Obtention and Characterisation of Antioxidant-Rich Peptides from Defatted Grape Seed Meal Using Different Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Samples
2.3. Measurement of Protease Activity
2.4. Peptide Hydrolysates from DGSM
2.5. Peptide Content and Peptide Yield of Hydrolysates
2.6. Molecular Weight by Size-Exclusion Chromatography (SEC)
2.7. Amino Acid Analysis
2.8. Peptide Identification
2.9. Antioxidant Activity
2.9.1. DPPH Assay
2.9.2. ABTS Free Radical Scavenging Assay
2.10. Colorimetric Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Protease Activity
3.2. Peptide Percentage and Yield of the Peptide Hydrolysates
3.3. Molecular Weight Distribution
3.4. Amino Acid Content
3.5. Peptide Composition
3.6. Antioxidant Activity
3.7. Colour Properties
3.8. PCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NP | Novo-proD enzyme |
AL | Alcalase enzyme |
NZ | Novozym enzyme |
PE | Pepsin enzyme |
FZ | Flavourzyme enzyme |
PA | Papain enzyme |
DGSM | Defatted grape seed meal |
MW | Molecular weight |
References
- Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Resour. Conserv. Recycl. 2019, 149, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. Environ. Manag. 2021, 299, 112571. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, K.; Hosseinian, F.; Rod, M. The market potential of grape waste alternatives. Food Res. 2014, 3, 91. [Google Scholar] [CrossRef]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef]
- Dávila, I.; Robles, E.; Egüés, I.; Labidi, J.; Gullón, P. The biorefinery concept for the industrial valorization of grape processing by-products. In Handbook of Grape Processing By-Products; Academic Press: Cambridge, MA, USA, 2017; pp. 29–53. [Google Scholar]
- Maicas, S.; Mateo, J.J. Sustainability of wine production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef]
- Mora-Garrido, A.B.; Cejudo-Bastante, M.J.; Heredia, F.J.; Escudero-Gilete, M.L. Revalorization of residues from the industrial exhaustion of grape by-products. Food Sci. Technol. 2022, 156, 113057. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Oliva-Sobrado, M.; González-Miret, M.L.; Heredia, F.J. Optimization of the methodology for obtaining enzymatic protein hydrolysates from an industrial grape seed meal residue. Food Chem. 2022, 370, 131078. [Google Scholar] [CrossRef]
- Navrátilová, M.; Beranová, M.; Severová, L.; Šrédl, K.; Svoboda, R.; Abrhám, J. The impact of climate change on the sugar content of grapes and the sustainability of their production in the Czech Republic. Sustainability 2021, 13, 222. [Google Scholar] [CrossRef]
- Mira de Orduña, R. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Rivero-Granados, F.J.; Heredia, F.J. Improving the color and aging aptitude of Syrah wines in warm climate by wood–grape mix maceration. Eur. Food Res. Technol. 2017, 243, 575–582. [Google Scholar] [CrossRef]
- Mora-Garrido, A.B.; Escudero-Gilete, M.L.; Heredia, F.J.; Cejudo-Bastante, M.J. Enzymatic protein hydrolysates of a residue from grape by-products industry for winemaking application: Influence of the starting material and hydrolysis time. Cogent Food Agric. 2024, 10, 2314231. [Google Scholar] [CrossRef]
- Benítez, R.; Ibarz, A.; Pagan, J. Hidrolizados de proteína: Procesos y aplicaciones. Acta Bioquim. Clín. Latinoam. 2008, 42, 227–263. [Google Scholar]
- Calcinai, L.; Bonomini, M.G.; Leni, G.; Faccini, A.; Puxeddu, I.; Giannini, D.; Petrelli, F.; Prandi, B.; Sforza, S.; Tedeschi, T. Effectiveness of enzymatic hydrolysis for reducing the allergenic potential of legume by-products. Sci. Rep. 2022, 12, 16902. [Google Scholar] [CrossRef]
- Carvajal, A.; Mozuraityte, R. Fish Oils: Production and Properties. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2015; pp. 693–698. [Google Scholar]
- Hunsakul, K.; Laokuldilok, T.; Sakdatorn, V.; Klangpetch, W.; Brennan, C.S.; Utama-ang, N. Optimisation of enzymatic hydrolysis by alcalase and flavourzyme to enhance the antioxidant properties of jasmine rice bran protein hydrolysate. Sci. Rep. 2022, 12, 12582. [Google Scholar] [CrossRef]
- López-Molina, M.F.; Rodríguez-Pulido, F.J.; Mora-Garrido, A.B.; González-Miret, M.L.; Heredia, F.J. New approaches for screening grape seed peptides as colourimetric modulators by malvidin-3-O-glucoside stabilisation. Food Chem. 2024, 464, 141708. [Google Scholar] [CrossRef]
- Islam, M.; Huang, Y.; Islam, S.; Fan, B.; Tong, L.; Wang, F. Influence of the degree of hydrolysis on functional properties and antioxidant activity of enzymatic soybean protein hydrolysates. Molecules 2022, 27, 6110. [Google Scholar] [CrossRef]
- Beynon, R.J.; Bond, J.S. Proteolytic Enzymes: A Practical Approach; IRL Press at Oxford University Press: Oxford, UK, 1989; p. 55. [Google Scholar]
- ROSA, L.O.L.D.; Santana, M.C.; Avezedd, T.L.; Brígoda, A.O.S.; Gdddy, R.; Pachecd, S.; Mellonger-Solva, C.; Cabral, L.M.C. A comparison of dual-functional whey hydrolysates by the use of commercial proteases. Food Sci. Technol. 2018, 38, 31–36. [Google Scholar] [CrossRef]
- Tan, Y.; Chang SK, C.; Meng, S. Comparing the kinetics of the hydrolysis of by-product from channel catfish (Ictalurus punctatus) fillet processing by eight proteases. Food Sci. Technol. 2019, 111, 809–820. [Google Scholar] [CrossRef]
- Li, W.; Mu, L.; Zou, Y.; Wang, W.; Zhao, H.; Wu, X.; Liao, S. Effect of silkworm pupa protein hydrolysates on proliferation of gastric cancer cells in vitro. Foods 2022, 11, 2367. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Sahin, A.W.; Bot, F.; O’Mahony, J.A.; Bez, J.; Arendt, E.K.; Zannini, E. Enzymatic hydrolysis of lentil protein concentrate for modification of physicochemical and techno-functional properties. Eur. Food Res. Technol. 2023, 249, 573–586. [Google Scholar]
- Kareem, A.A.; Shakir, K.A.; Walsh, M.K. Antioxidant activities of okra protein concentrate and isolate after enzymatic hydrolysis. Food Nutr. Sci 2018, 9, 1066–1077. [Google Scholar]
- Ma, Y.; Wang, L.; Sun, X.; Zhang, J.; Wang, J.; Li, Y. Study on hydrolysis conditions of flavourzyme in soybean polypeptide alcalase hydrolysate and soybean polypeptide refining process. Food Sci. Technol. 2014, 6, 1027–1032. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Bautista, J.; Hernández-Pinzón, I.; Alaiz, M.; Parrado, J.; Millán, F. Low molecular weight sunflower protein hydrolysate with low concentration in aromatic amino acids. J. Agric. Food Chem. 1996, 44, 967–971. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espín, J.C.; Wichers, H.J. An easy and fast test to compare total free radical scavenger activity of foodstuffs. Phytochem. Anal. 2000, 11, 330–338. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Watchararuji, K.; Goto, M.; Sasaki, M.; Shotipruk, A. Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour. Technol. 2008, 99, 6207–6213. [Google Scholar] [CrossRef]
- CIE. Technical Report: Colorimetry, Commission Internationale de l’Eclairage Central Bureau; CIE: Vienna, Austria, 2004. [Google Scholar]
- StatSoft Inc. Statistica (Data Analysis Software System), Version 8; StatSoft Inc.: Tulsa, OK, USA, 2007; Available online: www.statsoft.com (accessed on 1 January 2024).
- Han, R.; Álvarez AJ, H.; Maycock, J.; Murray, B.S.; Boesch, C. Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates. Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Food Sci. 2021, 4, 141–149. [Google Scholar]
- Dent, T.; Campanella, O.; Maleky, F. Enzymatic hydrolysis of soy and chickpea protein with Alcalase and Flavourzyme and formation of hydrogen bond mediated insoluble aggregates. Food Sci. 2023, 6, 100487. [Google Scholar] [CrossRef]
- Ahmad Nadzri, F.N.; Tawalbeh, D.; Sarbon, N.M. Physicochemical properties and antioxidant activity of enzymatic hydrolysed chickpea (Cicer arietinum L.) protein as influence by alcalase and papain enzyme. Biocatal. Agric. Biotechnol. 2021, 36, 102131. [Google Scholar]
- Meinlschmidt, P.; Sussmann, D.; Schweiggert-Weisz, U.; Eisner, P. Enzymatic treatment of soy protein isolates: Effects on the potential allergenicity, technofunctionality, and sensory properties. Food Sci. Nutr. 2016, 4, 11–23. [Google Scholar] [PubMed]
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond oil: Press cakes and meals supplying global protein requirements. Food Sci. Technol. 2020, 100, 88–102. [Google Scholar]
- Baca-Bocanegra, B.; Nogales-Bueno, J.; Hernández-Hierro, J.M.; Heredia, F.J. Optimization of protein extraction of oenological interest from grape seed meal using design of experiments and response surface methodology. Foods 2021, 10, 79. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Z.; Everett, D.W.; Gilbert, E.P.; Singh, H.; Ye, A. Digestion of food proteins: The role of pepsin. Food Sci. Nutr. 2025, 1–22. [Google Scholar] [CrossRef]
- Chamizo-González, F.; Gordillo, B.; Heredia, F.J. Elucidation of the 3D structure of grape seed 7S globulin and its interaction with malvidin 3-glucoside: A molecular modelling approach. Food Chem. 2021, 347, 129014. [Google Scholar] [CrossRef]
- Chamizo-González, F.; Heredia, F.J.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Gordillo, B. Proteomic and computational characterisation of 11S globulins from grape seed flour by-product and its interaction with malvidin 3-glucoside by molecular docking. Food Chem. 2022, 386, 132842. [Google Scholar]
- Chamizo-González, F.; Estévez, I.G.; Gordillo, B.; Manjón, E.; Escribano-Bailón, M.T.; Heredia, F.J.; González-Miret, M.L. First insights into the binding mechanism and colour effect of the interaction of grape seed 11S globulin with malvidin 3-O-glucoside by fluorescence spectroscopy, differential colorimetry and molecular modelling. Food Chem. 2023, 413, 135591. [Google Scholar]
- Zou, T.; He, T.; Li, H.; Tang, H.; Xia, E. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Gençdağ, E.; Özdemir, E.E.; Demirci, K.; Görgüç, A.; Yılmaz, F.M. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Curr. Plant Biologyb. 2022, 29, 100238. [Google Scholar]
- Hu, Y.; Ni, C.; Wang, Y.; Yu, X.; Wu, H.; Tu, J.; Li, C.; Xiao, Z.; Wen, L. Research progress on the preparation and function of antioxidant peptides from walnuts. Int. J. Mol. Sci. 2023, 24, 14853. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef] [PubMed]
- Saallah, S.; Ishak, N.; Sarbon, N. Effect of different molecular weight on the antioxidant activity and physicochemical properties of golden apple snail (Ampullariidae) protein hydrolysates. Food Res. 2020, 4, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Su, G.; Ren, J.; Gu, L.; You, L.; Zhao, M. Isolation and characterization of an oxygen radical absorbance activity peptide from defatted peanut meal hydrolysate and its antioxidant properties. J. Agric. Food Chem. 2012, 60, 5431–5437. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Sun, Y.; Cheng, J.; Guo, M. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate. Food Chem. 2021, 366, 130711. [Google Scholar] [CrossRef]
- Guo, H.; Kouzuma, Y.; Yonekura, M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 2009, 113, 238–245. [Google Scholar] [CrossRef]
- Mirzaee, H.; Gavlighi, H.A.; Nikoo, M.; Udenigwe, C.C.; Khodaiyan, F. Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Sci. Nutr. 2022, 11, 1257–1271. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, C.; He, J.; Mo, H. Antioxidant activity, functional properties, and cytoprotective effects on hepg2 cells of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysate as influenced by molecular weights fractionation. Foods 2022, 11, 2592. [Google Scholar] [CrossRef]
- Karimi, A.; Azizi, M.H.; Gavlighi, H.A. Fractionation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Sci. Nutr. 2020, 8, 2395–2405. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Sila, A.; Przybylski, R.; Nedjar-Arroume, N.; Makhlouf, I.; Blecker, C.; Attia, H.; Dhulster, P.; Bougatef, A.; Besbes, S. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods 2015, 12, 516–525. [Google Scholar] [CrossRef]
- Xu, L.; Diosady, L. Removal of phenolic compounds in the production of high-quality canola protein isolates. Food Res. Int. 2002, 35, 23–30. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; He, Y.; Wen, L.; Nan, H.; Zheng, F.; Liu, H.; Lu, S.; Wu, M.; Zhang, H. A review of the interaction between anthocyanins and proteins. Food Sci. Technol. Int. 2020, 27, 470–482. [Google Scholar] [PubMed]
- Ahmed, J.; Mulla, M.; Al-Ruwaih, N.; Arfat, Y.A. Effect of high-pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Sci. 2019, 1, e10. [Google Scholar] [CrossRef]
Name | Origin of Enzyme | Proteolytic Character | pH | T (°C) | Time (h) | Bibliography |
---|---|---|---|---|---|---|
NP | Microbial | Endoproteolytic | 9 | 60 | 2 | [21,22] |
AL | Microbial | Endoproteolytic | 8.5 | 55 | 1 | [13] |
NZ | Microbial | Endoproteolytic | 9 | 50 | 2 | [23,24] |
PE | Animal | Endoproteolytic | 2 | 33 | 3.5 | [25] |
FZ | Microbial | Endo-/exoproteolytic | 7 | 50 | 2 | [21,26] |
PA | Vegetal | Endo-/exoproteolytic | 7 | 50 | 3.5 | [22,25] |
Protease Activity (U/mL) | |
---|---|
NP | 703.84 ± 64.81 b |
AL | 807.53 ± 5.03 b |
NZ | 786.8 ± 73.79 b |
PE | 311.7 ± 11.99 c |
FZ | 1104.19 ± 40.5 a |
PA | 332.56 ± 11.04 c |
Peptide Content (%) | Peptide Yield (%) | Molecular Size Fractions (%) | Colour Parameters (CIELAB Units) | |||||
---|---|---|---|---|---|---|---|---|
>5 kDa | 5 > MW > 1 kDa | <1 kDa | L* | C*ab | hab | |||
NP | 76.61 ± 1.62 b | 39.18 ± 0.83 a | 20.07 ± 0.11 d | 38.20 ± 0.71 a | 41.73 ± 0.67 bc | 54.51 ± 2.35 b | 39.79 ± 2.78 b | 64.82 ± 0.57 cd |
AL | 65.89 ± 4.24 d | 30.52 ± 1.97 b | 22.05 ± 0.25 cd | 36.00 ± 0.50 a | 41.95 ± 0.27 bc | 53.98 ± 4.22 b | 41.56 ± 1.11 b | 64.32 ± 0.83 de |
NZ | 77.18 ± 0.59 b | 31.63 ± 0.24 b | 20.49 ± 1.73 d | 38.48 ± 2.29 a | 41.03 ± 0.66 c | 52.60 ± 4.85 bc | 40.23 ± 1.44 b | 62.26 ± 0.18 e |
PE | 93.17 ± 0.34 a | 38.29 ± 0.14 a | 33.84 ± 0.57 a | 33.23 ± 0.66 b | 32.92 ± 1.23 d | 70.29 ± 5.42 a | 33.42 ± 0.27 bc | 69.31 ± 1.07 ab |
FZ | 75.66 ± 0.76 bc | 20.83 ± 0.21 c | 23.10 ± 0.83 c | 25.98 ± 0.91 c | 50.93 ± 1.74 a | 43.46 ± 2.72 c | 49.99 ± 6.56 a | 6.93 ± 0.61 bc |
PA | 71.19 ± 0.57 c | 17.91 ± 0.14 d | 27.89 ± 0.91 b | 28.21 ± 0.61 c | 43.90 ± 0.45 b | 80.24 ± 1.29 a | 31.18 ± 0.53 c | 70.55 ± 1.62 a |
Origin of Enzyme | Proteolytic Character | |||
---|---|---|---|---|
F | p | F | p | |
Peptide content | 25.11 | 0.00 * | 1.21 | 0.27 |
Peptide Yield | 9.33 | 0.00 * | 76.73 | 0.00 * |
MW > 5 kDa | 111.58 | 0.00 * | 0.28 | 0.60 |
5 > MW > 1 kDa | 2.31 | 0.13 | 66.71 | 0.00 * |
MW < 1 kDa | 10.78 | 0.00 * | 16.08 | 0.00 * |
TAA | 28.27 | 0.00 * | 16.19 | 0.00 * |
SAA | 4.42 | 0.03 * | 22.82 | 0.00 * |
AAA | 73.14 | 0.00 * | 8.07 | 0.01 * |
HAA | 57.89 | 0.00 * | 17.34 | 0.00 * |
Asp | 46.34 | 0.00 * | 12.13 | 0.00 * |
Thr | 15.33 | 0.00 * | 15.51 | 0.00 * |
Ser | 4.24 | 0.03 * | 7.84 | 0.01 * |
Glu | 13.47 | 0.00 * | 114.28 | 0.00 * |
Gly | 17.53 | 0.00 * | 58.80 | 0.00 * |
Ala | 11.69 | 0.00 * | 22.06 | 0.00 * |
Cys | 3.13 | 0.07 | 13.02 | 0.00 * |
Val | 79.62 | 0.00 * | 17.06 | 0.00 * |
Met | 5.20 | 0.02* | 21.07 | 0.00 * |
Ile | 85.95 | 0.00 * | 13.71 | 0.00 * |
Leu | 55.62 | 0.00 * | 19.34 | 0.00 * |
Tyr | 51.74 | 0.00 * | 9.31 | 0.00 * |
Phe | 49.31 | 0.00 * | 2.97 | 0.10 |
His | 26.05 | 0.00 * | 21.93 | 0.00 * |
Lys | 46.29 | 0.00 * | 15.30 | 0.00 * |
Arg | 29.61 | 0.00 * | 18.50 | 0.00 * |
DPPH | 1.81 | 0.20 | 7.28 | 0.02 * |
ABTS | 0.93 | 0.42 | 3.72 | 0.07 |
L* | 45.10 | 0.00 * | 0.36 | 0.55 |
C*ab | 10.85 | 0.00 * | 0.29 | 0.60 |
hab | 20.09 | 0.00 * | 7.43 | 0.01 * |
NP | AL | NZ | PE | FZ | PA | |
---|---|---|---|---|---|---|
Asp | 8.93 ± 2.53 b | 11.18 ± 0.47 b | 11.03 ± 0.28 b | 16.36 ± 1.23 a | 8.90 ± 0.56 b | 4.79 ± 0.77 c |
Thr | 3.47 ± 0.24 a | 3.16 ± 0.89 ab | 3.52 ± 0.14 a | 4.10 ± 0.80 a | 2.89 ± 0.33 ab | 1.77 ± 0.29 b |
Ser | 6.58 ± 0.94 a | 7.31 ± 0.61 a | 7.34 ± 0.52 a | 5.10 ± 3.67 a | 4.99 ± 0.48 a | 3.56 ± 0.08 a |
Glu | 52.33 ± 5.36 a | 53.18 ± 4.75 a | 54.31 ± 3.89 a | 54.62 ± 1.94 a | 34.97 ± 2.28 b | 24.95 ± 0.92 c |
Gly | 13.06 ± 1.16 ab | 11.98 ± 0.93 ab | 11.34 ± 0.03 b | 13.96 ± 1.32 a | 8.57 ± 0.53 c | 6.14 ± 0.35 d |
Ala | 4.79 ± 0.99 abc | 5.25 ± 1.14 ab | 6.01 ± 1.39 ab | 6.97 ± 0.84 a | 3.66 ± 0.49 bc | 2.51 ± 0.26 c |
Cys | 0.60 ± 0.07 bc | 0.88 ± 0.07 a | 0.69 ± 0.04 b | 0.61 ± 0.10 bc | 0.52 ± 0.04 bc | 0.46 ± 0.05 c |
Val | 6.57 ± 0.73 bc | 6.77 ± 0.57 bc | 7.59 ± 0.55 b | 10.27 ± 0.37 a | 5.90 ± 0.44 c | 3.06 ± 0.13 d |
Met | 1.00 ± 0.37 ab | 1.64 ± 0.50 a | 1.38 ± 0.31 ab | 1.69 ± 0.25 a | 0.65 ± 0.17 b | 0.54 ± 0.14 b |
Ile | 4.56 ± 0.49 b | 4.51 ± 0.52 b | 4.94 ± 0.35 b | 6.72 ± 0.33 a | 4.23 ± 0.36 b | 2.33 ± 0.08 c |
Leu | 7.11 ± 0.80 ab | 6.66 ± 1.17 ab | 7.35 ± 0.51 b | 10.82 ± 0.48 a | 5.41 ± 0.57 c | 2.99 ± 0.17 d |
Tyr | 4.23 ± 0.49 b | 4.29 ± 0.50 b | 4.67 ± 0.33 ab | 5.55 ± 0.22 a | 4.39 ± 0.33 b | 2.63 ± 0.15 c |
Phe | 4.70 ± 0.51 b | 4.54 ± 0.68 b | 4.92 ± 0.34 b | 7.08 ± 0.33 a | 5.73 ± 0.41 b | 2.51 ± 0.12 c |
His | 2.52 ± 0.19 b | 2.22 ± 0.23 bc | 2.16 ± 0.41 bc | 3.25 ± 0.12 a | 1.70 ± 0.26 cd | 1.27 ± 0.05 d |
Lys | 3.47 ± 0.25 b | 3.80 ± 0.34 b | 3.93 ± 0.31 b | 4.95 ± 0.07 a | 3.33 ± 0.46 b | 2.29 ± 0.10 c |
Arg | 9.62 ± 0.95 b | 7.54 ± 2.21 bc | 9.28 ± 0.42 bc | 13.27 ± 0.62 a | 6.52 ± 0.35 cd | 4.08 ± 0.18 d |
TAA | 157.37 ± 16.19 b | 155.80 ± 11.78 b | 163.43 ± 10.37 ab | 187.97 ± 4.10 a | 121.14 ± 8.39 c | 87.75 ± 4.61 d |
SAA | 1.60 ± 0.40 abc | 2.52 ± 0.57 a | 2.06 ± 0.34 ab | 2.31 ± 0.35 a | 1.17 ± 0.14 bc | 1.00 ± 0.17 c |
AAA | 11.45 ± 1.18 bc | 11.06 ± 1.40 bc | 12.23 ± 0.97 b | 15.87 ± 0.67 a | 11.83 ± 0.97 c | 6.41 ± 0.33 d |
HAA | 28.72 ± 3.17 b | 29.37 ± 4.52 b | 33.02 ± 2.45 b | 43.55 ± 1.36 a | 25.59 ± 2.15 b | 13.95 ± 0.62 c |
N-Terminal | C-Terminal | |||||
---|---|---|---|---|---|---|
NP | Q (28.3%) | E (19.6%) | V (7.3%) | R (21.7%) | F (18.2%) | Q (16.67%) |
AL | Q (21.7%) | V (8.5%) | S, I (8.5%) | R (19.8%) | L (17.0%) | E (13.21%) |
NZ | E (22.2%) | Q (13.9%) | V (12.5%) | Q (22.2%) | R (18.1%) | F (15.28%) |
PE | V (11.3%) | L (9.9%) | Q (9.6%) | L (18.9%) | F (12.3%) | Q (9.59%) |
FZ | Q (24.6%) | S (10.2%) | E (10.9%) | Q (16.2%) | F (13.4%) | E (10.46%) |
PA | Q (18.5%) | A (14.1%) | V (8.3%) | D (14.2%) | Q (13.9%) | R (9.86%) |
DPPH | ABTS | |
---|---|---|
NP | 153.97 ± 6.06 a | 23.92 ± 1.43 a |
AL | 56.19 ± 2.38 c | 27.19 ± 1.28 a |
NZ | 51.18 ± 3.87 c | 30.66 ± 3.46 a |
PE | 81.14 ± 3.60 b | 25.96 ± 3.19 a |
FZ | 44.33 ± 0.46 c | 23.54 ± 7.52 a |
PA | 28.63 ± 5.97 d | 22.47 ± 4.44 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Muñoz, M.d.R.; Mora-Garrido, A.B.; Heredia, F.J.; Cejudo-Bastante, M.J.; González-Miret, M.L. Obtention and Characterisation of Antioxidant-Rich Peptides from Defatted Grape Seed Meal Using Different Enzymes. Foods 2025, 14, 1248. https://doi.org/10.3390/foods14071248
Rodríguez-Muñoz MdR, Mora-Garrido AB, Heredia FJ, Cejudo-Bastante MJ, González-Miret ML. Obtention and Characterisation of Antioxidant-Rich Peptides from Defatted Grape Seed Meal Using Different Enzymes. Foods. 2025; 14(7):1248. https://doi.org/10.3390/foods14071248
Chicago/Turabian StyleRodríguez-Muñoz, María del Rosario, Ana Belén Mora-Garrido, Francisco J. Heredia, María Jesús Cejudo-Bastante, and María Lourdes González-Miret. 2025. "Obtention and Characterisation of Antioxidant-Rich Peptides from Defatted Grape Seed Meal Using Different Enzymes" Foods 14, no. 7: 1248. https://doi.org/10.3390/foods14071248
APA StyleRodríguez-Muñoz, M. d. R., Mora-Garrido, A. B., Heredia, F. J., Cejudo-Bastante, M. J., & González-Miret, M. L. (2025). Obtention and Characterisation of Antioxidant-Rich Peptides from Defatted Grape Seed Meal Using Different Enzymes. Foods, 14(7), 1248. https://doi.org/10.3390/foods14071248