A Highly Sensitive Silicon-Core Quantum Dot Fluorescent Probe for Vomitoxin Detection in Cereals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of SiO2@QDs
2.3. Preparation of Immuno-SiO2@QDs
2.4. DON Detection in Grain Sample via Immuno-SiO2@QD Fluorescent Probe
3. Results and Discussion
3.1. Characterization of SiO2@QDs
3.2. Characterization of Fluorescence Properties of SiO2@QDs
3.3. Stability Test of SiO2@QDs
3.4. Establishment of Immunodetection Method Based on SiO2@QD Fluorescent Probe
3.4.1. Optimization of Antibody Labeling Quantity
3.4.2. Performance Test of Immuno-SiO2@QDs-DON mAb Fluorescent Immunoprobe
3.4.3. Validation of Specific Performance of Immune-SiO2@QD Fluorescent Probes
3.4.4. Determination of Recovery Rate of Vomitoxin in Actual Wheat Flour Samples by Standard Addition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, C.; Wang, S.F.; Cao, K.H.; Mo, X.S.; Wang, P.; Yang, R.Q. Detoxification of deoxynivalenol and its derivatives in fusarium contaminated wheat through soaking and germination. Food Control. 2023, 155, 110084. [Google Scholar] [CrossRef]
- Heidi, E.S.; Hametner, C.; Nagl, V.; Fiby, I.; Macheiner, L.; Winkler, J.; Dänicke, S.; Clark, E.; Pestka, J.J.; Berthiller, F. Correction to: Glucuronidation of deoxynivalenol (DON) by different animal species: Identification of iso-DON glucuronides and iso-deepoxy-DON glucuronides as novel DON metabolites in pigs, rats, mice, and cows. Arch Toxicol. 2018, 92, 3857–3872. [Google Scholar] [CrossRef]
- Kumar, A.; Kanak, K.R.; Annamalai, A.; Regina, S.D.; Lakshmi, P.T.V. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize (Zea mays L.) silks infected by multiple fungi. Front. Plant Sci. 2022, 13, 985396. [Google Scholar] [CrossRef] [PubMed]
- Karami, S.; Papari, S.; Berruti, F. Conversion of waste corn biomass to activated bio-char for applications in wastewater treatment. Front. Mater. 2022, 9, 839421. [Google Scholar] [CrossRef]
- Ma, X.X.; Hao, Y.; Mao, R.Y.; Yang, N.; Zheng, X.L.; Li, B.; Wang, Z.L.; Zhang, Q.J.; Teng, D.; Wang, J.H. Effects of dietary supplementation of bovine lactoferrin on growth performance, immune function and intestinal health in weaning piglets. Biometals 2023, 36, 587–601. [Google Scholar] [CrossRef]
- Yang, W.Y.; Huang, L.; Wang, P.W.; Wu, Z.C.; Li, F.C.; Wang, C.Y. The effect of low and high dose deoxynivalenol on intestinal morphology, distribution, and expression of inflammatory cytokines of weaning rabbits. Toxins 2019, 11, 473. [Google Scholar] [CrossRef]
- Huang, M.C.; Furr, J.R.; Robinson, V.G.; Laura, B.; Keith, S.; Helen, C.; Kristine, W.; Suramya, W.; Dori, G. Oral deoxynivalenol toxicity in Harlan Sprague Dawley (Hsd:Sprague Dawley® SD®) rat dams and their offspring. Food Chem. Toxicol. 2021, 148, 111963. [Google Scholar] [CrossRef]
- Shang, Y.E.; Yang, W.M. Variation analysis of cereals mycotoxin limit standards of CAC, EU, USA, and China. J. Food Sci. Technol. 2019, 37, 10–15. [Google Scholar] [CrossRef]
- Jin, N.S.; Chen, J.; Wang, B. Research on the detection method of paralytic shellfish poisoning. Sci. Technol. Wind. 2011, 15, 26. [Google Scholar] [CrossRef]
- Rocha, D.F.D.L.; Oliveira, M.D.S.; Furlong, E.B.; Alexander, J.; Natalia, P.; Eunice, V.; Geciane, T.B.; Jamile, Z.; Rogerio, L.C. Evaluation of the TLC quantification method and occurrence of deoxynivalenol in wheat flour of southern Brazil. Food Addit. Contam. Part A 2017, 34, 2220–2229. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Hu, F.W.; Cao, Y.F.; Zhao, J.F.; Zhao, J.Q.; Li, M.Y. Study on the metabolic pattern of mycotoxins based on HPLC detection method. China Food Addit. 2023, 34, 1–8. [Google Scholar] [CrossRef]
- Girolamo, A.; Ciasca, B.; Pascale, M.; Lattanzio, V.M.T. Determination of zearalenone and trichothecenes, including deoxynivalenol and its acetylated derivatives, nivalenol, T-2 and HT-2 Toxins, in wheat and wheat products by LC-MS/MS: A collaborative study. Toxins 2020, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Zhou, B.; Gillespie, J.; Thomas, G.; John, B.; Senay, S.; Robert, B.; Paul, S. Production of deoxynivalenol (DON) and DON-3-glucoside during the malting of Fusarium infected hard red spring wheat. Food Control. 2018, 85, 6–10. [Google Scholar] [CrossRef]
- Li, K.; Liu, D.M.; Pan, X.; Yan, S.W.; Song, J.Q.; Liu, D.W.; Wang, Z.F.; Xie, Y.; Dai, J.L.; Liu, J.H.; et al. Deoxynivalenol biosynthesis in fusarium pseudograminearum significantly repressed by a megabirnavirus. Toxins 2022, 14, 503. [Google Scholar] [CrossRef] [PubMed]
- Zherdev, A.V.; Dzantiev, B.B. Detection limits of immunoanalytical systems: Limiting factors and methods of reduction. J. Anal. Chem. 2022, 77, 391–401. [Google Scholar] [CrossRef]
- Yan, T.T.; Zhang, Q.; Wang, D.; Li, P.W.; Tang, X.Q.; Zhang, W. Determination of deoxynivalenol by ELISA and immunochromatographic strip assay based on monoclonal antibodies. Food Chem. 2019, 40, 130–137. [Google Scholar] [CrossRef]
- Polak, M.; Paszczyk, B. Trichothecenes in food and feed, relevance to human and animal health and methods of detection: A systematic review. Molecules 2021, 26, 454. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.H.; Zhao, X.L.; Zhang, Z.T.; Fang, K.Y.; Chen, S.; Tian, S.Y.; Fei, J.F.; Zhu, J.L. A novel core-shell up-conversion nanoparticles immunochromatographic assay for the detection of deoxynivalenol in cereals. Talanta 2024, 272, 125806. [Google Scholar] [CrossRef]
- Yu, S.C.; Yu, F.; Li, Y.P.; Liu, L.; Zhang, H.Q.; Qu, L.B.; Wu, Y.J. Magnetic nanoparticles replacing microplate as immobile phase could greatly improve the sensitivity of chemiluminescence enzymatic immunoassay for deoxynivalenol. Food Control. 2016, 60, 500–504. [Google Scholar] [CrossRef]
- Jiang, L.L.; Zhang, B.B.; Liu, S.T.; Zhu, L.Q.; Zhu, F.H. The MBS microbial rapid detection system for rapid detection of major pathogenic bacteria in feed: Comparison with plate counting method. BMC Microbiol. 2022, 22, 242. [Google Scholar] [CrossRef]
- Alexander, S.G.; Margus, T.; Olga, Y.S.; Rastopov, S.F.; Bilozor, A.; Ivanova, M.; Volkov, A.Y. Fast antibiotic susceptibility testing of urine microflora using a microbiological analyzer based on coherent fluctuation nephelometry. Braz. J. Microbiol. 2022, 53, 195–204. [Google Scholar] [CrossRef]
- Hesketh, A.R.; Gledhill, L.; Marsh, D.C.; Bycroft, B.W.; Dewick, P.M.; Gilbert, J. Biosynthesis of trichothecene mycotoxins: Identification of isotrichodiol as a post-trichodiene intermediate. Phytochemistry 1991, 30, 2237–2243. [Google Scholar] [CrossRef]
- Meng, J.N.; Liu, Y.J.; Shen, X.; Wang, J.; Xu, Z.K.; Ding, Y.; Beier, R.C.; Luo, L.; Lei, H.T.; Xu, Z.L. Detection of emetic Bacillus cereus and the emetic toxin cereulide in food matrices: Progress and perspectives. Trends Food Sci. Technol. 2022, 123, 322–333. [Google Scholar] [CrossRef]
- Wu, Y.N.; Lin, Y.Y.; Huang, H.H.; Singh, J. Electronic and optical properties of ingan quantum dot based light emitters for solid state lighting. J. Appl. Phys. 2009, 105, 013117. [Google Scholar] [CrossRef]
- Li, J.S.; Tang, Y.; Li, Z.T.; Ding, X.R.; Yu, S.D.; Yu, B.H. Improvement in color-conversion efficiency and stability for quantum-dot-based light-emitting diodes using a blue anti-transmission film. Nanomaterials 2018, 8, 508. [Google Scholar] [CrossRef]
- Vivaldo, I.; Carrillo, J.M.; Lopez, O.; Jimenez, S.; Martinez, J.; Murias, D.; Lopez, J.A. Study of the photon down-conversion effect produced by thin silicon-rich oxide films on silicon solar cells. Int. J. Energy Res. 2017, 41, 410–416. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Shang, H.; Wu, J. Graphene quantum dots modified upconversion nanoparticles for photodynamic therapy. Int. J. Mol. Sci. 2022, 23, 12558. [Google Scholar] [CrossRef]
- Jiang, S.; Mottola, M.; Han, S.; Thiramanas, R.; Graf, R.; Lieberwirth, I.; Mailaender, V.; Crespy, D.; Landfester, K. Versatile preparation of silica nanocapsules for biomedical applications. Part. Part. Syst. Charact. 2020, 37, 1900484. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Chen, L.G.; Wang, M.R.; Li, J.; Chen, L.; Shi, R.X.; Zhang, N.N.; Yang, P. Study on the luminescence stability of CdSe/CdxZn1-xS quantum dots during the silication process. J. Lumin. 2020, 219, 116907. [Google Scholar] [CrossRef]
- Yang, X.S.; Liu, X.X.; Gu, B.; Liu, H.F.; Xiao, R.; Wang, C.W. Quantitative and simultaneous detection of two inflammation biomarkers via a fluorescent lateral flow immunoassay using dual-color SiO2@QD nanotags. Mikrochim. Acta 2020, 187, 570. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, X.S.; Liu, X.X.; Li, J.; Wang, C.W.; Wang, S.Q. Polyethyleneimine-interlayered silica-core quantum dot-shell nanocomposites for sensitive detection of Salmonella typhimurium via a lateral flow immunoassay. RSC Adv. 2020, 10, 2483–2489. [Google Scholar] [CrossRef] [PubMed]
- Linkov, P.A.; Vokhmintcev, K.V.; Samokhvalov, P.S.; Laronze-Cochard, M.; Sapi, J.; Nabiev, I.R. Effect of the semiconductor quantum dot shell structure on fluorescence quenching by acridine ligand. JETP Lett. 2018, 107, 233–237. [Google Scholar] [CrossRef]
- Chen, J.N.; Wang, M.; Dong, Z.M.; Ye, j.; Li, l.; Wu, Y.; Liu, H.M.; Wang, S.X. Determination of four aflatoxins in feeds by high throughput automated immunoaffinity magnetic beads purification-ultra performance liquid chromatography. Chin. J. Chromatogr. 2023, 41, 504–512. [Google Scholar] [CrossRef]
- Wang, L.; Yan, Z.; Zhou, H.Y.; Fan, Y.Y.; Wang, C.; Zhang, J.B.; Liao, Y.C.; Wu, A.B. Validation of LC-MS/MS coupled with a chiral column for the determination of 3-or 15-acetyl deoxynivalenol mycotoxins from fusarium graminearum in wheat. Toxins 2021, 13, 659. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.R.; Li, Q.; Zhang, Y.; Wang, J.; Zhai, H.W.; Ma, J.M.; Sun, L.; Wan, X.H.; Tang, Y.W. Determination of deoxynivalenol and its derivative in corn flour and wheat flour using automated on-line solid-phase extraction combined with LC-MS/MS. Bull. Environ. Contam. Toxicol. 2020, 107, 248–254. [Google Scholar] [CrossRef]
- Tahoun, I.F.; Mohamed, A.G.; Yamani, R.N.; Shehata, A.B. Development and validation of a reliable LC-MS/MS method for simultaneous determination of deoxynivalenol and T-2 toxin in maize and oats. Microchem. J. 2021, 169, 106599. [Google Scholar] [CrossRef]
- Hyun, E.O.; Lee, S.Y.; Chun, H.S. Occurrence and simultaneous determination of nivalenol and deoxynivalenol in rice and bran by HPLC-UV detection and immunoaffinity cleanup. Food Control. 2018, 87, 53–59. [Google Scholar] [CrossRef]
Analyte | Detection Method | Detection Limit | Reference |
---|---|---|---|
Wheat flour | HPLC | 48 ng/mL | [33] |
Wheat flour | LC-MS/MS | 4 μg/kg | [34] |
Wheat flour | SPE-LC-MS/MS | 0.1–0.2 μg/kg | [35] |
Corn and oats | LC-MS/MS | 0.04 μg/kg | [36] |
Rice and bran | SPE-HPLC-UV | <11.9 μg/kg | [37] |
Samples | Spiked (ng/mL) | Test (ng/mL) | Recoveries (%) | RSD (%) |
---|---|---|---|---|
wheat flour | 5 | 4.61 | 92.2 | 3.6 |
10 | 10.16 | 101.6 | 4.6 | |
15 | 14.41 | 96.1 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Li, Y.; Sun, X.; Yang, X.; Wei, T. A Highly Sensitive Silicon-Core Quantum Dot Fluorescent Probe for Vomitoxin Detection in Cereals. Foods 2025, 14, 1545. https://doi.org/10.3390/foods14091545
Dong C, Li Y, Sun X, Yang X, Wei T. A Highly Sensitive Silicon-Core Quantum Dot Fluorescent Probe for Vomitoxin Detection in Cereals. Foods. 2025; 14(9):1545. https://doi.org/10.3390/foods14091545
Chicago/Turabian StyleDong, Caiwen, Yaqin Li, Xincheng Sun, Xuehao Yang, and Tao Wei. 2025. "A Highly Sensitive Silicon-Core Quantum Dot Fluorescent Probe for Vomitoxin Detection in Cereals" Foods 14, no. 9: 1545. https://doi.org/10.3390/foods14091545
APA StyleDong, C., Li, Y., Sun, X., Yang, X., & Wei, T. (2025). A Highly Sensitive Silicon-Core Quantum Dot Fluorescent Probe for Vomitoxin Detection in Cereals. Foods, 14(9), 1545. https://doi.org/10.3390/foods14091545