1H NMR Study of the Lipid Composition, Oxidative and Hydrolytic Status of the Covering Oils of Canned Sardines After Long-Term Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Storage
2.3. 1H Nuclear Magnetic Resonance Spectra Acquisition and Derived Data
2.4. Statistical Analysis
3. Results and Discussion
3.1. 1H NMR Study of the Covering Oils of Canned Sardines Freshly Purchased
3.2. 1H NMR Study of the Covering Oils of Canned Sardines After Fifteen-Year Storage
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, S.; Takakura, J.Y.; Tsuchiya, K.; Park, C.; Heneghan, R.F.; Takahashi, K. Unlocking the potential of forage fish to reduce the global burden of disease. BMJ Glob. Health 2024, 9, e013511. [Google Scholar] [CrossRef]
- Aubourg, S.P. Loss of quality during the manufacture of canned fish products. Food Sci. Technol. Int. 2001, 7, 199–215. [Google Scholar] [CrossRef]
- European Union Council Regulation (EEC) No 2136/89 of 21 June 1989 Laying Down Common Marketing Standards for Preserved Sardines—Official Journal, L 212, 22 July 1989; pp. 79–81. Available online: http://data.europa.eu/eli/reg/1989/2136/oj (accessed on 26 April 2025).
- Aubourg, S.P.; Sotelo, C.G.; Gallardo, J.M. Changes in flesh lipids and fill oils of albacore (Thunnus alalunga) during canning and storage. J. Agric. Food Chem. 1990, 38, 809–812. [Google Scholar] [CrossRef]
- Garcia-Arias, M.T.; Sanchez-Muniz, F.J.; Castrillon, A.M.; Navarro, M.P. White tuna canning; total fat, and fatty acid changes during processing and storage. J. Food Compos. Anal. 1994, 7, 119–130. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Visentainer, J.V.; Matsushita, M.; De Souza, N.E. Proximate composition, cholesterol and fatty acids profile of canned sardines (Sardinella brasiliensis) in soybean oil and tomato sauce. Food Chem. 2004, 88, 1–6. [Google Scholar] [CrossRef]
- Selmi, S.; Monser, L.; Sadok, S. The influence of local canning process and storage on pelagic fish from Tunisia: Fatty acid profiles and quality indicators. J. Food Process. Preserv. 2008, 32, 443–457. [Google Scholar] [CrossRef]
- Rossi, M.; Colonello, A.; Alamprese, C. Influence of lipid interchange between canned sardines and covering olive oil on some oil genuineness features. Ital. J. Food Sci. 2001, 13, 159–171. [Google Scholar]
- Aubourg, S. Lipid changes during long-term storage of canned tuna (Thunnus alalunga). Z. Lebensm. Unters. Forsch. 1998, 206, 33–37. [Google Scholar] [CrossRef]
- Caponio, F.; Gomes, T.; Summo, C. Quality assessment of edible vegetable oils used as liquid medium in canned tuna. Eur. Food Res. Technol. 2003, 216, 104–108. [Google Scholar] [CrossRef]
- Caponio, F.; Summo, C.; Pasqualone, A.; Gomes, T. Fatty acid composition and degradation level of the oils used in canned fish as a function of the different types of fish. J. Food Compos. Anal. 2011, 24, 1117–1122. [Google Scholar] [CrossRef]
- Barreira, C.F.T.; de Oliveira, V.S.; Chávez, D.W.H.; Gamallo, O.D.; Castro, R.N.; Júnior, P.C.D.; Frankland-Sawaya, A.C.H.; da Silva-Ferreira, M.; Rodrigues-Sampaio, G.; da Silva-Torres, E.A.F.; et al. The impacts of pink pepper (Schinus terebinthifolius Raddi) on fatty acids and cholesterol oxides formation in canned sardines during thermal processing. Food Chem. 2023, 403, 134347. [Google Scholar] [CrossRef] [PubMed]
- de Jorge Gouvêa, F.; de Oliveira, V.S.; Mariano, B.J.; Takenaka, N.A.R.; Gamallo, O.D.; da Silva Ferreira, M.; Saldanha, T. Natural antioxidants as strategy to minimize the presence of lipid oxidation products in canned fish: Research progress, current trends and future perspectives. Food Res. Int. 2023, 173, 113314. [Google Scholar] [CrossRef] [PubMed]
- Aubourg, S.P. Enhancement of lipid stability and acceptability of canned seafood by addition of natural antioxidant compounds to the packing medium—A review. Antioxidants 2023, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Medina, I.; Aubourg, S.; Gallardo, J.M.; Perez-Martin, R. Comparison of six methylation methods for analysis of the fatty acid composition of albacore lipid. Int. J. Food Sci. Technol. 1992, 27, 597–601. [Google Scholar] [CrossRef]
- Igarashi, T.; Aursand, M.; Hirata, Y.; Gribbestad, I.S.; Wada, S.; Nonaka, M. Nondestructive quantitative determination of docosahexaenoic acid and n-3 fatty acids in fish oils by high-resolution 1H nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc. 2000, 77, 737–748. [Google Scholar] [CrossRef]
- Guillen, M.D.; Ruiz, A. Edible oils: Discrimination by 1H nuclear magnetic resonance. J. Sci. Food Agric. 2003, 83, 338–346. [Google Scholar] [CrossRef]
- Martinez-Yusta, A.; Goicoechea, E.; Guillen, M.D. A review of thermo-oxidative degradation of food lipids studied by 1H NMR spectroscopy: Influence of degradative conditions and food lipid nature. Compr. Rev. Food. Sci. Food Saf. 2014, 13, 838–859. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Manzanos, M.J.; Guillén, M.D. A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Res. Int. 2014, 66, 379–387. [Google Scholar] [CrossRef]
- Guillen, M.D.; Carton, I.; Goicoechea, E.; Uriarte, P.S. Characterization of cod liver oil by spectroscopic techniques. New approaches for the determination of compositional parameters, acyl groups, and cholesterol from 1H nuclear magnetic resonance and Fourier transform infrared spectral data. J. Agric. Food. Chem. 2008, 56, 9072–9079. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Polyunsaturated lipids and vitamin A oxidation during cod liver oil in vitro gastrointestinal digestion. Antioxidant effect of added BHT. Food Chem. 2017, 232, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Bandarra, N.M.; Batista, I.; Nunes, M.L.; Empis, J.M.; Christie, W.W. Seasonal changes in lipid composition of sardine (Sardina pilchardus). J. Food. Sci. 1997, 62, 40–42. [Google Scholar] [CrossRef]
- Codex Standard 33-1981, Rev. 1-1989, for Olive Oil, Virgin and Refined and for Refined Olive-Pomace Oil; and Codex Standard 210–1999 for Named Vegetable Oils; FAO (Food and Agriculture Organization): Rome, Italy, 1999.
- Ruiz-Roso, B.; Cuesta, I.; Perez, M.; Borrego, E.; Perez-Olleros, L.; Varela, G. Lipid composition and palatability of canned sardines. Influence of the canning process and storage in olive oil for five years. J. Sci. Food Agric. 1998, 77, 244–250. [Google Scholar] [CrossRef]
- Dominguez-Vidal, A.; Pantoja-de la Rosa, J.; Cuadros-Rodríguez, L.; Ayora-Cañada, M.J. Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy. Food Chem. 2016, 190, 122–127. [Google Scholar] [CrossRef]
- Osorio, M.T.; Haughey, S.A.; Elliott, C.T.; Koidis, A. Evaluation of methodologies to determine vegetable oil species present in oil mixtures: Proposition of an approach to meet the EU legislation demands for correct vegetable oils labelling. Food Res. Int. 2014, 60, 66–75. [Google Scholar] [CrossRef]
- Medina, I.; Sacchi, R.; Aubourg, S.P. 13C nuclear magnetic resonance monitoring of free fatty acid release after fish thermal processing. J. Am. Oil Chem. Soc. 1994, 71, 479–482. [Google Scholar] [CrossRef]
- Medina, I.; Sacchi, R.; Aubourg, S.P. A 13C-NMR study of lipid alterations during fish canning: Effect of filling medium. J. Sci. Food Agric. 1995, 69, 445–450. [Google Scholar] [CrossRef]
- Harzalli, Z.; Nieva-Echevarria, B.; Martinez-Yusta, A.; Oueslati, I.; Medfai, W.; Mhamdi, R.; Goicoechea-Oses, E. Addition of olive by-product extracts to sunflower oil: Study by 1H NMR on the antioxidant effect during potato deep-frying and further in vitro digestion. LWT-Food Sci. Technol. 2024, 206, 116574. [Google Scholar] [CrossRef]
- Guillén, M.D.; Goicoechea, E. Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage. J. Agric. Food Chem. 2007, 55, 10729–10736. [Google Scholar] [CrossRef]
Signal | Chemical Shift (ppm) | Multi-Plicity | Functional Group | |
---|---|---|---|---|
Type of Protons | Compound | |||
Main Acyl Groups (AG) and Fatty Acids (FA) | ||||
A | 0.88 | t | -CH3 | saturated, monounsaturated ω-9 and/or ω-7 AG and FA |
0.89 | t | -CH3 | unsaturated ω-6 AG and FA | |
B | 0.97 | t | -CH3 | unsaturated ω-3 AG and FA |
C | 1.19–1.42 | m * | -(CH2)n- | AG and FA |
D1 | 1.61 | m | -OCO-CH2-CH2- | AG in TG, except for DHA and EPA AG |
1.62 | m | -OCO-CH2-CH2- | AG in 1,2-DG, except for DHA and EPA AG | |
1.63 | m | -OCO-CH2-CH2-, COOH-CH2-CH2- | AG in 1,3-DG, 1-MG and FA, except for DHA and EPA AG/FA | |
1.64 | m | -OCO-CH2-CH2- | AG in 2-MG, except for DHA and EPA AG | |
D2 | 1.69 | m | -OCO-CH2-CH2- | EPA AG in TG |
1.72 | m | COOH-CH2-CH2- | EPA FA | |
E | 1.92–2.15 | m ** | -CH2-CH=CH- | AG and FA, except for -CH2- of DHA AG/FA in β-position in relation to carbonyl group |
F1 | 2.26–2.36 | dt | -OCO-CH2- | AG in TG, except for DHA AG |
2.33 | m | -OCO-CH2- | AG in 1,2-DG, except for DHA AG | |
2.35 | t | -OCO-CH2- COOH-CH2- | AG in 1,3-DG, 1-MG and FA, except for DHA AG/FA | |
2.38 | t | -OCO-CH2- | AG in 2-MG, except for DHA AG | |
F2 | 2.37–2.41 | m | -OCO-CH2-CH2- | DHA AG in TG |
2.39–2.44 | m | COOH-CH2-CH2- | DHA FA | |
G | 2.77 | t | =HC-CH2-CH= | diunsaturated ω-6 AG and FA |
H | 2.77–2.90 | m | =HC-CH2-CH= | polyunsaturated ω-3 (and ω-6) AG and FA |
I | 3.65 | ddd | ROCH2-CHOH-CH2OH | glyceryl group in 1-MG |
J | 3.73 | m *** | ROCH2-CH(OR′)-CH2OH | glyceryl group in 1,2-DG |
K | 3.84 | m *** | HOCH2-CH(OR)-CH2OH | glyceryl group in 2-MG |
L | 3.94 | m | ROCH2-CHOH-CH2OH | glyceryl group in 1-MG |
M | 4.05–4.21 | m | ROCH2-CHOH-CH2OR′ | glyceryl group in 1,3-DG |
N | 4.18 | ddd | ROCH2-CHOH-CH2OH | glyceryl group in 1-MG |
O | 4.22 | dd,dd | ROCH2-CH(OR′)-CH2OR″ | glyceryl group in TG |
P | 4.28 | ddd | ROCH2-CH(OR′)-CH2OH | glyceryl group in 1,2-DG |
Q | 4.93 | m | HOCH2-CH(OR)-CH2OH | glyceryl group in 2-MG |
R | 5.08 | m | ROCH2-CH(OR′)-CH2OH | glyceryl group in 1,2-DG |
S | 5.27 | m | ROCH2-CH(OR′)-CH2OR′ | glyceryl group in TG |
T | 5.28–5.7 | m | -CH=CH- | AG and FA |
Secondary oxidation compounds | ||||
Aldehydes | ||||
a | 9.75 | t | -CHO | alkanals |
Sample | Total ω3 | DHA | EPA | DUꞷ6 | MU | Total U | Sat |
---|---|---|---|---|---|---|---|
OO1 | 6.8 ± 0.0 | 2.8 ± 0.0 | 3.8 ± 0.0 | 7.6 ± 0.1 | 68.9 ± 0.9 | 83.2 ± 1.0 | 16.8 ± 1.0 |
OO2 | 5.7 ± 0.1 | 2.3 ± 0.1 | 3.3 ± 0.2 | 6.5 ± 0.2 | 73.4 ± 0.1 | 85.5 ± 0.1 | 14.5 ± 0.2 |
OO3 | 8.0 ± 0.1 | 3.7 ± 0.1 | 3.7 ± 0.1 | 8.3 ± 0.2 | 65.0 ± 0.6 | 81.3 ± 0.3 | 18.7 ± 0.3 |
OO4 | 4.0 ± 0.0 | 1.8 ± 0.0 | 1.7 ± 0.2 | 5.9 ± 0.2 | 75.4 ± 0.2 | 85.3 ± 0.1 | 14.7 ± 0.1 |
OO5 | 10.6 ± 0.1 | 4.0 ± 0.1 | 5.9 ± 0.2 | 6.4 ± 0.1 | 65.4 ± 0.4 | 82.4 ± 0.3 | 17.6 ± 0.3 |
OO6 | 7.9 ± 0.1 | 2.1 ± 0.0 | 5.7 ± 0.1 | 7.9 ± 0.0 | 69.9 ± 0.5 | 85.6 ± 0.6 | 14.4 ± 0.6 |
OO7 | 2.7 ± 0.4 | 0.9 ± 0.0 | 1.8 ± 0.2 | 6.7 ± 0.1 | 78.2 ± 1.0 | 87.6 ± 0.5 | 12.4 ± 0.5 |
SFO1 | 2.5 ± 0.1 | 0.8 ± 0.1 | 1.4 ± 0.1 | 55.1 ± 0.8 | 30.4 ± 0.8 | 88.0 ± 0.0 | 12.0 ± 0.0 |
SFO2 | 4.8 ± 0.1 | 0.9 ± 0.0 | 3.8 ± 0.2 | 54.4 ± 0.5 | 27.6 ± 1.4 | 86.7 ± 1.0 | 13.3 ± 1.0 |
SFO3 | 1.9 ± 0.1 | 0.8 ± 0.0 | 1.0 ± 0.1 | 64.0 ± 0.9 | 23.0 ± 1.4 | 88.9 ± 0.4 | 11.1 ± 0.5 |
SFO4 | 6.2 ± 0.1 | 2.1 ± 0.0 | 3.8 ± 0.0 | 45.9 ± 3.6 | 34.1 ± 3.7 | 86.2 ± 0.0 | 13.8 ± 0.0 |
SFO5 | 1.7 ± 0.1 | 0.6 ± 0.1 | 1.1 ± 0.2 | 66.4 ± 1.1 | 23.1 ± 0.2 | 91.2 ± 1.0 | 8.8 ± 1.0 |
SFO6* | 13.3 ± 0.2 | 5.8 ± 0.2 | 6.5 ± 0.3 | 37.7 ± 1.3 | 31.5 ± 1.8 | 82.4 ± 0.4 | 17.6 ± 0.4 |
SYO1 | 15.2 ± 0.0 | 4.9 ± 0.1 | 6.0 ± 0.2 | 40.8 ± 2.6 | 24.0 ± 3.1 | 80.0 ± 0.5 | 20.0 ± 0.5 |
SYO2 | 12.9 ± 0.3 | 3.0 ± 0.1 | 5.6 ± 0.3 | 45.7 ± 0.5 | 23.7 ± 0.3 | 82.3 ± 0.0 | 17.8 ± 0.0 |
SYO3* | 14.1 ± 0.1 | 3.4 ± 0.0 | 5.9 ± 0.1 | 41.9 ± 0.4 | 24.6 ± 0.4 | 80.6 ± 0.1 | 19.4 ± 0.1 |
SYO4* | 21.5 ± 0.2 | 8.3 ± 0.1 | 9.0 ± 0.1 | 28.3 ± 0.5 | 25.9 ± 0.1 | 75.7 ± 0.6 | 24.3 ± 0.7 |
VO1 | 9.0 ± 0.3 | 1.7 ± 0.1 | 2.5 ± 0.1 | 51.5 ± 1.8 | 23.3 ± 2.5 | 83.8 ± 0.3 | 16.2 ± 0.4 |
VO2 | 2.1 ± 0.0 | 0.8 ± 0.0 | 1.2 ± 0.1 | 61.8 ± 1.8 | 25.0 ± 1.4 | 88.8 ± 0.4 | 11.2 ± 0.4 |
VO3 | 9.2 ± 0.0 | 4.4 ± 0.0 | 4.3 ± 0.0 | 32.2 ± 1.7 | 42.3 ± 0.3 | 83.8 ± 2.0 | 16.3 ± 2.0 |
VO4 | 4.8 ± 0.2 | 1.3 ± 0.3 | 3.2 ± 0.7 | 48.8 ± 2.3 | 32.8 ± 2.7 | 86.4 ± 0.2 | 13.6 ± 0.3 |
VO5 | 5.1 ± 1.0 | 2.3 ± 0.1 | 2.6 ± 1.0 | 55.3 ± 4.1 | 27.5 ± 4.6 | 87.9 ± 0.4 | 12.1 ± 0.4 |
Sample | TG | 1,3-DG | 1,2-DG | 1-MG | Gol | 2-MG | Total ω3 |
---|---|---|---|---|---|---|---|
ST_OO1 | 37.9 ± 0.2 | 24.0 ± 0.2 | 9.9 ± 0.1 | 15.6 ± 0.1 | 11.6 ± 0.6 | 1.0 ± 0.0 | 11.6 ± 0.1 |
ST_OO2 | 74.9 ± 0.5 | 13.6 ± 0.5 | 5.0 ± 0.2 | 4.8 ± 0.2 | 1.3 ± 0.2 | 0.4 ± 0.1 | 9.9 ± 0.0 |
ST_OO3 | 62.9 ± 0.1 | 19.7 ± 0.1 | 7.8 ± 0.2 | 7.0 ± 0.1 | 2.1 ± 0.1 | 0.5 ± 0.0 | 10.7 ± 0.1 |
ST_OO4 | 76.7 ± 0.9 | 13.5 ± 0.8 | 5.0 ± 0.8 | 3.6 ± 0.7 | 1.0 ± 0.1 | 0.3 ± 0.1 | 6.6 ± 0.1 |
ST_OO5 | 78.7 ± 0.4 | 12.0 ± 0.2 | 5.0 ± 0.2 | 3.0 ± 0.0 | 1.0 ± 0.0 | 0.3 ± 0.0 | 17.2 ± 0.1 |
ST_OO6 | 57.4 ± 0.4 | 21.2 ± 0.1 | 9.5 ± 0.1 | 8.6 ± 0.0 | 2.7 ± 0.6 | 0.6 ± 0.0 | 11.0 ± 0.1 |
ST_OO7 | 63.8 ± 0.5 | 19.5 ± 0.0 | 8.0 ± 0.0 | 6.5 ± 0.1 | 1.7 ± 0.4 | 0.5 ± 0.0 | 2.7 ± 0.1 |
ST_SFO1 | 59.0 ± 0.1 | 20.3 ± 0.1 | 9.8 ± 0.3 | 9.2 ± 0.2 | 1.0 ± 0.0 | 0.7 ± 0.0 | 4.4 ± 0.1 |
ST_SFO2 | 75.9 ± 0.3 | 14.1 ± 0.0 | 5.2 ± 0.0 | 3.7 ± 0.1 | 1.0 ± 0.2 | 0.2 ± 0.0 | 5.2 ± 0.1 |
ST_SFO3 | 62.4 ± 3.0 | 19.2 ± 0.6 | 8.8 ± 1.3 | 7.3 ± 0.7 | 1.8 ± 1.8 | 0.5 ± 0.1 | 3.2 ± 0.2 |
ST_SFO4 | 64.7 ± 0.1 | 18.8 ± 0.1 | 8.5 ± 0.0 | 7.0 ± 0.0 | 0.5 ± 0.2 | 0.6 ± 0.0 | 5.8 ± 0.1 |
ST_SFO5 | 62.0 ± 0.8 | 18.7 ± 0.7 | 9.3 ± 0.2 | 8.2 ± 0.1 | 1.2 ± 0.2 | 0.6 ± 0.1 | 2.6 ± 0.0 |
ST_SFO6* | 75.6 ± 0.1 | 14.4 ± 0.1 | 5.5 ± 0.0 | 3.9 ± 0.0 | 0.3 ± 0.2 | 0.3 ± 0.0 | 15.3 ± 0.0 |
ST_SYO1 | 66.9 ± 0.0 | 18.4 ± 0.0 | 7.4 ± 0.1 | 5.7 ± 0.0 | 1.2 ± 0.0 | 0.5 ± 0.0 | 10.7 ± 0.0 |
ST_SYO2 | 56.2 ± 0.1 | 21.2 ± 0.0 | 9.3 ± 0.0 | 9.0 ± 0.0 | 3.8 ± 0.0 | 0.7 ± 0.0 | 11.5 ± 0.0 |
ST_SYO3* | 51.6 ± 0.1 | 20.7 ± 2.9 | 9.5 ± 0.0 | 11.2 ± 0.0 | 6.1 ± 3.1 | 0.9 ± 0.0 | 25.3 ± 0.0 |
ST_SYO4* | 69.8 ± 0.3 | 16.2 ± 0.0 | 7.6 ± 0.0 | 5.6 ± 0.0 | 0.4 ± 0.3 | 0.4 ± 0.0 | 19.0 ± 0.0 |
ST_VO1 | 53.9 ± 0.1 | 21.4 ± 0.0 | 9.5 ± 0.0 | 9.2 ± 0.0 | 5.4 ± 0.0 | 0.6 ± 0.0 | 12.5 ± 0.1 |
ST_VO2 | 53.7 ± 0.1 | 21.3 ± 0.1 | 9.9 ± 0.3 | 10.2 ± 0.0 | 4.2 ± 0.3 | 0.7 ± 0.0 | 3.4 ± 0.0 |
ST_VO3 | 75.4 ± 0.1 | 12.5 ± 0.2 | 5.8 ± 0.4 | 4.0 ± 0.2 | 2.0 ± 0.1 | 0.3 ± 0.0 | 8.5 ± 0.2 |
ST_VO4 | 59.0 ± 0.3 | 20.8 ± 0.1 | 8.6 ± 0.4 | 7.8 ± 0.0 | 3.3 ± 0.1 | 0.5 ± 0.0 | 6.4 ± 0.0 |
ST_VO5 | 61.4 ± 0.4 | 19.7 ± 0.1 | 9.0 ± 0.4 | 7.7 ± 0.1 | 1.4 ± 0.0 | 0.7 ± 0.1 | 9.2 ± 0.0 |
Samples | Alkanals | Samples | Alkanals |
---|---|---|---|
OO1 | - | ST_OO1 | - |
OO2 | - | ST_OO2 | 0.1 ± 0.1 |
OO3 | - | ST_OO3 | - |
OO4 | - | ST_OO4 | 0.1 ± 0.0 |
OO5 | - | ST_OO5 | - |
OO6 | - | ST_OO6 | 0.1 ± 0.0 |
OO7 | - | ST_OO7 | 0.1 ± 0.0 |
SFO1 | - | ST_SFO1 | - |
SFO2 | - | ST_SFO2 | 0.1 ± 0.0 |
SFO3 | - | ST_SFO3 | 0.1 ± 0.0 |
SFO4 | - | ST_SFO4 | 0.1 ± 0.0 |
SFO5 | - | ST_SFO5 | - |
SFO6* | - | ST_SFO6* | 0.1 ± 0.0 |
SYO1 | - | ST_SYO1 | - |
SYO2 | - | ST_SYO2 | - |
SYO3* | - | ST_SYO3* | - |
SYO4* | - | ST_SYO4* | 0.1 ± 0.0 |
VO1 | - | ST_VO1 | - |
VO2 | - | ST_VO2 | - |
VO3 | - | ST_VO3 | 0.1 ± 0.0 |
VO4 | - | ST_VO4 | 0.1 ± 0.0 |
VO5 | - | ST_VO5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goicoechea-Oses, E. 1H NMR Study of the Lipid Composition, Oxidative and Hydrolytic Status of the Covering Oils of Canned Sardines After Long-Term Storage. Foods 2025, 14, 1589. https://doi.org/10.3390/foods14091589
Goicoechea-Oses E. 1H NMR Study of the Lipid Composition, Oxidative and Hydrolytic Status of the Covering Oils of Canned Sardines After Long-Term Storage. Foods. 2025; 14(9):1589. https://doi.org/10.3390/foods14091589
Chicago/Turabian StyleGoicoechea-Oses, Encarnacion. 2025. "1H NMR Study of the Lipid Composition, Oxidative and Hydrolytic Status of the Covering Oils of Canned Sardines After Long-Term Storage" Foods 14, no. 9: 1589. https://doi.org/10.3390/foods14091589
APA StyleGoicoechea-Oses, E. (2025). 1H NMR Study of the Lipid Composition, Oxidative and Hydrolytic Status of the Covering Oils of Canned Sardines After Long-Term Storage. Foods, 14(9), 1589. https://doi.org/10.3390/foods14091589