0.34 c | 2.33 ± 0.16 c |
2,6-Dimethylocta-2,4,6-triene | 1382 | 1382 | 673-84-7 | 1.69 ± 0.26 a | 1.01 ± 0.13 b | 0.77 ± 0.17 bc | 0.60 ± 0.04 c |
Calamenene | 1849 | 1846 | 483-77-2 | 0.00 ± 0.00 b | 0.24 ± 0.01 a | 0.26 ± 0.04 a | 0.00 ± 0.00 b |
46.67 ± 7.19 a | 30.16 ± 2.17 b | 18.06 ± 3.36 c | 21.16 ± 0.86 c | ||||
Esters | |||||||
Hexyl acetate | 1282 | 1278 | 142-92-7 | 0.08 ± 0.01 b | 0.04 ± 0.00 c | 0.14 ± 0.02 a | 0.04 ± 0.01 c |
Hexyl 2-methylbutyrate | 1438 | 1433 | 10032-15-2 | 0.08 ± 0.00 b | 0.36 ± 0.03 a | 0.41 ± 0.08 a | 0.15 ± 0.02 b |
Geranic acid methyl ester | 1700 | 1705 | 2349-14-6 | 0.79 ± 0.18 bc | 1.18 ± 0.15 b | 1.81 ± 0.41 a | 0.51 ± 0.07 c |
Methyl salicylate | 1798 | 1793 | 119-36-8 | 49.42 ± 2.80 a | 42.70 ± 4.40 b | 31.98 ± 3.36 c | 49.86 ± 2.69 a |
cis-Hex-3-enyl benzoate | 2148 | 2150 | 25152-85-6 | 0.16 ± 0.01 b | 0.19 ± 0.03 b | 0.31 ± 0.03 a | 0.28 ± 0.03 a |
50.53 ± 2.82 a | 44.47 ± 4.58 a | 34.65 ± 3.82 b | 50.83 ± 2.62 a | ||||
Furans and derivatives | |||||||
2-Methylfuran | 881 | 873 | 534-22-5 | 0.35 ± 0.05 a | 0.23 ± 0.02 b | 0.27 ± 0.06 b | 0.20 ± 0.01 b |
2-Ethylfuran | 953 | 955 | 3208-16-0 | 3.49 ± 0.41 ab | 2.86 ± 0.27 bc | 3.87 ± 0.81 a | 2.17 ± 0.15 c |
2-n-Butylfuran | 1130 | 1135 | 4466-24-4 | 0.37 ± 0.04 b | 0.48 ± 0.01 b | 0.76 ± 0.14 a | 0.35 ± 0.06 b |
2-Pentylfuran | 1234 | 1237 | 3777-69-3 | 5.15 ± 0.23 ab | 5.15 ± 0.32 ab | 6.60 ± 1.50 a | 4.39 ± 0.25 b |
cis-2-(Pent-2-enyl)furan | 1296 | 1308 | 70424-13-4 | 1.00 ± 0.27 a | 0.67 ± 0.11 ab | 0.63 ± 0.05 b | 0.88 ± 0.17 ab |
10.36 ± 0.76 ab | 9.40 ± 0.40 b | 12.12 ± 2.53 a | 8.00 ± 0.53 b | ||||
Sulphur-containing compounds | |||||||
Dimethyl sulphide | 757 | 750 | 75-18-3 | 9.92 ± 1.39 a | 3.36 ± 0.25 c | 2.18 ± 0.31 c | 4.82 ± 0.12 b |
Dimethyl Sulphoxide | 1579 | 1583 | 67-68-5 | 1.03 ± 0.33 a | 0.51 ± 0.20 b | 0.26 ± 0.04 bc | 0.00 ± 0.00 c |
10.95 ± 1.22 a | 3.87 ± 0.44 b | 2.44 ± 0.32 c | 4.82 ± 0.12 b | ||||
Others | |||||||
3,5-bis(1,1-Dimethylethyl)phenol | 2310 | 2326 | 1138-52-9 | 0.81 ± 0.15 a | 0.47 ± 0.09 b | 0.34 ± 0.06 b | 0.48 ± 0.04 b |
Geranic acid | 2347 | 2356 | 459-80-3 | 0.25 ± 0.03 bc | 0.56 ± 0.13 a | 0.33 ± 0.05 b | 0.18 ± 0.01 c |
1.05 ± 0.18 a | 1.03 ± 0.18 a | 0.68 ± 0.11 b | 0.66 ± 0.02 b | ||||
Total | 1046.71 ± 123.75 a | 684.88 ± 59.90 b | 544.56 ± 85.25 b | 696.62 ± 28.10 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, C.; Niu, X.; Huang, H.; Yu, J.; Cheng, Z. Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties. Foods 2025, 14, 1622. https://doi.org/10.3390/foods14091622
Ao C, Niu X, Huang H, Yu J, Cheng Z. Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties. Foods. 2025; 14(9):1622. https://doi.org/10.3390/foods14091622
Chicago/Turabian StyleAo, Cun, Xiaojun Niu, Haitao Huang, Jizhong Yu, and Zhiqiang Cheng. 2025. "Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties" Foods 14, no. 9: 1622. https://doi.org/10.3390/foods14091622
APA StyleAo, C., Niu, X., Huang, H., Yu, J., & Cheng, Z. (2025). Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties. Foods, 14(9), 1622. https://doi.org/10.3390/foods14091622