Assessment of Pesticide Residues and Dietary Risks in Ginseng from Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
- Assessment Area
2.2. Development of Detection Method
2.2.1. Sample Preparation
2.2.2. Extraction of Samples
2.2.3. Sample Purification
2.2.4. Determination of Samples
Gas Chromatography–Tandem Mass Spectrometry (GC-MS/MS) Analysis
- GC-MS/MS Conditions
Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry (UHPLC-MS/MS) Analysis
- UHPLC Conditions
- MS/MS Conditions
2.2.5. Limit of Detection and Limit of Quantification
2.2.6. Accuracy and Precision
2.3. Risk Assessment of Ginseng Product Quality
2.3.1. Acute Dietary Risk Assessment
2.3.2. Chronic Dietary Risk Assessment
3. Results
3.1. Pesticide Detection and Distribution in Ginseng Cultivation
3.2. Annual Risk Screening Results
3.3. Discussion of Screening Results
3.4. Acute Dietary Risk Assessment Analysis
3.5. Chronic Dietary Risk Assessment Analysis
4. Discussion
4.1. Risk Factor Screening
4.2. Dietary Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, L.W.; Wang, C.Z.; Yuan, C.S. Isolation and analysis of ginseng: Advances and challenges. Nat. Prod. Rep. 2011, 28, 467–495. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.F.; Chiou, W.F.; Zhang, J.T. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol. Sin. 2008, 29, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, P.; Shin, C.Y. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in the central nervous system. J. Ginseng Res. 2013, 37, 8–29. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Kim, J.H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res. 2014, 38, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, X. Ginsenosides as anticancer agents: In vitro and in vivo activities, structure-activity relationships, and molecular mechanisms of action. Front. Pharmacol. 2017, 8, 529. [Google Scholar]
- Yuan, H.D.; Kim, J.T.; Kim, S.H.; Chung, S.H. Ginseng and diabetes: The evidence from in vitro, animal and human studies. J. Ginseng Res. 2012, 36, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Rahman, N.U.; Zia-Ul-Haq, M. Biosynthesis and metabolism of ginsenosides in Panax ginseng. J. Med. Plants Res. 2013, 7, 931–939. [Google Scholar]
- Sun, Y.; Yang, Y.; Liu, S.; Yang, S.; Chen, C.; Lin, M.; Zeng, Q.; Long, J.; Yao, J.; Yi, F.; et al. New Therapeutic Approaches to and Mechanisms of Ginsenoside Rg1 against Neurological Diseases. Cells 2022, 11, 2529. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Liu, X.; Zhang, C.; Shang, W.; Xue, J.; Chen, R.; Xing, Y.; Song, D.; Xu, R. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur. J. Pharmacol. 2019, 856, 172418. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Seo, E.K.; Gyllenhaal, C.; Block, K.I. Panax ginseng: A role in cancer therapy. Integr. Cancer Ther. 2003, 2, 13–33. [Google Scholar] [CrossRef] [PubMed]
- GB 2763-2021; Maximum Residue Limits for Pesticides in Food. National Health Commission of the People’s Republic of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, State Administration for Market Regulation: Beijing, China, 2021.
- EU Pesticides Database, European Commission. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 10 April 2023).
- Ministry of Food and Drug Safety, Korea. Available online: https://www.foodsafetykorea.go.kr/foodcode/02_02_01.jsp?food_code=ap300000001&s_option=EN&s_type=6 (accessed on 10 April 2023).
- World Health Organization. Inventory of Evaluations Performed by the Joint Meeting on Pesticide Residues (JMPR). 2024. Available online: https://apps.who.int/pesticide-residues-jmpr-database/ (accessed on 10 April 2023).
- U.S. EPA. Risk Assessment. 2017. Available online: https://www.epa.gov/risk/about-risk-assessment (accessed on 10 April 2023).
- Shao, H.M.; Liu, K.; Jin, Q. Suggestions on New Agricultural Operators to Boost Rural Revitalization. In Proceedings of the 3rd International Conference on Big Data Economy and Information Management (BDEIM 2022), Zhuhai, China, 2–4 December 2022; pp. 266–275. [Google Scholar]
- Wang, Y.; Wang, Z.; Yue, Z.H.; Jin, H.Y.; Sun, L.; Ma, S.C. Risk assessment of pesticide residues in domestic ginseng. Chin. J. Tradit. Chin. Med. 2019, 44, 1327–1333. (In Chinese) [Google Scholar]
- Jian, S.; Lu, X.H.; Zhou, M.; Feng, Y.Z.; Pan, J.J.; Zhang, A.J.; Ma, X.G.; Liang, L.; Zuo, B.J. Analysis and long-term dietary risk assessment of metalaxyl and pyrimethil residues in ginseng, notoginseng, yam, lily and ginger. Pesticides 2023, 62, 36–42+66. (In Chinese) [Google Scholar]
- Kim, J.H. Residues of organophosphorus and organochlorine pesticides in fresh ginseng and red ginseng concentrates. J. Korean Soc. Environ. Agric. 2007, 26, 337–342. (In Korean) [Google Scholar] [CrossRef]
- The Ministry of Health of the People’s Republic of China. Announcement on the Approval of Ginseng (Artificial Cultivation) as a New Resource Food (No. 17 of 2012); Ministry of Health: Beijing, China, 2012. [Google Scholar]
- Wang, Y.; Wei, H.; Qiao, F.; Jin, H.; Ma, S. Rapid screening of 192 pesticide residues in ginseng by gas chromatography-tandem mass spectrometry. Chin. J. Exp. Formulae 2018, 24, 83–92. [Google Scholar]
- Cui, L.; Yan, M.; Piao, X.; Pang, S.; Wang, Y. Rapid determination of pesticide residues in ginseng by Quechers-Gas chromatography-mass spectrometry. Chin. J. Chromatogr. 2018, 36, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Song, T.H.; Lee, Y.W.; Youn, T.H.; Park, E.A.; Shim, E.S.; Lee, J.H.; Kyung, K.S. Monitoring and Risk Assessment of Pesticide Residues in Pre-harvest Fresh Ginseng (Panax ginseng CA Meyer) in Chungbuk Province in 2019. Korean J. Environ. Agric. 2021, 40, 118–126. (In Korean) [Google Scholar] [CrossRef]
- Ministry of Food and Drugs of Korea. Methods for Analyzing Harmful Substances in Agricultural Products and Other Products, Which Specifies 320 Pesticides; Ministry of Food and Drugs of Korea: Cheongju City, Republic of Korea, 2016. (In Korean) [Google Scholar]
- Rural Development Administration. 2024. Pesticide Safety Information System. Available online: https://psis.rda.go.kr/psis/ (accessed on 10 April 2023).
- Gaines, T.B. Acute toxicity of pesticides. Toxicol. Appl. Pharmacol. 1969, 14, 515–534. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 2912, Cypermethrin. Available online: https://pubchem.ncbi.nlm.nih.Gov/compound/Cypermethrin (accessed on 10 April 2023).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 2730, Chlorpyrifos. Available online: https://pubchem.ncbi.nlm.nih.Gov/compound/Chlorpyrifos (accessed on 10 April 2023).
- China Pesticide Information Network. Institute Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, People’s Republic of China. Available online: http://www.chinapesticide.org.cn/eng/index (accessed on 10 April 2023).
Sampling Link | Place of Origin or Sampling | Sampling Area | Number of Samples (Piece) | Total (Piece) | ||
---|---|---|---|---|---|---|
2020 | 2021 | 2022 | ||||
Production base | Jilin Province | Fusong | 10 | 5 | 8 | 275 |
Changbai | 5 | 5 | 4 | |||
Linjiang | 5 | 5 | 4 | |||
Jingyu | 5 | 10 | 6 | |||
Huichun | 5 | 5 | 5 | |||
Wangqing | 10 | 5 | 5 | |||
Dunhua | 8 | 10 | 5 | |||
Antu | 5 | 5 | 5 | |||
Ji’an | 10 | 5 | 5 | |||
Tonghua | 5 | 5 | 5 | |||
Huadian | 5 | 5 | 5 | |||
Jiaohe | 5 | 5 | 5 | |||
Heilongjiang Province | Tieli | 10 | 5 | 5 | ||
Baoqing | 5 | 5 | 5 | |||
Liaoning Province | Huanren | 10 | 5 | 5 | ||
Wholesale market | Jilin Province | Fusong | 10 | 5 | 5 | 50 |
Liaoning Province | Huanren | 10 | 5 | 5 | ||
Heilongjiang Province | Yichun | 10 | 5 | 5 | ||
Sample count | 133 | 100 | 92 | 325 |
No. | Pesticide | Total Detection Times | Recovery | Detection Times | Detectable Value | Mean Value | ||
---|---|---|---|---|---|---|---|---|
% | 2020 | 2021 | 2022 | mg/kg | mg/kg | |||
1 | dimethomorph | 160 | 102.4 | 101 | 31 | 28 | 0.006~1.12 | 0.11 |
2 | pyrimethanil | 114 | 74.4 | 39 | 58 | 17 | 0.0067~1.51 | 0.085 |
3 | pyraclostrobin | 111 | 87.2 | 43 | 17 | 51 | 0.0075~0.93 | 0.08 |
4 | cyprodinil | 105 | 77.1 | 59 | 28 | 18 | 0.007~0.75 | 0.08 |
5 | propiconazole | 103 | 94.4 | 53 | 23 | 27 | 0.005~0.82 | 0.057 |
6 | difenoconazole | 99 | 90.9 | 59 | 12 | 28 | 0.0032~0.84 | 0.07 |
7 | azoxystrobin | 91 | 109.2 | 60 | 15 | 16 | 0.0048~0.38 | 0.051 |
8 | epoxiconazole | 89 | 102.7 | 36 | 37 | 16 | 0.0072~0.82 | 0.061 |
9 | quintozene | 85 | 87.4 | 39 | 25 | 21 | 0.0033~2.2 | 0.25 |
10 | chlorpyrifos | 77 | 84.3 | 44 | 13 | 20 | 0.0056~1.94 | 0.15 |
11 | iprodione | 75 | 125.1 | 56 | 7 | 12 | 0.015~0.43 | 0.074 |
12 | tebuconazole | 75 | 97.4 | 31 | 15 | 29 | 0.0075~2.04 | 0.11 |
13 | phoxim | 70 | 90.7 | 43 | 11 | 16 | 0.0066~1.7 | 0.082 |
14 | thifluzamide | 67 | 111.4 | 38 | 16 | 13 | 0.0093~1.75 | 0.13 |
15 | metalaxyl | 55 | 117.1 | 45 | 4 | 6 | 0.0077~0.28 | 0.044 |
16 | fluxapyroxad | 54 | 111.0 | 34 | 10 | 10 | 0.0084~0.64 | 0.074 |
17 | pentachloroaniline | 53 | 76.3 | 27 | 12 | 14 | 0.013~1.26 | 0.18 |
18 | propamocarb | 46 | 86.6 | 21 | 3 | 22 | 0.0072~0.24 | 0.044 |
19 | hexachlorobenzene | 44 | 66.0 | 20 | 15 | 9 | 0.0055~0.83 | 0.18 |
20 | methyl-pentachlorophenyl sulfide | 37 | 74.3 | 17 | 12 | 8 | 0.0065~0.76 | 0.12 |
21 | boscalid | 34 | 98.5 | 7 | 8 | 19 | 0.0059~1.26 | 0.11 |
22 | flusilazole | 26 | 97.4 | 24 | 0 | 2 | 0.0079~0.47 | 0.054 |
23 | procymidone | 23 | 97.1 | 10 | 7 | 6 | 0.011~0.39 | 0.11 |
24 | carbendazim | 20 | 80.8 | 14 | 5 | 1 | 0.01~0.48 | 0.082 |
25 | fludioxonil | 17 | 91.9 | 3 | 12 | 2 | 0.0094~0.71 | 0.13 |
26 | fluopyram | 15 | 110.3 | 10 | 2 | 3 | 0.0039~1.07 | 0.15 |
27 | mefentrifluconazole | 14 | 127.7 | 0 | 6 | 8 | 0.011~0.11 | 0.038 |
28 | trifloxystrobin | 8 | 98.2 | 7 | 0 | 1 | 0.0037~1 | 0.16 |
29 | flumorph | 6 | 89.8 | 3 | 3 | 0 | 0.0081~0.16 | 0.078 |
30 | acetochlor | 5 | 100.6 | 2 | 1 | 2 | 0.021~0.37 | 0.16 |
31 | pendimethalin | 4 | 78.9 | 3 | 1 | 0 | 0.024~0.61 | 0.18 |
32 | atrazine | 4 | 84.2 | 1 | 2 | 1 | 0.036~0.6 | 0.19 |
33 | clothianidin | 4 | 102.1 | 3 | 1 | 0 | 0.02~0.046 | 0.032 |
34 | carbofuran | 4 | 108.4 | 4 | 0 | 0 | 0.019~0.46 | 0.14 |
35 | fluazinam | 4 | 92.3 | 0 | 0 | 4 | 0.034~0.075 | 0.054 |
36 | butachlor | 4 | 119.1 | 0 | 0 | 4 | 0.11~0.45 | 0.25 |
37 | dimethachlone | 3 | 97.9 | 1 | 2 | 0 | 0.054~0.61 | 0.27 |
38 | cyhalothrin | 3 | 96.8 | 1 | 2 | 0 | 0.076~0.078 | 0.077 |
39 | diethofencarb | 3 | 95.9 | 2 | 0 | 1 | 0.019~0.066 | 0.037 |
40 | thiamethoxam | 3 | 109.8 | 3 | 0 | 0 | 0.011~0.046 | 0.026 |
41 | fluopicolide | 3 | 111.1 | 0 | 1 | 2 | 0.0085~0.074 | 0.031 |
42 | diazinon | 3 | 97.7 | 2 | 0 | 1 | 0.011~0.036 | 0.023 |
Pesticides | MAX Means /(mg/kg) | AVG Mean mg·kg−1 | JMPR Data (mg/kg bw) | |
---|---|---|---|---|
ADI | ARFD | |||
dimethomorph | 1.12 | 0.053 | 0.2 | 0.6 |
pyraclostrobin | 1.17 | 0.031 | 0.03 | 0.05 |
pyrimethanil | 1.85 | 0.035 | 0.2 | UN |
cyprodinil | 0.75 | 0.026 | 0.03 | UN |
propiconazole | 0.82 | 0.019 | 0.07 | 0.3 |
difenoconazole | 0.84 | 0.024 | 0.01 | 0.3 |
quintozene | 1.6 | 0.56 | 0.01 | / |
azoxystrobin | 0.38 | 0.015 | 0.2 | UN |
epoxiconazole | 0.82 | 0.017 | 0.008 [12] | 0.023 |
chlorpyrifos | 2.24 | 0.045 | 0.01 | 0.1 |
iprodione | 0.43 | 0.019 | 0.06 | 0.06 [12] |
phoxim | 1.7 | 0.019 | 0.001 | UN |
tebuconazole | 2.04 | 0.024 | 0.03 | 0.3 |
thifluzamide | 1.75 | 0.026 | 0.02 [12] | / |
metalaxyl | 0.28 | 0.0088 | 0.08 | 0.5 [12] |
fluxapyroxad | 0.64 | 0.013 | 0.02 | 0.3 |
propamocarb | 0.24 | 0.0076 | 0.4 | 2 |
boscalid | 1.26 | 0.013 | 0.04 | UN |
flusilazole | 0.47 | 0.0059 | 0.007 | 0.02 |
procymidone | 0.39 | 0.0093 | 0.1 | 0.1 |
carbendazim | 0.55 | 0.0083 | 0.03 | 0.1 |
fludioxonil | 4.8 | 0.022 | 0.4 | n |
fluopyram | 1.07 | 0.0084 | 0.01 | 0.5 |
mefentrifluconazole | 0.11 | 0.0035 | 0.035 [12] | 0.15 |
trifloxystrobin | 0.26 | 0.0028 | 0.04 | / |
flumorph | 0.16 | 0.0033 | 0.16 [11] | / |
pendimethalin | 0.61 | 0.0042 | 0.1 | 1 |
acetochlor | 0.37 | 0.0043 | 0.01 | 1 |
atrazine | 0.6 | 0.0042 | 0.02 | 0.1 |
clothianidin | 0.046 | 0.0024 | 0.1 | 0.6 |
carbofuran | 0.46 | 0.0037 | 0.001 | 0.001 |
fluazinam | 0.075 | 0.0026 | 0.01 [12] | 0.07 [12] |
butachlor | 0.45 | 0.0049 | 0.1 [11] | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, M.; Meng, X.; Chen, Y.; Leng, X.; Liang, S.; Zhao, D. Assessment of Pesticide Residues and Dietary Risks in Ginseng from Northeastern China. Foods 2025, 14, 1381. https://doi.org/10.3390/foods14081381
Xu X, Zhang M, Meng X, Chen Y, Leng X, Liang S, Zhao D. Assessment of Pesticide Residues and Dietary Risks in Ginseng from Northeastern China. Foods. 2025; 14(8):1381. https://doi.org/10.3390/foods14081381
Chicago/Turabian StyleXu, Xuanwei, Min Zhang, Xinxin Meng, Ying Chen, Xu Leng, Shuang Liang, and Dan Zhao. 2025. "Assessment of Pesticide Residues and Dietary Risks in Ginseng from Northeastern China" Foods 14, no. 8: 1381. https://doi.org/10.3390/foods14081381
APA StyleXu, X., Zhang, M., Meng, X., Chen, Y., Leng, X., Liang, S., & Zhao, D. (2025). Assessment of Pesticide Residues and Dietary Risks in Ginseng from Northeastern China. Foods, 14(8), 1381. https://doi.org/10.3390/foods14081381