Genetic Diversity, Biofilm Formation, and Antibiotic Resistance in Listeria monocytogenes Isolated from Meat-Processing Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedure
2.2. Isolation and Characterization of Strains
2.3. Serogroup Determination
2.4. Biofilm Formation Assay
2.5. Antibiotic Resistance
2.6. Miscellaneous
3. Results and Discussion
3.1. Listeria spp. Implantation in Food-Processing Plants
3.2. Listeria monocytogenes Serogroups
3.3. Biofilm Formation Capacity
3.4. Antibiotic Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLauchlin, J.; Rees, C.E.D. Genus I. Listeria Pirie 1940a, 383AL. In Bergey’s Manual® of Systematic Bacteriology, Second Edition, Volume 3, The Firmicutes; De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., Whitman, W.B., Eds.; Springer: New York, NY, USA, 2009; pp. 244–256. [Google Scholar]
- Iannetti, L.; Acciari, V.A.; Antoci, S.; Addante, N.; Bardasi, L.; Bilei, S.; Calistri, P.; Cito, F.; Cogoni, P.; D’Aurelio, R.; et al. Listeria monocytogenes in ready-to-eat foods in Italy: Prevalence of contamination at retail and characterisation of strains from meat products and cheese. Food Control 2016, 68, 55–61. [Google Scholar] [CrossRef]
- Reis, J.O.; Carvalho Teixeira, L.A.; Cunha-Neto, A.; Silva Castro, V.; Figueiredo, E.E.S. Listeria monocytogenes in beef: A hidden risk. Res. Microbiol. 2024, 175, 104215. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, E.; de Gregorio, O.; Soriano, V.; Álvarez, C.; Ortega-de la Puente, A.; de la Cruz-Echeandía, M.; Blanco-Valencia, X.P.; Royuela, A.; Esteban-Sampedro, J.; Martín-Portugués, M.; et al. Pregnancy-related listeriosis in Spain. J. Infect. Public. Health 2025, 18, 102706. [Google Scholar] [CrossRef]
- Tai, Y.-L.; Chi, H.; Chiu, N.-C.; Lin, C.-Y.; Cheng, J.L.; Hsu, C.-H.; Chang, J.-H.; Huang, D.T.-N.; Huang, C.-Y.; Huang, F.-Y. Clinical features of neonatal listeriosis in Taiwan: A hospital-based study. J. Microbiol. Immunol. Infect. 2020, 53, 866–874. [Google Scholar] [CrossRef]
- Muñoz, P.; Rojas, L.; Bunsow, E.; Saez, E.; Sánchez-Cambronero, L.; Alcalá, L.; Rodríguez-Creixems, L.; Bouza, E. Listeriosis: An emerging public health problem especially among the elderly. J. Infect. 2012, 64, 19–33. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). European Centre for Disease Prevention and Control (ECDC). 2024. The European Union One Health 2023 Zoonoses report. EFSA J. 2024, 22, e9106. [Google Scholar] [CrossRef]
- Obaidat, M.M. Molecular serogrouping and virulence of Listeria monocytogenes from sheep and goat milk in Jordan. Int. Dairy. J. 2024, 158, 106051. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the manufacture, placing on the market and use of medicated feed, amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and repealing Council Directive 90/167/EEC (Text with EEA relevance). Off. J. Eur. Union. 2019, 4, 1–23.
- Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition (Text with EEA relevance). Off. J. Eur. Union. 2023, 268, 29–43.
- Moura, A.; Leclercq, A.; Vales, G.; Tessaud-Rita, N.; Bracq-Dieye, H.; Thouvenot, P.; Madec, Y.; Charlier, C.; Lecuit, M. Phenotypic and genotypic antimicrobial resistance of Listeria monocytogenes: An observational study in France. Lancet Reg. Health 2024, 37, 100800. [Google Scholar] [CrossRef]
- TîRziu, E.; Herman, V.; Nichita, I.; Morar, A.; Imre, M.; Ban-Cucerzan, A.; Bucur, I.; TîRziu, A.; Mateiu-Petrec, O.C.; Imre, K. Diversity and Antibiotic Resistance Profiles of Listeria monocytogenes Serogroups in Different Food Products from the Transylvania Region of Central Romania. J. Food Prot. 2022, 85, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, X.; Song, Y.; Yao, S.; Li, K.; Shi, B.; Sun, J.; Liu, Z.; Zhao, W.; Zhao, C.; et al. Genetic diversity, antibiotic resistance, and virulence profiles of Listeria monocytogenes from retail meat and meat processing. Food Res. Int. 2022, 162, 112040. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.G.; Vespermann, A.; Bolton, D.J. Horizontal gene transfer of virulence determinants in selected bacterial foodborne pathogens. Food Chem. Toxicol. 2009, 47, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Guo, W.; Feng, M.; Bai, Y.; Huang, J.; Cao, Y. Antibacterial, anti-biofilm activity and underlying mechanism of garlic essential oil in water nanoemulsion against Listeria monocytogenes. LWT-Food Sci. Technol. 2024, 196, 115847. [Google Scholar] [CrossRef]
- Bermúdez-Capdevila, M.; Cervantes-Huamán, B.R.H.; Rodríguez-Jerez, J.J.; Ripolles-Avila, C. Repeated sub-inhibitory doses of cassia essential oil do not increase the tolerance pattern in Listeria monocytogenes cells. LWT-Food Sci. Technol. 2022, 165, 113681. [Google Scholar] [CrossRef]
- Blackman, A.C.; Frank, J.F. Growth of Listeria monocytogenes as a Biofilm on Various Food-Processing Surfaces. J. Food Prot. 1996, 59, 827–831. [Google Scholar] [CrossRef]
- Tuytschaever, T.; Raes, K.; Sampers, I. Biofilm detection in the food industry: Challenges in identifying biofilm eps markers and analytical techniques with insights for Listeria monocytogenes. Int. J. Food Microbiol. 2025, 432, 111091. [Google Scholar] [CrossRef]
- Ohman, E.; Kilgore, S.; Waite-Cusic, J.; Kovacevic, J. Efficacy of cleaning and sanitizing procedures to reduce Listeria monocytogenes on food contact surfaces commonly found in fresh produce operations. Food Microbiol. 2024, 118, 104421. [Google Scholar] [CrossRef]
- Bolten, S.; Ralyea, R.D.; Lott, T.T.; Orsi, R.H.; Martin, N.H.; Wiedmann, M.; Trmcic, A. Utilizing whole-genome sequencing to characterize Listeria spp. persistence and transmission patterns in a farmstead dairy processing facility and its associated farm environment. J. Dairy. Sci. 2024, 107, 9036–9053. [Google Scholar] [CrossRef]
- Salza, S.; Piras, G.; Melillo, R.; Molotzu, M.; Giagnoni, L.; Doneddu, L.; Tondello, A.; Cecchinato, A.; Stevanato, P.; Squartini, A.; et al. Environmental monitoring of Listeria monocytogenes contamination in dairy processing facilities combining culturing technique and molecular methods. LWT-Food Sci. Technol. 2024, 211, 116870. [Google Scholar] [CrossRef]
- ISO 11290-1; Microbiology of Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part1: Detection Method. ISO copyright office: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/60313.html (accessed on 3 March 2025).
- Bio-RAD. iQCheck Listeria monocytogenes II Kit User Guide. Test for the Real-Time PCR Detection of Listeria monocytogenes in Food and Environmental Samples. Document Number: 1000167776 ver A. 2023. Available online: https://www.bio-rad.com/es-es/product/iq-check-listeria-monocytogenes-ii-pcr-detection-kit?ID=b5eaf877-8286-481f-b1bd-c0bc4384b760 (accessed on 17 December 2024).
- BioMerieux. ALOA® Package Insert. Document Number: 049971 ver 05. 2023. Available online: https://resourcecenter.biomerieux.com/search/product/ALOA (accessed on 3 March 2025).
- BioMerieux. API®Listeria Package Insert. Document Number: 07887 ver T. 2019. Available online: https://resourcecenter.biomerieux.com/search/product/API%20LIST (accessed on 3 March 2025).
- Chen, Y.S.; Yanagida, F.; Shinohara, T. Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett. Appl. Microbiol. 2005, 40, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Tanasupawat, S.; Shida, O.; Okada, S.; Komagata, K. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int. J. Syst. Evol. Microbiol. 2000, 50, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Díez-Ozaeta, I.; Amárita, F.; Lavilla, M.; Rainieri, S. Ecology of indigenous lactic acid bacteria from Rioja Alavesa red wines, focusing on biogenic amine production ability. LWT-Food Sci. Technol. 2019, 116, 108544. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the Major Listeria monocytogenes Serovars by Multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’Orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar] [CrossRef]
- Bonsaglia, E.C.R.; Silva, N.C.C.; Fernades Júnior, A.; Araújo Júnior, J.P.; Tsunemi, M.H.; Rall, V.L.M. Production of biofilm by Listeria monocytogenes in different materials and temperatures. Food Control 2014, 35, 386–391. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Ver. 14.0. 2024. Available online: https://www.eucast.org/ast_of_bacteria (accessed on 5 March 2025).
- Gana, J.; Gcebe, N.; Moerane, R.; Ngoshe, Y.; Tshuma, T.; Moabelo, K.; Adesiyun, A. Antimicrobial Resistance Profiles of Listeria Species Recovered from Retail Outlets in Gauteng Province, South Africa. J. Food Prot. 2024, 87, 100322. [Google Scholar] [CrossRef]
- Wartha, S.; Huber, S.; Kraemer, I.; Alter, T.; Messelhäußer, U. Presence of Listeria at primary production and processing of food of non-animal origin (FNAO) in Bavaria, Germany. J. Food Prot. 2023, 86, 100015. [Google Scholar] [CrossRef]
- Markovich, Y.; Palacios-Gorba, C.; Gomis, J.; Gómez-Martín, A.; Ortolá, S.; Quereda, J.J. Phenotypic and genotypic antimicrobial resistance of Listeria spp. in Spain. Vet. Microbiol. 2024, 293, 110086. [Google Scholar] [CrossRef]
- Mafuna, T.; Matle, I.; Magwedere, K.; Pierneef, R.E.; Reva, O.N. Comparative Genomics of Listeria Species Recovered from Meat and Food Processing Facilities. Microbiol. Spectr. 2022, 10, e01189-22. [Google Scholar] [CrossRef]
- Conficoni, D.; Santagiuliana, M.; Marchesan, M.; Franceschini, F.; Catellani, P.; Ferioli, M.; Giaccone, V. Distribution of Listeria spp. on Carcasses of Regularly Slaughtered Swine for Italian Dry Cured Ham. J. Food Prot. 2019, 82, 1104–1109. [Google Scholar] [CrossRef]
- Karakaya, E.; Aydin, F.; Gümüşsoy, K.S.; Kayman, T.; Güran, O.; Güran, C.; Yarim, D.; Gündüz, E.S.; Abay, S. Listeria monocytogenes from different sources: The serotyping, genotyping, virulotyping, and antibiotic susceptibilities of the recovered isolates. Comp. Immunol. Microbiol. Infect. Dis. 2025, 118, 102314. [Google Scholar] [CrossRef]
- D’Arrigo, M.; Mateo-Vivaracho, L.; Guillamón, E.; Fernández-León, M.F.; Bravo, D.; Peirotén, A.; Medina, M.; García-Lafuente, A. Characterization of persistent Listeria monocytogenes strains from ten dry-cured ham processing facilities. Food Microbiol. 2020, 92, 103581. [Google Scholar] [CrossRef]
- Pérez-Baltar, A.; Pérez-Boto, D.; Medina, M.; Montiel, R. Genomic diversity and characterization of Listeria monocytogenes from dry-cured ham processing plants. Food Microbiol. 2021, 99, 103779. [Google Scholar] [CrossRef]
- Melero, B.; Manso, B.; Stessl, B.; Hernández, M.; Wagner, M.; Rovira, J.; Rodriguez-Lázaro, D. Distribution and Persistence of Listeria monocytogenes in a Heavily Contaminated Poultry Processing Facility. J. Food Prot. 2019, 82, 1524–1531. [Google Scholar] [CrossRef]
- Maćkiw, E.; Stasiak, M.; Kowalska, J.; Kucharek, K.; Korsak, D.; Postupolski, J. Occurrence and Characteristics of Listeria monocytogenes in Ready-to-Eat Meat Products in Poland. J. Food Prot. 2020, 83, 1002–1009. [Google Scholar] [CrossRef]
- Melero, B.; Stessl, B.; Manso, B.; Wagner, M.; Esteban-Carbonero, O.J.; Hernández, M.; Rovira, J.; Rodriguez-Lázaro, D. Listeria monocytogenes colonization in a newly established dairy processing facility. Int. J. Food Microbiol. 2019, 289, 64–71. [Google Scholar] [CrossRef]
- Henriques, A.R.; Melo Cristino, J.; Fraqueza, M.J. Genetic Characterization of Listeria monocytogenes Isolates from Industrial and Retail Ready-to-Eat Meat-Based Foods and Their Relationship with Clinical Strains from Human Listeriosis in Portugal. J. Food Prot. 2017, 80, 551–560. [Google Scholar] [CrossRef]
- Wu, S.; Wu, Q.; Zhang, J.; Chen, M.; Yan, Z.; Chen, M.; Yan, Z.; Hu, H. Listeria monocytogenes Prevalence and Characteristics in Retail Raw Foods in China. PLoS ONE 2015, 10, e0136682. [Google Scholar] [CrossRef]
- Herald, P.J.; Zottola, E.A. Attachement of Listeria monocytogenes to stainless steel surfaces at various temperatures and pH values. J. Food Sci. 1988, 53, 1549–1552. [Google Scholar] [CrossRef]
- Norwood, D.E.; Gilmour, A. Adherence of Listeria monocytogenes strains to stainless steel coupons. J. Appl. Microbiol. 1999, 86, 576–582. [Google Scholar] [CrossRef]
- Poyart-Salmeron, C.; Trieu-Cuot, P.; Carlier, C.; MacGowan, A.; McLauchlin, J.; Courvalin, P. Genetic basis of tetracycline resistance in clinical isolates of Listeria monocytogenes. Antimicrob. Agents Chemother. 1992, 36, 463–466. [Google Scholar] [CrossRef]
- Hadorn, K.; Hächler, H.; Schaffner, A.; Kayser, F.H. Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 1993, 12, 928–937. [Google Scholar] [CrossRef]
- Haubert, L.; Pouey da Cunha, C.E.; Völz Lopes, G.; Padilha da Silva, W. Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese. Food Res. Int. 2018, 107, 503–508. [Google Scholar] [CrossRef]
- Palma, F.; Radomski, N.; Guérin, A.; Sévellec, Y.; Félix, B.; Bridier, A.; Soumet, C.; Roussel, S.; Guillier, L. Genomic elements located in the accessory repertoire drive the adaptation to biocides in Listeria monocytogenes strains from different ecological niches. Food Microbiol. 2022, 106, 103757. [Google Scholar] [CrossRef]
Primers | Length | Sequence 5′→3′ | Source |
---|---|---|---|
27FC (F) | 18 | AGT TTG ATC CTG GCT CAG | [26] |
PUBR (R) | 19 | CCC GGG AAC GTA TTC ACC G | [27] |
lmo0737 (F) | 20 | AGG GCT TCA AGG ACT TAC CC | [29] |
lmo0737 (R) | 20 | ACG ATT TCT GCT TGC CAT TC | [29] |
lmo1118 (F) | 20 | AGG GGT CTT AAA TCC TGG AA | [29] |
lmo1118 (R) | 20 | CGG CTT GTT CGG CAT ACT TA | [29] |
ORF2819 (F) | 20 | AGC AAA ATG CCA AAA CTC GT | [29] |
ORF2819 (R) | 21 | CAT CAC TAA AGC CTC CCA TTG | [29] |
ORF2110 (F) | 21 | AGT GGA CAA TTG ATT GGT GAA | [29] |
ORF2110 (R) | 21 | CAT CCA TCC CTT ACT TTG GAC | [29] |
prs (F) | 22 | GCT GAA GAG ATT GCG AAA GAA G | [29] |
prs (R) | 22 | CAA AGA AAC CTT GGA TTT GCG G | [29] |
Genetic Characterization | Biofilm-Forming Capacity | ||||||
---|---|---|---|---|---|---|---|
Strain | Origin | Geographical Origin | Source | Serogroup | Lineage | 25 °C | 37 °C |
LMO391 | FPP1 | Basque Country | Pork/Food | IIb | I | Strong | Moderate |
LMO392 | FPP1 | Basque Country | Pork/Food | IVb | I | Strong | Moderate |
LMO393 | FPP1 | Basque Country | Beef/Food | IIa | II | Strong | Moderate |
LMO394 | FPP1 | Basque Country | Beef/Food | IIb | I | Strong | Moderate |
LMO395 | FPP1 | Basque Country | Sewage/Drain/Environmental | IVb | I | Strong | Moderate |
LMO396 | FPP1 | Basque Country | Sewage/Drain/Environmental | IVb | I | Strong | Moderate |
LMO397 | FPP1 | Basque Country | Sewage/Drain/Environmental | IIb | I | Strong | Strong |
LMO398 | FPP2 | Basque Country | FPE/Environmental | IIb | I | Strong | Strong |
LMO399 | FPP2 | Basque Country | Sewage/Drain/Environmental | IIa | II | Strong | Moderate |
LMO400 | FPP2 | Basque Country | Sewage/Drain/Environmental | IIb | I | Non-Biofilm | Non-Biofilm |
LMO401 | FPP2 | Basque Country | FPE/Environmental | IIb | I | Strong | Strong |
LMO402 | FPP2 | Basque Country | Sewage/Drain/Environmental | IIc | II | Strong | Moderate |
LMO403 | FPP2 | Basque Country | FPE/Environmental | IIb | I | Strong | Strong |
LMO404 | FPP2 | Basque Country | FPE/Environmental | IIb | I | Strong | Strong |
LMO405 | FPP2 | Basque Country | Pork/Food | IIa | II | Strong | Strong |
LMO406 | FPP5 | Andalusia | FPE/Environmental | IIc | II | Strong | Strong |
LMO407 | FPP4 | Catalonia | Poultry/Food | IIa | II | Strong | Weak |
LMO408 | FPP4 | Catalonia | Poultry/Food | IIa | II | Strong | Strong |
LMO409 | FPP4 | Catalonia | Poultry/Food | IIa | II | Strong | Strong |
LMO410 | FPP4 | Catalonia | Poultry/Food | IIa | II | Moderate | Moderate |
LMO411 | FPP4 | Catalonia | Poultry/Food | IIc | II | Strong | Moderate |
LMO412 | FPP4 | Catalonia | Poultry/Food | IIc | II | Strong | Strong |
LMO413 | FPP4 | Catalonia | Poultry/Food | IIa | II | Strong | Strong |
LMO414 | FPP4 | Catalonia | Poultry/Food | IIa | II | Strong | Moderate |
LMO415 | FPP1 | Basque Country | Pork/Food | IVa | III | Strong | Strong |
LMO416 | FPP1 | Basque Country | Pork/Food | IVb | I | Strong | Moderate |
LMO417 | FPP1 | Basque Country | Beef/Food | IIa | II | Strong | Moderate |
LMO418 | FPP1 | Basque Country | FPE/Environmental | IIb | I | Strong | Strong |
LMO419 | FPP1 | Basque Country | Sewage/Drain/Environmental | IIa | II | Strong | Strong |
LMO420 | FPP1 | Basque Country | Sewage/Drain/Environmental | IVb | I | Strong | Moderate |
LMO421 | FPP1 | Basque Country | Sewage/Drain/Environmental | IIb | I | Strong | Moderate |
LMO422 | FPP2 | Basque Country | FPE/Environmental | IIb | I | Strong | Strong |
LMO423 | FPP2 | Basque Country | Floor/Environmental | IIc | II | Strong | Moderate |
LMO424 | FPP2 | Basque Country | Sewage/Drain/Environmental | IIc | II | Strong | Moderate |
LMO425 | FPP3 | Valencian Community | Poultry/Food | IVb | I | Non-Biofilm | Weak |
LMO426 | FPP3 | Valencian Community | Poultry/Food | IVa | III | Moderate | Moderate |
LMO428 | FPP5 | Andalusia | Pork/Food | IIc | II | Strong | Moderate |
LIN014 | FPP1 | Basque Country | Pork/Food | N.A. | N.A. | Non-Biofilm | Strong |
LIN015 | FPP1 | Basque Country | Pork/Food | N.A. | N.A. | Non-Biofilm | Strong |
LIN016 | FPP1 | Basque Country | Beef/Food | N.A. | N.A. | Non-Biofilm | Moderate |
LIN017 | FPP1 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LIN018 | FPP1 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LIN019 | FPP1 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Strong |
LIN020 | FPP2 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LIN021 | FPP2 | Basque Country | FPE/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LIN022 | FPP2 | Basque Country | FPE/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LIN023 | FPP2 | Basque Country | Poultry/Food | N.A. | N.A. | Non-Biofilm | Moderate |
LIN024 | FPP2 | Basque Country | Poultry/Food | N.A. | N.A. | Non-Biofilm | Strong |
LIN025 | FPP2 | Basque Country | Pork/Food | N.A. | N.A. | Non-Biofilm | Strong |
LIN026 | FPP1 | Basque Country | Beef/Food | N.A. | N.A. | Non-Biofilm | Weak |
LIN027 | FPP1 | Basque Country | Pork/Food | N.A. | N.A. | Non-Biofilm | Weak |
LIN028 | FPP1 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Strong |
LIN029 | FPP1 | Basque Country | FPE/Environmental | N.A. | N.A. | Non-Biofilm | Strong |
LIN030 | FPP1 | Basque Country | FPE/Environmental | N.A. | N.A. | Non-Biofilm | Weak |
LIN031 | FPP1 | Basque Country | Pork/Food | N.A. | N.A. | Non-Biofilm | Moderate |
LIN032 | FPP3 | Valencian Community | Poultry/Environmental | N.A. | N.A. | Non-Biofilm | Weak |
LWE002 | FPP1 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Weak |
LWE003 | FPP2 | Basque Country | Floor/Environmental | N.A. | N.A. | Non-Biofilm | Weak |
LWE005 | FPP2 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Weak |
LWE006 | FPP2 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Weak |
LWE007 | FPP4 | Catalonia | Poultry/Food | N.A. | N.A. | Non-Biofilm | Non-Biofilm |
LWE008 | FPP4 | Catalonia | Poultry/Food | N.A. | N.A. | Non-Biofilm | Weak |
LWE009 | FPP4 | Catalonia | Poultry/Food | N.A. | N.A. | Non-Biofilm | Non-Biofilm |
LWE010 | FPP4 | Catalonia | Poultry/Food | N.A. | N.A. | Non-Biofilm | Non-Biofilm |
LWE011 | FPP4 | Catalonia | Poultry/Food | N.A. | N.A. | Non-Biofilm | Non-Biofilm |
LWE012 | FPP4 | Catalonia | Poultry/Food | N.A. | N.A. | Non-Biofilm | Weak |
LWE013 | FPP1 | Basque Country | Pork/Food | N.A. | N.A. | Non-Biofilm | Moderate |
LWE014 | FPP1 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Weak | Moderate |
LWE015 | FPP2 | Basque Country | Floor/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LWE016 | FPP2 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LWE017 | FPP2 | Basque Country | Sewage/Drain/Environmental | N.A. | N.A. | Non-Biofilm | Moderate |
LWE018 | FPP2 | Basque Country | Poultry/Food | N.A. | N.A. | Non-Biofilm | Moderate |
LWE019 | FPP2 | Basque Country | Poultry/Food | N.A. | N.A. | Non-Biofilm | Moderate |
LWE020 | FPP3 | Valencian Community | Poultry/Food | N.A. | N.A. | Non-Biofilm | Moderate |
LWE021 | FPP3 | Valencian Community | Poultry/Food | N.A. | N.A. | Weak | Moderate |
Environmental | Food | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
FPE | Floor | Sew. | Total | Beef | Pork | Poultry | Total | |||
FPP1 | L. monocytogenes | 1 | 0 | 6 | 7 | 3 | 4 | / | 7 | |
L. innocua | 1 | 0 | 4 | 5 | 2 | 3 | / | 5 | ||
L. welshimeri | 0 | 0 | 2 | 2 | 0 | 1 | / | 1 | ||
FPP2 | L. monocytogenes | 5 | 1 | 4 | 10 | 0 | 1 | 0 | 1 | |
L. innocua | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 5 | ||
L. welshimeri | 0 | 2 | 4 | 6 | 0 | 0 | 2 | 2 | ||
FPP3 | L. monocytogenes | / | / | / | / | / | / | 2 | 2 | |
L. innocua | / | / | / | / | / | / | 1 | 1 | ||
L. welshimeri | / | / | / | / | / | / | 2 | 2 | ||
FPP4 | L. monocytogenes | / | / | / | / | 8 | 0 | 6 | 14 | |
L. innocua | / | / | / | / | / | / | / | / | ||
L. welshimeri | / | / | / | / | / | / | / | / | ||
FPP5 | L. monocytogenes | 1 | 0 | 0 | 1 | / | 1 | / | 1 | |
L. innocua | / | / | / | / | / | 0 | / | 0 | ||
L. welshimeri | / | / | / | / | / | 0 | / | 0 | ||
Environmental | Food | Environmental + Food | ||||||||
Strains | FPP1 | FPP2 | FPP1 | FPP2 | FPP1 | FPP2 | ||||
L. monocytogenes | 7 | 10 | 7 | 1 | 14 | 11 | ||||
L. innocua | 5 | 4 | 5 | 4 | 10 | 8 | ||||
L. Welshimeri | 2 | 6 | 1 | 2 | 3 | 8 | ||||
Χ2 analysis (p-values) | 0.442 | 0.177 | 0.489 |
Environmental | Food | Total | ||
---|---|---|---|---|
FPP1 + FPP2 | L. monocytogenes | 17 | 8 | 25 |
L. innocua | 8 | 10 | 18 | |
L. welshimeri | 8 | 3 | 11 | |
FPP3 + FPP4 + FPP5 | L. monocytogenes | 1 | 11 | 12 |
L. innocua | / | 1 | 1 | |
L. welshimeri | / | 8 | 8 | |
p-value (FPP1 + FPP2) vs. (FPP3 + FPP4 + FPP5) | 0.022 |
Species/Reference | This Study, Basque Country | South Africa [35] | Germany [36] | Mid-East and South-East Spain [37] | South Africa [38] | Italy [39] |
---|---|---|---|---|---|---|
L. monocytogenes | 25 | 37 | 7 | 132 | 3 | 3 |
L. innocua | 18 | 65 | 8 | 89 | 38 | 130 |
L. welshimeri | 11 | 10 | 0 | 0 | 3 | 28 |
L. ivanovii | 0 | 0 | 5 | 5 | 0 | 17 |
L. seeligeri | 0 | 0 | 19 | 6 | 0 | 0 |
Χ2 analysis (p-values) | ||||||
This study (Basque Country, Spain) | ||||||
South Africa [36] | 5.97·10−8 | |||||
Germany [37] | 8.92·10−15 | 1.40·10−8 | ||||
Mid-east/south-east Spain [38] | 1.22·10−9 | 3.15·10−8 | 1.62·10−16 | |||
South Africa [39] | 7.25·10−7 | 0.00195 | 6.69·10−9 | 6.26·10−11 | ||
Italy [40] | 2.51·10−17 | 9.06·10−14 | 2.48·10−22 | 5.94·10−35 | 0.016 |
Serogroup | FPP1 | FPP2 | FPP1 + FPP2 | FPP3 + FPP4 + FPP5 |
---|---|---|---|---|
IIa | 3 (21%) | 2 (18%) | 5 (20%) | 6 (50%) |
IIb | 5 (36%) | 6 (55%) | 11 (44%) | 0 (0%) |
IIc | 0 (0%) | 3 (27%) | 3 (12%) | 4 (33%) |
IVa | 1 (7%) | 0 (0%) | 1 (4%) | 0 (0%) |
IVb | 5 (36%) | 0 (0%) | 5 (20%) | 2 (17%) |
Total | 14 (100%) | 11 (100%) | 25 (100%) | 12 (100%) |
Reference/Serogroup | IIa | IIb | IIc | IVa | IVb | IIa + IIb + IIc + IVb | ||||
---|---|---|---|---|---|---|---|---|---|---|
This study (Meat/Basque Country, Spain) | 5 (20%) | 11 (44%) | 3 (12%) | 1 (4%) | 5 (20%) | 24 (96%) | ||||
Pork/Spain [42] | 240 (56%) | 63 (15%) | 105 (24%) | 0 (0%) | 23 (5%) | 431 (100%) | ||||
Pork/Spain [43] | 43 (74%) | 7 (12%) | 7 (12%) | 0 (0%) | 1 (2%) | 58 (100%) | ||||
Meat/China [13] | 55 (45%) | 24 (19%) | 35 (29%) | 0 (0%) | 9 (7%) | 123 (100%) | ||||
Poultry/Castilla y Leon, Spain [44] | 39 (27%) | 2 (1%) | 102 (69%) | 0 (0%) | 4 (3%) | 147 (100%) | ||||
Meat/Poland [45] | 36 (51%) | 10 (15%) | 15 (21%) | 0 (0%) | 9 (13%) | 70 (100%) | ||||
Meat, Dairy/Romania [12] | 7 (44%) | 3 (19%) | 2 (12%) | 0 (0%) | 4 (25%) | 16 (100%) | ||||
Dairy/Castilla y Leon, Spain [46] | 33 (72%) | 6 (13%) | 2 (4%) | 0 (0%) | 5 (11%) | 46 (100%) | ||||
Meat, dairy, fish, vegetables/France [11] | 68 (77%) | 9 (10%) | 11 (12%) | 0 (0%) | 1 (1%) | 89 (100%) | ||||
Meat, fish, vegetables/Spain [38] | 24 (69%) | 2 (6%) | 6 (17%) | 0 (0%) | 3 (8%) | 35 (100%) | ||||
Χ2 Analysis | This Study | [42] | [43] | [13] | [44] | [45] | [12] | [46] | [11] | [38] |
This study | ||||||||||
[42] | 1.23·10−8 | |||||||||
[43] | 3.53·10−5 | 0.046 | ||||||||
[13] | 0.13·10−2 | 0.403 | 0.011 | |||||||
[44] | 6.90·10−16 | 1.49·10−21 | 5.08·10−13 | 7.61·10−12 | ||||||
[45] | 0.5·10−2 | 0.124 | 0.024 | 0.288 | 4.45·10−11 | |||||
[12] | 0.197 | 0.25·10−2 | 0.001 | 0.015 | 2.11·10−5 | 0.276 | ||||
[46] | 0.16·10−2 | 0.91·10−2 | 0.137 | 0.004 | 1.20·10−13 | 0.055 | 0.035 | |||
[11] | 1.5·10−7 | 0.98·10−2 | 0.246 | 0.12·10−2 | 7.28·10−10 | 0.003 | 0.75·10−3 | 0.51·10−2 | ||
[38] | 0.95·10−3 | 0.027 | 0.32·10−2 | 0.066 | 0.12·10−2 | 0.372 | 0.849 | 0.013 | 0.19·10−2 |
Biofilm-Forming Capacity a | Lineage I | Lineage II | Lineage III | |
---|---|---|---|---|
Strong | 25 °C | 15 | 17 | 1 |
37 °C | 7 | 7 | 1 | |
Moderate | 25 °C | 0/8 | 1/10 | 1/1 |
37 °C | 8 | 10 | 1 | |
Weak | 25 °C | 0 | 0 | 0 |
37 °C | 1 | 1 | 0 | |
Non-biofilm | 25 °C | 2 | 0 | 0 |
37 °C | 1 | 0 | 0 | |
25 °C | Lineage I | Lineage II | ||
Lineage I | ||||
Lineage II | 0.4918 b | |||
Lineage III | 0.6295 b | / | ||
37 °C | Lineage I | Lineage II | ||
Lineage I | ||||
Lineage II | 0.5119 b | |||
Lineage III | 0.8767 b | / | ||
Changes in biofilm-forming capacity c | Lineage I | Lineage II | Lineage III | |
Remained strong | 7 | 7 | 1 | |
Strong to moderate | 8 | 9 | 0 | |
Strong to weak | 0 | 1 | 1 | |
Remained moderate | 0 | 1 | 0 | |
Non-biofilm to weak | 1 | 0 | 0 | |
remained non-biofilm | 1 | 0 | 0 | |
Lineage I | Lineage II | |||
Lineage I | ||||
Lineage II | 0.5409 d | |||
Lineage III | 0.3403 d | 0.1107 d |
Strain | Species | AMC | AMP | AMX | CHL | CIP | CLI | CTX | ERY | FOS | FUS | GEN | IPM | KAN | NAL | OXA | PCG | PEN | RIF | SUL | SXT | TET | TMP | VAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LMO391 | L. m. | I | S | S | S | I | R | R | S | R | R | I | S | S | R | R | R | S | I | S | S | S | S | S |
LMO392 | L. m | I | S | S | S | I | R | R | S | R | R | I | S | S | R | R | R | S | S | S | S | S | S | S |
LMO393 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO394 | L. m | I | S | S | S | I | R | R | S | R | R | I | S | S | R | R | R | S | I | S | S | S | S | S |
LMO395 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | R | S | I | S | S | S | S | S |
LMO396 | L. m | I | S | S | S | I | R | R | S | R | R | I | S | S | R | R | R | S | I | S | S | S | S | S |
LMO397 | L. m | I | S | S | S | I | S | R | S | R | R | S | S | S | R | R | R | S | S | S | S | S | S | S |
LMO398 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO399 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO400 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO401 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | I | S | I | S | S | S | S | S |
LMO402 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO403 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO404 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO405 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO406 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO407 | L. m | I | S | S | S | I | R | R | S | S | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO408 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO409 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO410 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO411 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | R | S | S | S | S | S | S | S |
LMO412 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO413 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO414 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO415 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO416 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO417 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO418 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO419 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO420 | L. m | I | S | S | S | I | R | R | S | R | R | I | S | S | R | R | S | S | I | S | S | S | S | S |
LMO421 | L. m | I | S | S | S | I | S | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | R |
LMO422 | L. m | I | S | S | S | I | R | R | S | R | R | I | S | S | R | R | S | S | I | S | S | S | S | S |
LMO423 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO424 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
LMO425 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO426 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | I | S | S | S | S | S |
LMO428 | L. m | I | S | S | S | I | R | R | S | R | R | S | S | S | R | R | S | S | S | S | S | S | S | S |
ATCC 25923 | S. a | I | S | S | S | I | S | S | S | S | S | S | S | S | R | S | S | S | S | S | R | S | S | S |
Reference | Multi-Resistance Profile | Strains | Percentage |
---|---|---|---|
This study | AMCI CIPI CTXR FUSR NALR OXAR | 37 | 100.00% |
AMCI CIPI CLIR CTXR FUSR NALR OXAR | 35 | 94.59% | |
AMCI CIPI CLIR CTXR FOSR FUSR NALR OXAR | 34 | 91.89% | |
AMCI CIPI CLIR CTXR FOSR FUSR NALR OXAR RIFI | 17 | 45.95% | |
AMCI CIPI CLIR CTXR FOSR FUSR NALR OXAR PCGR | 7 | 18.92% | |
AMCI CIPI CLIR CTXR FUSR GENI NALR OXAR | 6 | 16.22% | |
[13] | Resistance not observed | 80 | 65.04% |
Resistance to at least one antibiotic | 43 | 34.96% | |
TETR | 22 | 17.89% | |
PENR | 21 | 17.07% | |
SXTR | 15 | 12.20% | |
SXTR TETR | 8 | 6.50% | |
[43] | AMPR | 50 | 71.43% |
Resistance not observed | 11 | 15.71% | |
AMCR AMPR | 3 | 4.29% | |
[12] | FUSR PCGR | 16 | 100.00% |
FOSR FUSR PCGR | 14 | 87.50% | |
FUSR OXAR PCGR | 14 | 87.50% | |
FOSR FUSR OXAR PCGR | 13 | 81.25% | |
CLIR FOSR FUSR OXAR PCGR | 10 | 62.50% | |
CIPR FOSR FUSR PCGR | 8 | 50.00% | |
CIPR CLIR FOSR FUSR PCGR | 6 | 37.50% | |
CIPR CLIR FOSR FUSR OXAR PCGR | 5 | 31.25% | |
CLIR FOSR FUSR IPMR OXAR PCGR | 5 | 31.25% | |
[36] | Resistance not observed | 25 | 60.98% |
CLIR | 7 | 17.07% | |
OXAR | 7 | 17.07% | |
TETR | 4 | 9.76% | |
ERYR OXAR | 2 | 4.88% | |
ERYR TETR | 2 | 4.88% | |
ERYR OXAR PENR | 1 | 2.44% | |
ERYR OXAR TETR | 1 | 2.44% | |
[11] | NALR | 89 | 100.00% |
NALR SULR | 76 | 85.39% | |
CTXR NALR | 57 | 64.04% | |
CTXR NALR SULR | 48 | 53.93% | |
FOSR NALR | 45 | 50.56% | |
FOSR NALR SULR | 39 | 43.82% | |
CTXR FOSR NALR SULR | 21 | 23.60% |
Literature | Percentage | |||||||
---|---|---|---|---|---|---|---|---|
This Study | [13] | [43] | [12] | [36] | [11] | This Study | Literature | |
ß-lactams | 37 | 22 | 59 | 16 | 7 | 0 | 100.00% | 30.59% |
Lincosamides | 37 | 8 | 0 | 14 | 7 | 1 | 100.00% | 8.82% |
Cephalosporins | 37 | N.A. | N.A. | N.A. | N.A. | 57 | 100.00% | 64.04% |
Steroids | 37 | N.A. | N.A. | 16 | N.A. | 0 | 100.00% | 15.24% |
Quinolones | 37 | N.A. | N.A. | N.A. | N.A. | 89 | 100.00% | 100.00% |
Phosphonic acid derivatives | 36 | N.A. | N.A. | 14 | N.A. | 46 | 97.30% | 51.69% |
Ansamycins | 17 | N.A. | N.A. | 6 | N.A. | 0 | 45.95% | 5.71% |
Aminoglycosides | 6 | N.A. | 0 | 0 | N.A. | 0 | 16.22% | 0.00% |
Tetracyclines | 0 | 22 | 0 | 5 | 4 | N.A. | 0.00% | 12.35% |
Sulfonamides | 0 | 14 | 0 | 5 | N.A. | 76 | 0.00% | 31.88% |
Macrolides | 0 | 3 | 0 | 0 | 3 | 1 | 0.00% | 2.06% |
Number of strains | 37 | 123 | 70 | 16 | 42 | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeo, M.; Lasagabaster, A.; Lavilla, M.; Amárita, F. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance in Listeria monocytogenes Isolated from Meat-Processing Plants. Foods 2025, 14, 1580. https://doi.org/10.3390/foods14091580
Romeo M, Lasagabaster A, Lavilla M, Amárita F. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance in Listeria monocytogenes Isolated from Meat-Processing Plants. Foods. 2025; 14(9):1580. https://doi.org/10.3390/foods14091580
Chicago/Turabian StyleRomeo, Miguel, Amaia Lasagabaster, María Lavilla, and Félix Amárita. 2025. "Genetic Diversity, Biofilm Formation, and Antibiotic Resistance in Listeria monocytogenes Isolated from Meat-Processing Plants" Foods 14, no. 9: 1580. https://doi.org/10.3390/foods14091580
APA StyleRomeo, M., Lasagabaster, A., Lavilla, M., & Amárita, F. (2025). Genetic Diversity, Biofilm Formation, and Antibiotic Resistance in Listeria monocytogenes Isolated from Meat-Processing Plants. Foods, 14(9), 1580. https://doi.org/10.3390/foods14091580