Evidence-Based Nutraceuticals Derived from Antrodia cinnamomea
Abstract
:1. Introduction
2. Cultivation and Extraction Methods for A cinnamomea
2.1. Cultivation Methods
2.1.1. Liquid Fermentation
2.1.2. Solid-State Fermentation (SSF)
2.2. Extraction Methods for Bioactive Components of A. cinnamomea
Entry | Type | Sample Preparation | Detection Methods | References |
---|---|---|---|---|
1 | Conventional liquid solvent extraction with ethanol | Immersed in ethanol for extraction | HPLC analysis | [16,17,22] |
2 | Conventional shake extraction | Shake extraction at 150 rpm for 8 h | HPLC analysis | [23] |
3 | Supercritical CO2 | Supercritical carbon dioxide at 35 MPa with as cosolvent | HPLC analysis | [24] |
4 | High hydrostatic pressure | 600 MPa (100–700 MPa at 25 °C) high-pressure, liquid/solid ratio of 40:1, 3 min of treatment in a 0.3 L chamber | HPLC analysis | [21,23,25] |
5 | Ultrasonic extraction methods | Ultrasonic extraction at 50 Hz for 60 min | HPLC analysis | [18,23,26] |
6 | Heat reflux extraction | The dried powder samples were extracted with 3-fold 95% ethanol under heat reflux | UPLC | [27] |
7 | Mechanochemical-assisted extraction method (TAEM) | The mixture of powder and NaHCO3 was added into the PM-200 ball mill with steel balls (3 mm diameter, 150 g) at 300 rpm for 20 min before performing extraction by water | HPLC and LC-MS/MS | [28] |
3. Nutritional and Physicochemical Compositions of A. cinnamomea
3.1. Nutritional Composition
3.2. Physicochemical Profiles of A. cinnamomea
3.2.1. Benzenoids
3.2.2. Maleic and Succinic Acid Derivatives
3.2.3. Ubiquinone Derivatives
3.2.4. Triterpenoids
3.2.5. Polysaccharides
No. | Chemical Class | Compound Name | Cas | Formula | Biological Activity | Model | Reference |
---|---|---|---|---|---|---|---|
1 | Diterpenes | 19-Hydroxylabda8(17)-en-16,15-olide | 82209-74-3 | C20H32O3 | – | – | [68] |
2 | 19-Hydroxylabda8(17),13-dien-16,15-olide | 82209-74-3 | C20H30O3 | – | – | [68] | |
3 | 14-Deoxy-11,12-didehydroandrographolide | 42895-58-9 | C20H28O4 | Steatohepatitis and liver Injury activities | in vitro; in vivo | [68] | |
4 | 14-Deoxyandrographolide | 4176-97-0 | C20H30O4 | Antimicrobial activity | in vitro | [68] | |
5 | Pinusolidic acid | 40433-82-7 | C20H28O4 | Neuroprotective and anti-inflammatory activities | in vitro | [69] | |
6 | Terpenoids | Eburicoic acid [58] | 560-66-7 | C31H50O3 | Hepatoprotective effects and anti-inflammatory activities | in vitro; in vivo | [70] |
7 | Dehydroeburicoic acid | 1740-19-8 | C20H28O2 | Hepatoprotective, antidiabetic and antihyperlipidemic, anti-inflammatory, anti-insecticidal activities | in vitro; in vivo | [71] | |
8 | Sulphurenic acid | – | C31H50O4 | Anti-insecticidal activity | – | [54] | |
9 | Dehydrosulphurenic acid | 175615-56-2 | C31H48O3 | Anti-inflammatory activity | in vitro | [4] | |
10 | 15α-Acetyl-dehydrosulphurenic acid | 215438 | C34H50O5 | Anti-inflammatory activity | in vitro | [17] | |
11 | Versisponic acid D | – | C33H52O5 | Anti-inflammatory activity | in vitro | [72] | |
12 | 3β,15α-Dihydroxylanosta-7,9(11),24-trien-21-oic acid | – | C30H46O4 | Anti-inflammatory activity | in vitro | [73] | |
13 | 24-Methylenedihydrolanosterol | 14297-52-2 | C31H52O | – | – | [74] | |
14 | epi-Friedelinol | 16844-71-6 | C30H52O | – | – | [4] | |
15 | Antrocin | – | C15H22O2 | Antioxidant, anti-mutagenic activities | in vitro | [75] | |
16 | 19-Hydroxylabda-8(17)-en-16,15-olide | – | C20H32O3 | Neuroprotective activity | in vitro | [70] | |
17 | 14-Deoxy-11,12- didehydroandrographolide | 42895-58-9 | C20H28O4 | Neuroprotective activity | in vitro | [76] | |
18 | 14-Deoxyandrographolide | 4176-97-0 | C20H30O4 | – | – | [77] | |
19 | Pinusolidic acid | – | C20H28O4 | – | – | [78] | |
20 | Antcin A | 163597-24-8 | C29H42O4 | Anti-inflammatory, anti-insecticidal activities | in vitro | [52] | |
21 | Zhankuic acid A(Antcin B) | 163597-25-9 | C29H40O5 | Anti-inflammatory, anti-insecticidal activities | in vitro | [79] | |
22 | Antcin C | – | C29H42O5 | Anti-inflammatory activity | in vitro | [80] | |
23 | Antcin D (Zhankuic acid F) | – | C29H40O6 | – | – | [79] | |
24 | Antcin E | – | C29H40O4 | – | – | [81] | |
25 | Antcin F | – | C29H40O5 | – | – | [69] | |
26 | Antcin G | – | C31H44O6 | – | – | [69] | |
27 | Zhankuic acid C(Antcin H) | – | C29H42O6 | Anti-inflammatory, anti-insecticidal activities | [73] | ||
28 | Antcin I (Zhankuic acid B) | – | C29H42O5 | Anti-inflammatory activity | in vitro | [82] | |
29 | Antcin K | 741268-13-3 | C29H44O6 | Anti-inflammatory activity | in vitro | [82] | |
30 | Methyl antcinate A | 169477-80-9 | C30H44O4 | – | – | [79] | |
31 | Zhankuic acid B | 173221-07-3 | C29H42O5 | – | – | [83] | |
32 | Zhankuic acid D(Methyl antcinate B) | – | – | Anti-insecticidal activity | in vitro | [83] | |
33 | Zhankuic acid E | – | – | – | – | [83] | |
34 | Eburicol (24-methylenedihydrolanosterol) | 6890-88-6 | C31H52O | – | – | [78] | |
35 | β-Sitosterol | 83-46-5 | C29H50O | – | – | [84] | |
36 | β-Sitostenone | 1058-61-3 | C29H48O | – | – | [84] | |
37 | Stigmasterol | 83-48-7 | C29H48O | – | – | [84] | |
38 | Ergosta-4,6,8(14),22-tetraen-3-one | 19254-69-4 | C28H40O | – | – | [84] | |
39 | Methyl antcinate | 134-20-3 | C8H9NO2 | – | – | [85] | |
40 | Methyl antcinate H | 169477-80-9 | C30H44O6 | – | – | [84] | |
41 | Eburicol | 6890-88-6 | C31H52O | – | – | [85] | |
42 | Benzenoids | Antrocamphin A | – | C15H18O3 | Anti-inflammatory activity | in vitro | [86] |
43 | Antrocamphin B | 945622-08-2 | C14H16O4 | Anti-inflammatory activity | in vitro | [86] | |
44 | 2,3,4,5-Tetramethoxybenzoyl chloride | 4521-61-3 | (CH3O)3C6H2COCl | Anti-inflammatory activity | in vitro | [86] | |
45 | Antrodioxolanone | – | C29H32O9 | Anti-inflammatory activity | in vitro | [86] | |
46 | Isobutylphenol | 30749-25-8 | C10H14O | – | – | [86] | |
47 | Benzoquinone and its derivatives | 5-Methylbenzodioxole-4,7-dione | 7145-99-5 | C8H6O4 | – | – | [87] |
48 | 2,3-Dimethoxy-5-methyl-benzoquinone | 605-94-7 | C9H10O4 | Anti-inflammatory activity | in vitro | [87] | |
49 | 2-Methoxy-5- methyl-benzoquinone | 614-13-1 | C8H8O3 | Antioxidant activity | in vitro | [87] | |
50 | Maleic anhydrides | Camphorataanhydride A | 656830-24-9 | C19H22O4 | Glycation inhibitors with lipid peroxidation activity | in vitro | [87] |
51 | Maleimides | Camphorataimide B | 656830-25-0 | C19H23NO3 | Anti-breast cancer activity | in vitro | [38] |
52 | Maleimides | Camphorataimide C | 656830-26-1 | C19H23NO4 | – | – | [38] |
53 | Lignans | Sesamin | 607-80-7 | C20H18O6 | – | – | [38] |
54 | 4-Hydroxysesamin | 63427-86-1 | C20H18O7 | – | – | [40] | |
55 | Succinic acid derivatives | Camphorataimide D | 656830-26-1 | C19H23NO4 | – | – | [40] |
56 | Phenyl methanoids | 4,7-Dimethoxy-5-methyl-1,3-benzodioxole | 165816-66-0 | C10H12O4 | Anti-inflammatory and anti-tumour activities | in vitro; in vivo | [88] |
57 | Ubiquinone derivatives | Antroquinonol | 1010081-09-0 | C24H38O4 | Anti-inflammatory, anti-HBV activities | in vitro | [42] |
58 | antroquinonol B | – | C24H36O6 | Anti-inflammatory activity | in vitro | ||
59 | antroquinonol C | – | C25H40O5 | Anti-breast cancer activity | in vitro; in vivo | [16] | |
60 | antroquinonol D | – | C23H36O3 | Anti-breast cancer activity | in vitro; in vivo | [46] | |
61 | antroquinonol L | – | C23H32O3 | – | – | [53] | |
62 | antroquinonol M | – | C23H32O3 | – | – | [48] | |
63 | antrocamol LT1 | – | C24H39O5 | Anti-colon cancer, anti-liver cancer, anti-kidney cancer activities | in vitro | [89] | |
64 | antrocamol LT2 | – | C26H40O6 | – | – | [89] | |
65 | antrocamol LT3 | – | C24H39O5 | – | – | [89] | |
66 | 4-acetyantroquinonol B | – | C26H38O7 | Anti-colorectal cancer activity | in vitro | [89] | |
67 | 4-acetylantrocamol LT3 | – | C26H40O6 | Anticancer activity | in vitro | [89] | |
68 | antrocinnamone | – | C23H32O3 | – | – | [49] | |
69 | Tocopherols | α-Tocospiro B | 601490-41-9 | C28H48O4 | – | – | [89] |
4. Pharmacological Studies on Phytochemicals Isolated from A. cinnamomea
4.1. Antrolone, 25R-Antcin A, and Versisponic Acid D: Potent Antioxidant and Anti-Inflammatory Agents for Oxidative Stress-Related Diseases
4.2. 4-Acetylantroquinonol B, Dehydroeburicoic Acid, and Antcins: Potent Antitumor Agents for Cancer Therapy
4.3. Antcin K and Dehydroeburicoic Acid and Eburicoic Acid as Potent Antidiabetic Agents
4.4. Other Compounds from A. cinnamomea Extracts as Potential Therapeutic Agents for Neurological Disorders and SARS-CoV-2
4.5. In Vivo Study in Animal Models with Crude Extract
4.6. Human Clinical Trials on Antrodia cinnamomea Extracts
5. Industrial Applications and Quality Control Issues of A. cinnamomea Extract Products
6. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.-X.; Wang, J.-J.; Lu, C.-L.; Gao, Y.-J.; Gao, L.; Yang, Z.-Q. Review of Bioactivity, Isolation, and Identification of Active Compounds from Antrodia cinnamomea. Bioengineering 2022, 9, 494. [Google Scholar] [CrossRef]
- Ganesan, N.; Baskaran, R.; Velmurugan, B.K.; Thanh, N.C. Antrodia cinnamomea—An updated minireview of its bioactive components and biological activity. J. Food Biochem. 2019, 43, e12936. [Google Scholar] [CrossRef]
- Lu, M.-C.; El-Shazly, M.; Wu, T.-Y.; Du, Y.-C.; Chang, T.-T.; Chen, C.-F.; Hsu, Y.-M.; Lai, K.-H.; Chiu, C.-P.; Chang, F.-R.; et al. Recent research and development of Antrodia cinnamomea. Pharmacol. Ther. 2013, 139, 124–156. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.J.S.; Wang, S.-Y. Antioxidant Properties of Antrodia cinnamomea: An Extremely Rare and Coveted Medicinal Mushroom Endemic to Taiwan. In Medicinal Plants and Fungi: Recent Advances in Research and Development; Agrawal, D.C., Tsay, H.-S., Shyur, L.-F., Wu, Y.-C., Wang, S.-Y., Eds.; Springer: Singapore, 2017; pp. 135–164. [Google Scholar]
- Zhang, B.-B.; Hu, P.-F.; Huang, J.; Hu, Y.-D.; Chen, L.; Xu, G.-R. Current advances on the structure, bioactivity, synthesis, and metabolic regulation of novel ubiquinone derivatives in the edible and medicinal mushroom Antrodia cinnamomea. J. Agric. Food Chem. 2017, 65, 10395–10405. [Google Scholar]
- Tsai, Y.-J.; Huang, J.-W.; Wu, M.-D.; Cheng, M.-J. A New Ubiquinone Derivative from the Fungus of Antrodia cinnamomea. Chem. Nat. Compd. 2023, 59, 269–271. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yeh, H.C.; Li, H.T.; Liu, S.L.; Cheng, M.J. Secondary Metabolites of Cinnamomum kanehirae. Chem. Nat. Compd. 2024, 60, 36–38. [Google Scholar] [CrossRef]
- Luo, Z.-S.; Lu, Z.-M.; Hu, M.-M.; Li, X.-Y.; Xu, G.-Q.; Gong, J.-S.; Shi, J.-S.; Xu, Z.-H. Characterization of Cinnamomum kanehirae Extract-Stimulated Triterpenoids Synthesis in Submerged Fermentation of Antrodia camphorata via Untargeted Metabolomics. J. Agric. Food Chem. 2023, 71, 9175–9186. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, A.S.; Sharma, N.; Bhatia, S.; Verma, A.; Soni, S.; Batra, N. Insights on sustainable approaches for production and applications of value added products. Chemosphere 2022, 286, 131623. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Guan, Y.-Y.; Hu, P.-F.; Chen, L.; Xu, G.-R.; Liu, L.; Cheung, P.C.K. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: Recent advances and future development. Crit. Rev. Biotechnol. 2019, 39, 541–554. [Google Scholar] [CrossRef]
- Li, Y.; Ge, J.; Li, Y.; Zheng, S.; Liu, Y.; Liang, Y.; Mei, Y. Isolation, Purification, and Antitumor Activity of a Novel Active Protein from Antrodia cinnamomea Liquid Fermentation Mycelia. Fermentation 2023, 9, 185. [Google Scholar] [CrossRef]
- Liu, D.-Z.; Liang, Y.-C.; Lin, S.-Y.; Lin, Y.-S.; Wu, W.-C.; Hou, W.-C.; Su, C.-H. Antihypertensive activities of a solid-state culture of Taiwanofungus camphoratus (Chang-Chih) in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 2007, 71, 23–30. [Google Scholar]
- Yang, F.-C.; Ma, T.-W.; Chuang, Y.-T. Medium modification to enhance the formation of bioactive metabolites in shake flask cultures of Antrodia cinnamomea by adding citrus peel extract. Bioprocess Biosyst. Eng. 2012, 35, 1251–1258. [Google Scholar]
- Tsai, M.-C.; Song, T.-Y.; Shih, P.-H.; Yen, G.-C. Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture. Food Chem. 2007, 104, 1115–1122. [Google Scholar]
- Shen, Y.-C.; Chou, C.-J.; Wang, Y.-H.; Chen, C.-F.; Chou, Y.-C.; Lu, M.-K. Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol. Lett. 2004, 231, 137–143. [Google Scholar]
- Kumar, K.S.; Chu, F.-H.; Hsieh, H.-W.; Liao, J.-W.; Li, W.-H.; Lin, J.C.-C.; Shaw, J.-F.; Wang, S.-Y. Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. J. Ethnopharmacol. 2011, 136, 168–177. [Google Scholar] [PubMed]
- Chen, Y.-Y.; Chou, P.-Y.; Chien, Y.-C.; Wu, C.-H.; Wu, T.-S.; Sheu, M.-J. Ethanol extracts of fruiting bodies of Antrodia cinnamomea exhibit anti-migration action in human adenocarcinoma CL1-0 cells through the MAPK and PI3K/AKT signaling pathways. Phytomedicine 2012, 19, 768–778. [Google Scholar] [PubMed]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar]
- Corzzini, S.C.; Barros, H.D.; Grimaldi, R.; Cabral, F.A. Extraction of edible avocado oil using supercritical CO2 and a CO2/ethanol mixture as solvents. J. Food Eng. 2017, 194, 40–45. [Google Scholar]
- Huang, H.-W.; Hsu, C.-P.; Yang, B.B.; Wang, C.-Y. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 2013, 33, 54–62. [Google Scholar]
- Yang, X.; Wang, X.; Lin, J.; Lim, S.; Cao, Y.; Chen, S.; Xu, P.; Xu, C.; Zheng, H.; Fu, K.-C. Structure and anti-inflammatory activity relationship of ergostanes and lanostanes in Antrodia cinnamomea. Foods 2022, 11, 1831. [Google Scholar] [CrossRef]
- Huang, H.W.; Chen, B.Y.; Wang, C.Y. Extraction of bioactive ingredients from fruiting bodies of Antrodia cinnamomea assisted by high hydrostatic pressure. Foods 2019, 8, 588. [Google Scholar] [CrossRef] [PubMed]
- Lien, H.M.; Chiu, C.H.; Chen, C.C.; Chang, W.L.; Chyau, C.C.; Peng, R.Y. Comparison of the apoptotic effects of supercritical fluid extracts of Antrodia cinnamomea mycelia on hepatocellular carcinoma cells. Molecules 2014, 19, 9033–9050. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Yadav, V.K.; Srivastava, P.; Wu, A.T.; Huynh, T.-T.; Wei, P.-L.; Huang, C.-Y.F.; Huang, T.-H. Antrodia cinnamomea enhances chemo-sensitivity of 5-FU and suppresses colon tumorigenesis and cancer stemness via up-regulation of tumor suppressor miR-142-3p. Biomolecules 2019, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ma, H.; He, R.; Ren, X.; Zhou, C. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. Ultrason. Sonochem. 2021, 76, 105613. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-H.; Peng, C.-C.; Ker, Y.-B.; Chen, C.-C.; Lee, A.; Chang, W.-L.; Chyau, C.-C.; Peng, R.Y. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia. Molecules 2013, 19, 22–40. [Google Scholar] [CrossRef]
- He, R.; Wu, K.; Zhang, A.; Xie, Z.; Sun, P. Mechanochemical-assisted extraction and pharmacological study of triterpenoids from Antrodia camphorata. Appl. Sci. 2019, 9, 4281. [Google Scholar] [CrossRef]
- Chang, H.-L.; Chao, G.-R.; Chen, C.-C.; Mau, J.-L. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem. 2001, 74, 203–207. [Google Scholar]
- Liu, X.; Yu, S.; Zhang, Y.; Zhang, W.; Zhong, H.; Lu, X.; Guan, R. A review on the protective effect of active components in Antrodia camphorata against alcoholic liver injury. J. Ethnopharmacol. 2023, 300, 115740. [Google Scholar]
- LI, Y.-F. Effects of phytohormones and lignin on growth of Antrodia cinnamomea mycelium. Chin. Tradit. Herb. Drugs 2019, 24, 1453–1460. [Google Scholar]
- You, R.-I.; Lee, Y.-P.; Su, T.-Y.; Lin, C.-C.; Chen, C.-S.; Chu, C.-L. A Benzenoid 4, 7-Dimethoxy-5-Methyl-L, 3-Benzodioxole from Antrodia cinnamomea attenuates dendritic cell-mediated th2 allergic responses. Am. J. Chin. Med. 2019, 47, 1271–1287. [Google Scholar] [CrossRef]
- Yen, I.-C.; Shi, L.-S.; Chung, M.-C.; Ahmetaj-Shala, B.; Chang, T.-C.; Lee, S.-Y. Antrolone, a novel benzoid derived from Antrodia cinnamomea, inhibits the LPS-induced inflammatory response in RAW264. 7 macrophage cells by balancing the NF-κ B and Nrf2 pathways. Am. J. Chin. Med. 2018, 46, 1297–1313. [Google Scholar] [PubMed]
- Hseu, Y.-C.; Tsai, T.-J.; Korivi, M.; Liu, J.-Y.; Chen, H.-J.; Lin, C.-M.; Shen, Y.-C.; Yang, H.-L. Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy. Sci. Rep. 2017, 7, 8062. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-M.; Yang, H.-L.; Thiyagarajan, V.; Huang, T.-H.; Huang, P.-J.; Chen, S.-C.; Liu, J.-Y.; Hsu, L.-S.; Chang, H.-W.; Hseu, Y.-C. Coenzyme Q0 enhances ultraviolet B–induced apoptosis in human estrogen receptor–positive breast (MCF-7) cancer cells. Integr. Cancer Ther. 2017, 16, 385–396. [Google Scholar] [CrossRef]
- Chou, W.-L.; Lee, T.-H.; Huang, T.-H.; Wang, P.-W.; Chen, Y.-P.; Chen, C.-C.; Chang, Z.-Y.; Fang, J.-Y.; Yang, S.-C. Coenzyme Q0 from Antrodia cinnamomea exhibits drug-resistant bacteria eradication and keratinocyte inflammation mitigation to ameliorate infected atopic dermatitis in mouse. Front. Pharmacol. 2019, 10, 1445. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.S.; Kim, B.; Shin, J.H.; Choi, Y.J.; Choi, S.; Song, C.W.; Lee, J.; Park, H.G.; Lee, S.Y. Bio-based production of C2–C6 platform chemicals. Biotechnol. Bioeng. 2012, 109, 2437–2459. [Google Scholar]
- Nakamura, N.; Hirakawa, A.; Gao, J.-J.; Kakuda, H.; Shiro, M.; Komatsu, Y.; Sheu, C.-c.; Hattori, M. Five New Maleic and Succinic Acid Derivatives from the Mycelium of Antrodia c amphorata and Their Cytotoxic Effects on LLC Tumor Cell Line. J. Nat. Prod. 2004, 67, 46–48. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, J.; Sun, Q.; Xie, M.; Lu, Z.M.; Xu, H.y.; Shi, J.S.; Xu, Z.H. Identification of antrodin B from Antrodia camphorata as a new anti-hepatofibrotic compound using a rapid cell screening method and biological evaluation. Hepatol. Res. 2016, 46, E15–E25. [Google Scholar] [CrossRef]
- Wu, M.-D.; Cheng, M.-J.; Wang, B.-C.; Yech, Y.-J.; Lai, J.-T.; Kuo, Y.-H.; Yuan, G.-F.; Chen, I.-S. Maleimide and maleic anhydride derivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. J. Nat. Prod. 2008, 71, 1258–1261. [Google Scholar] [CrossRef]
- Shie, P.-H.; Wang, S.-Y.; Lay, H.-L.; Huang, G.-J. 4, 7-Dimethoxy-5-methyl-1, 3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264. 7 cells. Int. Immunopharmacol. 2016, 31, 186–194. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, X.; Liang, L.; Wang, G.; Xiong, Z.; Zhang, H.; Song, X.; Ai, L.; Xia, Y. Antrodin A from Antrodia camphorata modulates the gut microbiome and liver metabolome in mice exposed to acute alcohol intake. Food Funct. 2021, 12, 2925–2937. [Google Scholar]
- Hsieh, Y.-Y.; Lee, K.-C.; Cheng, K.-C.; Lee, K.-F.; Yang, Y.-L.; Chu, H.-T.; Lin, T.-W.; Chen, C.-C.; Hsieh, M.-C.; Huang, C.-Y. Antrodin C Isolated from Antrodia Cinnamomea Induced Apoptosis through ROS/AKT/ERK/P38 Signaling Pathway and Epigenetic Histone Acetylation of TNFα in Colorectal Cancer Cells. Antioxidants 2023, 12, 764. [Google Scholar] [CrossRef]
- Lee, T.-H.; Lee, C.-K.; Tsou, W.-L.; Liu, S.-Y.; Kuo, M.-T.; Wen, W.-C. A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Medica 2007, 73, 1412–1415. [Google Scholar] [CrossRef]
- Sulake, R.S.; Jiang, Y.-F.; Lin, H.-H.; Chen, C. Total synthesis of (±)-antroquinonol d. J. Org. Chem. 2014, 79, 10820–10828. [Google Scholar]
- Wang, S.-C.; Lee, T.-H.; Hsu, C.-H.; Chang, Y.-J.; Chang, M.-S.; Wang, Y.-C.; Ho, Y.-S.; Wen, W.-C.; Lin, R.-K. Antroquinonol D, isolated from Antrodia camphorata, with DNA demethylation and anticancer potential. J. Agric. Food Chem. 2014, 62, 5625–5635. [Google Scholar] [PubMed]
- Lin, Y.W.; Pan, J.H.; Liu, R.H.; Kuo, Y.H.; Sheen, L.Y.; Chiang, B.H. The 4-acetylantroquinonol B isolated from mycelium of Antrodia cinnamomea inhibits proliferation of hepatoma cells. J. Sci. Food Agric. 2010, 90, 1739–1744. [Google Scholar]
- Chen, Y.-c.; Liu, Y.-l.; Li, F.-y.; Chang, C.-I.; Wang, S.-y.; Lee, K.-y.; Li, S.-l.; Chen, Y.-p.; Jinn, T.-r.; Tzen, J.T. Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids. Acta Pharmacol. Sin. 2011, 32, 904–911. [Google Scholar]
- Lin, C.-H.; Kuo, Y.-H.; Shih, C.-C. Eburicoic acid, a triterpenoid compound from Antrodia camphorata, displays antidiabetic and antihyperlipidemic effects in palmitate-treated C2C12 myotubes and in high-fat diet-fed mice. Int. J. Mol. Sci. 2017, 18, 2314. [Google Scholar] [CrossRef]
- Lin, C.-H.; Hsiao, L.-W.; Kuo, Y.-H.; Shih, C.-C. Antidiabetic and antihyperlipidemic effects of sulphurenic acid, a triterpenoid compound from Antrodia camphorata, in streptozotocin-induced diabetic mice. Int. J. Mol. Sci. 2019, 20, 4897. [Google Scholar] [CrossRef]
- Perera, N.; Yang, F.-L.; Chang, C.-M.; Lu, Y.-T.; Zhan, S.-H.; Tsai, Y.-T.; Hsieh, J.-F.; Li, L.-H.; Hua, K.-F.; Wu, S.-H. Galactomannan from Antrodia cinnamomea Enhances the Phagocytic Activity of Macrophages. Org. Lett. 2017, 19, 3486–3489. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wu, H.-C.; Chang, J.-M.; Ko, H.-H.; Lin, C.-H.; Chang, H.-S. Chemical investigations and cytotoxic effects of metabolites from Antrodia camphorata against human hepatocellular carcinoma cells. Nat. Prod. Res. 2022, 37, 560–570. [Google Scholar]
- Lin, H.-C.; Lin, M.-H.; Liao, J.-H.; Wu, T.-H.; Lee, T.-H.; Mi, F.-L.; Wu, C.-H.; Chen, K.-C.; Cheng, C.-H.; Lin, C.-W. Antroquinonol, a ubiquinone derivative from the mushroom Antrodia camphorata, inhibits colon cancer stem cell-like properties: Insights into the molecular mechanism and inhibitory targets. J. Agric. Food Chem. 2017, 65, 51–59. [Google Scholar]
- Mizuno, K.; Sasaki, A.T.; Watanabe, K.; Watanabe, Y. Ubiquinol-10 intake is effective in relieving mild fatigue in healthy individuals. Nutrients 2020, 12, 1640. [Google Scholar] [CrossRef]
- Sabbatinelli, J.; Orlando, P.; Galeazzi, R.; Silvestri, S.; Cirilli, I.; Marcheggiani, F.; Dludla, P.V.; Giuliani, A.; Bonfigli, A.R.; Mazzanti, L. Ubiquinol ameliorates endothelial dysfunction in subjects with mild-to-moderate dyslipidemia: A randomized clinical trial. Nutrients 2020, 12, 1098. [Google Scholar] [CrossRef]
- Du, Y.-C.; Chang, F.-R.; Wu, T.-Y.; Hsu, Y.-M.; El-Shazly, M.; Chen, C.-F.; Sung, P.-J.; Lin, Y.-Y.; Lin, Y.-H.; Wu, Y.-C. Antileukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models. Phytomedicine 2012, 19, 788–796. [Google Scholar]
- Qiao, X.; Wang, Q.; Ji, S.; Huang, Y.; Zhang, Z.-x.; Bo, T.; Tzeng, Y.-m.; Guo, D.-a.; Ye, M. Metabolites identification and multi-component pharmacokinetics of ergostane and lanostane triterpenoids in the anticancer mushroom Antrodia cinnamomea. J. Pharm. Biomed. Anal. 2015, 111, 266–276. [Google Scholar]
- Kuang, Y.; Li, B.; Wang, Z.; Qiao, X.; Ye, M. Terpenoids from the medicinal mushroom Antrodia camphorata: Chemistry and medicinal potential. Nat. Prod. Rep. 2021, 38, 83–102. [Google Scholar]
- Liu, Y.; Ding, Y.; Ye, M.; Zhu, T.; Tian, D.; Ding, K. A novel heterogalactan from Antrodia camphorata and anti-angiogenic activity of its sulfated derivative. Polymers 2017, 9, 228. [Google Scholar] [CrossRef]
- Lin, C.-C.; Pan, I.-H.; Li, Y.-R.; Pan, Y.-G.; Lin, M.-K.; Lu, Y.-H.; Wu, H.-C.; Chu, C.-L. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. PLoS ONE 2015, 10, e0116191. [Google Scholar]
- Borchers, A.T.; Keen, C.L.; Gershwin, M.E. Mushrooms, tumors, and immunity: An update. Exp. Biol. Med. 2004, 229, 393–406. [Google Scholar]
- Ooi, V.E. Antitumor and immunomodulatory activities of mushroom polysaccharides. In Mushrooms as Functional Foods; Wiley: Hoboken, NJ, USA, 2008; pp. 147–198. [Google Scholar]
- Han, C.; Guo, L.; Yang, Y.; Li, W.; Sheng, Y.; Wang, J.; Guan, Q.; Zhang, X. Study on antrodia camphorata polysaccharide in alleviating the neuroethology of PD mice by decreasing the expression of NLRP3 inflammasome. Phytother. Res. 2019, 33, 2288–2297. [Google Scholar]
- Chen, P.-C.; Chen, C.-C.; Ker, Y.-B.; Chang, C.-H.; Chyau, C.-C.; Hu, M.-L. Anti-metastatic effects of antrodan with and without cisplatin on Lewis lung carcinomas in a mouse xenograft model. Int. J. Mol. Sci. 2018, 19, 1565. [Google Scholar] [CrossRef] [PubMed]
- Fa, K.-N.; Yang, C.-M.; Chen, P.-C.; Lee, Y.-Y.; Chyau, C.-C.; Hu, M.-L. Anti-metastatic effects of antrodan, the Antrodia cinnamomea mycelia glycoprotein, in lung carcinoma cells. Int. J. Biol. Macromol. 2015, 74, 476–482. [Google Scholar]
- Chyau, C.-C.; Wang, H.-F.; Zhang, W.-J.; Chen, C.-C.; Huang, S.-H.; Chang, C.-C.; Peng, R.Y. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. Int. J. Mol. Sci. 2020, 21, 360. [Google Scholar] [CrossRef]
- Perera, N.; Yang, F.-L.; Lu, Y.-T.; Li, L.-H.; Hua, K.-F.; Wu, S.-H. Antrodia cinnamomea galactomannan elicits immuno-stimulatory activity through Toll-like receptor 4. Int. J. Biol. Sci. 2018, 14, 1378. [Google Scholar]
- Wu, D.P.; Chiang, H.C. Constituents of Antrodia cinnamomea. J. Chin. Chem. Soc. 1995, 42, 797–800. [Google Scholar]
- Senthil Kumar, K.; Gokila Vani, M.; Hsieh, H.-W.; Lin, C.-C.; Wang, S.-Y. Antcins from Antrodia cinnamomea and Antrodia salmonea inhibit angiotensin-converting enzyme 2 (ACE2) in epithelial cells: Can be potential candidates for the development of SARS-CoV-2 prophylactic agents. Plants 2021, 10, 1736. [Google Scholar] [CrossRef]
- Cao, Y.-n.; Yue, S.-s.; Wang, A.-y.; Xu, L.; Hu, Y.-t.; Qiao, X.; Wu, T.-Y.; Ye, M.; Wu, Y.-C.; Qi, R. Antrodia cinnamomea and its compound dehydroeburicoic acid attenuate nonalcoholic fatty liver disease by upregulating ALDH2 activity. J. Ethnopharmacol. 2022, 292, 115146. [Google Scholar]
- Deng, J.-Y.; Chen, S.-J.; Jow, G.-M.; Hsueh, C.-W.; Jeng, C.-J. Dehydroeburicoic acid induces calcium-and calpain-dependent necrosis in human U87MG glioblastomas. Chem. Res. Toxicol. 2009, 22, 1817–1826. [Google Scholar]
- Lu, Z.-M.; Geng, Y.; Li, H.-X.; Sun, Q.; Shi, J.-S.; Xu, Z.-H. Alpha-terpineol promotes triterpenoid production of Antrodia cinnamomea in submerged culture. FEMS Microbiol. Lett. 2014, 358, 36–43. [Google Scholar] [PubMed]
- Huo, Y.; Win, S.; Than, T.A.; Yin, S.; Ye, M.; Hu, H.; Kaplowitz, N. Antcin H protects against acute liver injury through disruption of the interaction of c-Jun-N-terminal kinase with mitochondria. Antioxid. Redox Signal. 2017, 26, 207–220. [Google Scholar]
- Zhang, Y.; Lv, P.; Ma, J.; Chen, N.; Guo, H.; Chen, Y.; Gan, X.; Wang, R.; Liu, X.; Fan, S. Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo. Acta Pharm. Sin. B 2022, 12, 890–906. [Google Scholar]
- Su, Y.-H.; Wu, J.-S.; Dai, Y.-Z.; Chen, Y.-T.; Lin, Y.-X.; Tzeng, Y.-M.; Liao, J.-W. Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin. Toxics 2023, 11, 547. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, R.; Li, L.; Dong, R.; Yin, H.; Wang, Y.; Yang, A.; Wang, J.; Li, C.; Wang, D. The triterpenoids-enriched extracts from Antrodia cinnamomea mycelia attenuate alcohol-induced chronic liver injury via suppression lipid accumulation in C57BL/6 mice. Food Sci. Hum. Wellness 2021, 10, 497–507. [Google Scholar]
- Liu, F.-C.; Lai, M.-T.; Chen, Y.-Y.; Lin, W.-H.; Chang, S.-J.; Sheu, M.-J.; Wu, C.-H. Elucidating the inhibitory mechanisms of the ethanolic extract of the fruiting body of the mushroom Antrodia cinnamomea on the proliferation and migration of murine leukemia WEHI-3 cells and their tumorigenicity in a BALB/c allograft tumor model. Phytomedicine 2013, 20, 874–882. [Google Scholar]
- Wu, C.-H.; Liu, F.-C.; Pan, C.-H.; Lai, M.-T.; Lan, S.-J.; Wu, C.-H.; Sheu, M.-J. Suppression of cell growth, migration and drug resistance by ethanolic extract of Antrodia cinnamomea in human lung cancer A549 cells and C57BL/6J allograft tumor model. Int. J. Mol. Sci. 2018, 19, 791. [Google Scholar] [CrossRef]
- Lu, C.-W.; Wu, W.-J.; Nguyen, T.K.N.; Shen, S.-C.; Wu, Y.-B.; Liang, H.-J.; Wu, C.-H. Alleviating Effects of Ovatodiolide and Antcin K Supplements on High-Fat Diet-Induced Cardiovascular Dysfunction in ApoE-Knockout Mice by Attenuating Oxidative Stress. Nutrients 2023, 15, 4074. [Google Scholar] [CrossRef]
- Gokila Vani, M.; Kumar, K.; Liao, J.-W.; Chien, S.-C.; Mau, J.-L.; Chiang, S.-S.; Lin, C.-C.; Kuo, Y.-H.; Wang, S.-Y. Antcin C from Antrodia cinnamomea protects liver cells against free radical-induced oxidative stress and apoptosis in vitro and in vivo through Nrf2-dependent mechanism. Evid.-Based Complement. Altern. Med. 2013, 2013, 296082. [Google Scholar]
- Wang, Y.-J.; Lee, S.-C.; Hsu, C.-H.; Kuo, Y.-H.; Yang, C.-C.; Lin, F.-J. Antcins, triterpenoids from Antrodia cinnamomea, as new agonists for peroxisome proliferator-activated receptor α. J. Food Drug Anal. 2019, 27, 295–304. [Google Scholar]
- Kumar, K.S.; Vani, M.G.; Chen, C.-Y.; Hsiao, W.-W.; Li, J.; Lin, Z.-x.; Chu, F.-H.; Yen, G.-C.; Wang, S.-Y. A mechanistic and empirical review of antcins, a new class of phytosterols of formosan fungi origin. J. Food Drug Anal. 2020, 28, 38–59. [Google Scholar]
- Shen, Y.-C.; Wang, Y.-H.; Chou, Y.-C.; Chen, C.-F.; Lin, L.-C.; Chang, T.-T.; Tien, J.-H.; Chou, C.-J. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata. Planta Medica 2004, 70, 310–314. [Google Scholar]
- Wu, S.-H.; Ryvarden, L. Antrodia camphorata (" niu-chang-chih"), new combination of a medicinal fungus in Taiwan. Bot. Bull. -Acad. Sin. Taipei 1997, 38, 273–276. [Google Scholar]
- Jung, Y.-S.; Joe, B.-Y.; Cho, S.J.; Konishi, Y. 2, 3-Dimethoxy-5-methyl-1, 4-benzoquinones and 2-methyl-1, 4-naphthoquinones: Glycation inhibitors with lipid peroxidation activity. Bioorganic Med. Chem. Lett. 2005, 15, 1125–1129. [Google Scholar]
- Chen, J.-J.; Lin, W.-J.; Liao, C.-H.; Shieh, P.-C. Anti-inflammatory benzenoids from Antrodia camphorata. J. Nat. Prod. 2007, 70, 989–992. [Google Scholar]
- Pan, X.; Li, W.; Fang, Y.; Zhang, H.; Xiao, Y.; Molokeev, M.; Ping Jiang, S.; Liu, Y.; Lei, B. Semi-artificial photosynthetic system based on TiO2/Chlorophyll composite and microalgae for N2 fixation. Chem. Eng. J. 2023, 475, 146179. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, G.; Jiang, D.; Zhou, Z. Phenolic compositions and antioxidant activities of grapefruit (Citrus paradisi Macfadyen) varieties cultivated in China. Int. J. Food Sci. Nutr. 2015, 66, 858–866. [Google Scholar]
- Angamuthu, V.; Shanmugavadivu, M.; Nagarajan, G.; Velmurugan, B.K. Pharmacological activities of antroquinonol-Mini review. Chem.-Biol. Interact. 2019, 297, 8–15. [Google Scholar]
- Liang, D.; Zhang, Y.; Wu, Z.; Chen, Y.J.; Yang, X.; Sun, M.; Ni, R.; Bian, J.; Huang, D. A near infrared singlet oxygen probe and its applications in in vivo imaging and measurement of singlet oxygen quenching activity of flavonoids. Sens. Actuators B Chem. 2018, 266, 645–654. [Google Scholar]
- Yang, X.; Huang, D. One-step synthesis of biflavones mediated by peroxynitrite oxidative coupling of flavone monomers. In Proceedings of the Abstracts of Papers of The American Chemical Society; American Chemical Society: Washington, DC, USA, 2019. [Google Scholar]
- Yang, X.; Huang, D.; Du, K.; Toy, Y.H.J. Methods to Synthesize Flavonoid Dimers and Oligomers and the Use Thereof. U.S. Patent 18/256,596, 16 June 2022. [Google Scholar]
- Wang, X.; Cao, Y.; Jing, L.; Chen, S.; Leng, B.; Yang, X.; Wu, Z.; Bian, J.; Banjerdpongchai, R.; Poofery, J. Three-Dimensional RAW264. 7 cell model on electrohydrodynamic printed poly (ε-Caprolactone) scaffolds for in vitro study of anti-inflammatory compounds. ACS Appl. Bio Mater. 2021, 4, 7967–7978. [Google Scholar]
- Alsaiari, S.K.; Eshaghi, B.; Du, B.; Kanelli, M.; Li, G.; Wu, X.; Zhang, L.; Chaddah, M.; Lau, A.; Yang, X. CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells. Nat. Rev. Mater. 2025, 10, 44–61. [Google Scholar]
- Wang, X.; Cao, Y.; Chen, S.; Yang, X.; Bian, J.; Huang, D. Antioxidant and anti-inflammatory effects of 6, 3’, 4-and 7, 3, 4-Trihydroxyflavone on 2D and 3D RAW264. 7 Models. Antioxidants 2023, 12, 204. [Google Scholar] [CrossRef]
- Sun, M.; Wang, T.; Yang, X.; Yu, H.; Wang, S.; Huang, D. Facile mitochondria localized fluorescent probe for viscosity detection in living cells. Talanta 2021, 225, 121996. [Google Scholar] [CrossRef]
- Sun, M.; Yang, X.; Zhang, Y.; Wang, S.; Wong, M.W.; Ni, R.; Huang, D. Rapid and Visual detection and quantitation of ethylene released from ripening fruits: The new use of Grubbs catalyst. J. Agric. Food Chem. 2019, 67, 507–513. [Google Scholar]
- Lin, Y.; Yang, X.; Lu, Y.; Liang, D.; Huang, D. Isothiocyanates as H2S donors triggered by cysteine: Reaction mechanism and structure and activity relationship. Org. Lett. 2019, 21, 5977–5980. [Google Scholar] [CrossRef]
- Su, L.; Jing, L.; Zeng, X.; Chen, T.; Liu, H.; Kong, Y.; Wang, X.; Yang, X.; Fu, C.; Sun, J. 3D-Printed prolamin scaffolds for cell-based meat culture. Adv. Mater. 2023, 35, 2207397. [Google Scholar] [CrossRef]
- Yang, H.L.; Lin, K.Y.; Juan, Y.C.; Kumar, K.S.; Way, T.D.; Shen, P.C.; Chen, S.C.; Hseu, Y.C. The anti-cancer activity of Antrodia camphorata against human ovarian carcinoma (SKOV-3) cells via modulation of HER-2/neu signaling pathway. J. Ethnopharmacol. 2013, 148, 254–265. [Google Scholar] [CrossRef]
- Li, T.Y.; Chiang, B.H. 4-Acetylantroquinonol B from Antrodia cinnamomea Enhances Immune Function of Dendritic Cells Against Liver Cancer Stem Cells. Biomedicines 2019, 109, 2262–2269. [Google Scholar] [CrossRef]
- Huang, H.T.; Wang, S.-L.; Nguyen, V.B.; Kuo, Y.-H. Isolation and identification of potent antidiabetic compounds from Antrodia cinnamomea—An edible Taiwanese mushroom. Molecules 2018, 23, 2864. [Google Scholar] [CrossRef]
- Chang, T.C.; Yeh, C.T.; Adebayo, B.O.; Lin, Y.C.; Deng, L.; Rao, Y.K.; Tzeng, Y.M. 4-Acetylantroquinonol B Inhibits Colorectal Cancer Tumorigenesis and Suppresses Cancer Stem-Like Phenotype. Toxicol. Appl. Pharmacol. 2015, 288, 258–268. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Liu, Y.-K.; Wang, L.-W.; Huang, Y.-C.; Huang, P.-I.; Tsai, T.-H.; Chen, Y.-J. The medicinal fungus Antrodia cinnamomea regulates DNA repair and enhances the radiosensitivity of human esophageal cancer cells. OncoTargets Ther. 2016, 9, 6651–6661. [Google Scholar] [CrossRef]
- Liao, Y.-T.; Huang, K.-W.; Chen, W.-J.; Lai, T.-H. A botanical drug extracted from Antrodia cinnamomea: A first-in-human phase I study in healthy volunteers. J. Am. Nutr. Assoc. 2023, 42, 274–284. [Google Scholar]
- Chiou, Y.-L.; Chyau, C.-C.; Li, T.-J.; Kuo, C.-F.; Kang, Y.-Y.; Chen, C.-C.; Ko, W.-S. Hepatoprotective effect of Antrodia cinnamomea mycelium in patients with nonalcoholic steatohepatitis: A randomized, double-blind, placebo-controlled trial. J. Am. Coll. Nutr. 2021, 40, 349–357. [Google Scholar] [CrossRef]
- Chen, C.-C.; Li, I.-C.; Lin, T.-W.; Chang, H.-L.; Lin, W.-H.; Shen, Y.-C. Efficacy and safety of oral Antrodia cinnamomea mycelium in mildly hypertensive adults: A randomized controlled pilot clinical study. Eur. J. Integr. Med. 2016, 8, 654–660. [Google Scholar] [CrossRef]
- Chen, W.-J.; Chang, F.-W. A Pilot Study to Assess Food Safety and Potential Cholesterol-Lowering Efficacy of Antrodia cinnamomea Solid-State Cultivated Mycelium in Healthy Adults. Evid. -Based Complement. Altern. Med. 2020, 2020, 5865764. [Google Scholar] [CrossRef]
- Ho, C.-Y.; Kuan, C.-M.; Hsu, P.-K. Hepatoprotective effect of Antrodia Cinnamomea mycelia extract in subhealth Japanese adults: A randomized, double-blind, placebo-controlled clinical study. J. Diet. Suppl. 2023, 20, 939–949. [Google Scholar] [CrossRef]
- Xu, C.; Yang, X.; Wang, X.; Jing, L.; Zhou, Z.; Cao, Y.; Zheng, H.; Kuo, C.-L.; Huang, D. Authentication of ten distinctive triterpenoids in Antrodia cinnamomea serves as a crucial aspect for ensuring the quality control of associated nutraceutical products. Curr. Res. Food Sci. 2024, 8, 100721. [Google Scholar] [CrossRef]
Sources | Extraction Method | Isolation and Purification Method | References | |
---|---|---|---|---|
Benzenoids | ||||
4,7-Dimethoxy-5-methyl-1,3-benzodioxole | Mycelia | Extracted with methanol for 24 h at room temperature | Silica gel column and Sephadex LH-20 column | [41] |
Antrolone | Mycelia | Extracted with 95% ethanol for 24 h at room temperature | Silica gel column chromatography and medium-pressure liquid chromatography | [33] |
2,3-Dimethoxy-5methyl-1,4-benzoquinone | Mycelia | Extracted with 95% ethanol for 24 h at room temperature | Semipreparative HPLC | [35] |
Maleic and succinic acid derivatives | ||||
Antrodin A | Mycelia | Extracted with absolute ethanol at a ratio of 1:100 (g/mL), the ethanol extract was then extracted twice with ethyl acetate/water (1:1) | Silica gel column chromatography in a Reveleris PREP purification system | [42] |
Antrocin B | Mycelia | Extracted with methanol for 24 h at room temperature | Silica gel column and semipreparative HPLC | [39] |
Antrocin C | Mycelia | Extracted in methanol and then partitioned with n-hexane chloroform and ethyl acetate | Silica gel column and semipreparative HPLC | [43] |
Antrocin D | Mycelia | Extracted with methanol for 24 h at room temperature | Silica gel column and semipreparative HPLC | [43] |
Antrocin E | Mycelia | Extracted with methanol for 24 h at room temperature | Silica gel column and semipreparative HPLC | [43] |
Ubiquinone derivatives | ||||
Antroquinonol | Mycelia (solid-state); Fruiting bodies | Extracted three time with n-hexane by stirring at room temperature for 6 h | Silica-gel gravity column (230–400 mesh, 5 × 45 cm2) and Sephadex LH-20 (5 × 70 cm2) | [44] |
Antroquinonol C | Mycelia | Extracted with 95% alcohol for 24 h at room temperature | Semipreparative HPLC | [45] |
Antroquinonol D | Mycelia | Extracted with 95% alcohol for 24 h at room temperature | Semipreparative HPLC | [46] |
4-acetyantroquinonol B | Mycelia | Extracted with ethyl acetate | HPLC and silica gel column (4.6 × 250 mm2) | [47] |
Triterpenoids | ||||
Antcin A | Fruiting bodies | Extracted with MeOH at room temperature for 7 days | Silica gel column and semi-preparative HPLC | [48] |
Eburicoic acid | Fruiting bodies | Extracted with methanol at room temperature for 4 days and then partitioned (three times) with ethyl acetate | Silica gel and HPLC | [49] |
Sulphurenic acid | Fruiting bodies | Extracted three times with methanol at room temperature (4 days × 3) | Silica gel and HPLC | [50] |
Polysaccharides | ||||
Galactomannan | Mycelia | Extracted with cold water and lyophilized to obtain crude polysaccharides (recovery percentage was 8.29 w/w%) | Mycelia of A. cinnamomea were fermented, lyophilized, and then ground into powder | [51] |
Galactose | From Galactomannan | Lyophilizing purified ACP Purification of A. cinnamomea Polysaccharides | Gel filtration chromatography HW65F column | [51] |
Mannose | From Galactomannan | Lyophilizing purified crude polysaccharide | Gel filtration using chromatography HW65F column | [51] |
Type | Subjects | Oral Administration Dosage | Key Findings | Refs. |
---|---|---|---|---|
Hepatocellular carcinoma (HCC) | Eight-week-old BALB/c mice | ACDPs at high (400 mg/kg/day) and low (200 mg/kg/day) doses | ACDPs dose-dependently inhibited tumour growth and significantly decreased tumour volume | [74] |
Leukaemia | BALB/c mice allograft tumour model | Ethanol extract of A. cinnamomea fruiting bodies (0.9 g kg−1, orally administered for 2 weeks | Reducing p-ERK1/2, p-Akt and MMP-9, and upregulating p21 and p27 | [77] |
Lung cancer | C57BL/6J allograft tumour model | Ethanolic extracts from Antrodia cinnamomea (0.25 and 0.5 g/kg). | Treatment of EEAC markedly reduced tumour size | [78] |
Nervous system | Female 5–6 weeks old BALB/c-nu | Rodent chow and water | CoQ0 was effective in the reduction in tumour formation | [81] |
Nervous system | Female BALB/c-nu mice | CoQ0 (1.5 mg/kg, administered subcutaneously every 2 days) | CoQ0 treatment induced autophagy and autophagy-mediated antimetastatic effects | [77] |
Esophageal cancer cells | Specific pathogen-free male BALB/c nude mice (4 weeks old, 25–28 g) | AC-MFB or with 100 μL of a normal saline. | Have a synergistic effect on the tumour growth delay | [104] |
Participants | Study Design | Key Findings | Refs. |
---|---|---|---|
Eighteen healthy participants. | Volunteers were divided into five cohorts (dose levels A, B, C, D, E), with up to six evaluable healthy volunteers per cohort, to assess the maximum tolerated dose (MTD) of LEAC-102. | LEAC-102 showed potential immunomodulatory effects by promoting adaptive T-cell activation and dose-dependently upregulating PD-1 expression. | [105] |
28 Participants. | Twenty-eight participants were treated with three capsules per day containing either 420 mg of ACM or 420 mg of starch as a placebo. | The ACM group showed reduced steatosis and TNF-α levels after three and six months, indicating a hepatoprotective effect in NASH, with no adverse events reported. | [106] |
A random allocation sequence for assigning participants. | Participants were treated with capsules per day containing either 420 mg of A. cinnamomea mycelium. | Eight weeks of AC mycelium treatment reduced SBP, DBP, and oxidative stress by inhibiting PRA, suggesting it as a safe alternative for mildly hypertensive, unmedicated patients. | [107] |
36 Eligible participants. | Participants took two LAC capsules (380 mg each of A. cinnamomea solid-state mycelium) twice daily for three months. | LAC reduced marginally high cholesterol without adverse effects on liver or kidney function. | [108] |
Forty-four eligible Japanese adults. | Taking an ACME capsule (250 mg of ACME powder) or a placebo capsule. | ACME might effectively improve liver health in regular drinkers. | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Xie, Q.; Kuo, C.-L.; Yang, X.; Huang, D. Evidence-Based Nutraceuticals Derived from Antrodia cinnamomea. Foods 2025, 14, 1212. https://doi.org/10.3390/foods14071212
Xu C, Xie Q, Kuo C-L, Yang X, Huang D. Evidence-Based Nutraceuticals Derived from Antrodia cinnamomea. Foods. 2025; 14(7):1212. https://doi.org/10.3390/foods14071212
Chicago/Turabian StyleXu, Chunyuhang, Qingtong Xie, Chien-Liang Kuo, Xin Yang, and Dejian Huang. 2025. "Evidence-Based Nutraceuticals Derived from Antrodia cinnamomea" Foods 14, no. 7: 1212. https://doi.org/10.3390/foods14071212
APA StyleXu, C., Xie, Q., Kuo, C.-L., Yang, X., & Huang, D. (2025). Evidence-Based Nutraceuticals Derived from Antrodia cinnamomea. Foods, 14(7), 1212. https://doi.org/10.3390/foods14071212